BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CERN//INDICO//EN
BEGIN:VEVENT
SUMMARY:A Cautionary Tale
DTSTART;VALUE=DATE-TIME:20220908T103000Z
DTEND;VALUE=DATE-TIME:20220908T113000Z
DTSTAMP;VALUE=DATE-TIME:20221209T200601Z
UID:indico-event-8542@cern.ch
DESCRIPTION:Abstract: Let $A \\subseteq B$ be integral domains and $G$ be
a totally\nordered Abelian group. D. Daigle has formulated certain hypothe
ses on\ndegree function $\\deg : B \\rightarrow G \\cup \\lbrace - \\infty
\\rbrace$ so\nthat it is tame in characteristic zero\, i.e.\, $\\deg(D)$
is defined for all\n$A$-derivations $D: B \\rightarrow B$. This study is i
mportant because each\n$D \\in \\der_k(B)$ for which $\\deg(D)$ is defined
\, we can homogenize the\nderivation which is an important and useful tool
in the study of\n$\\G_a$-action on an algebraic variety.\n\nIn arbitrary
characteristic\, $\\G_a$-action on an affine scheme $\\spec(B)$\ncan be in
terpreted in terms of exponential maps on $B$. In this talk we\nshall disc
uss analogous formulations of hypotheses on the degree function\nso that $
\\deg(\\phi)$ is defined for each $A$-linear exponential map $\\phi$\non $
B$. This talk is based on a joint work with N. Gupta.\n\nhttps://indico.ti
fr.res.in/indico/conferenceDisplay.py?confId=8542
LOCATION: AG-69
URL:https://indico.tifr.res.in/indico/conferenceDisplay.py?confId=8542
END:VEVENT
END:VCALENDAR