
nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Finding selected eigenvalues of the lattice Dirac operator using
the Lánczos algorithm with selective orthogonalization

A D Kennedy

SUPA & School of Physics & Astronomy
University of Edinburgh

Cray-TIFR Workshop on High-Performance Computing in Physics, 2011

A D Kennedy Lánczos Algorithm 1 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Introduction

We want to find some of the eigenvalues and eigenvectors of large sparse
Hermitian (symmetric) matrices.

We have implemented the LANSO (Lánczos algorithm with selective
orthogonalization) of Parlett and Scott1 in the Chroma software system.2

We shall discuss:
Why we are interested in the problem;
How to find eigenpairs of small matrices;
How eigenpairs are related to those of submatrices (Ritz pairs);
Krylov spaces and the Lánczos method;
Diseases and benefits of using finite-precision floating-point arithmetic;
Bounds on convergence rate, especially for inner eigenvalues near to voids in
the spectrum;
Implementation issues for large parallel architectures.

This work was done in collaboration with Chris Johnson (EPCC, University
of Edinburgh) under the NAIS project (www.nais.org.uk).

1B. N. Parlett and D. S. Scott, Mathematics of Computation, 33 145, 217–238 (1979)
2Robert G. Edwards and Bálint Joó, Nucl. Phys. Proc. Suppl. 140 832 (2005)

A D Kennedy Lánczos Algorithm 2 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Application — Chiral Lattice Quarks

The problem is common to many areas of computational science, but the
particular application we are interested in is in computing the Neuberger
operator for lattice QCD (Quantum Chromodynamics being the quantum
field theory of the strong nuclear force).

This requires us to evaluate the sgn function of the “Hermitian Dirac
operator” γ5D, which is defined by diagonalizing this matrix and taking
the sgn (±1) of each of its eigenvalues.

It is far too expensive to carry out the full diagonalization, so we use a
Zolotarev rational approximation for the sgn function as this can be
evaluated just using matrix addition, multiplication, and inversion (using a
multi-shift solver for its stable partial fraction expansion).

The approximation is expensive for very small eigenvalues of γ5D, and as
there are only a relatively small number of these we want to deflate
(project them out) and take their sign explicitly (which is very easy to do).

A D Kennedy Lánczos Algorithm 3 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Dirac Operator

The lattice Wilson–Dirac operator
is large and sparse, the sparsity
corresponding to it being the
discretization of a local differential
operator on space-time.

Our sample operator acts on
vectors with
243 × 48× 3× 4 = 7, 962, 624
complex components, which is
moderate by today’s standards.

Despite its size it is fairly
well-conditioned, basically because
it is an approximation to a
well-behaved linear operator on a
infinite dimensional Hilbert space.

Structure of the Wilson–Dirac operator;
S. M. Pickles, University of Edinburgh
Ph.D. thesis (1998)

A D Kennedy Lánczos Algorithm 4 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

Basic Properties of Symmetric Matrices

A matrix A is Hermitian (with respect to a sesquilinear inner product) if
A = A†, which means

(u,Av) = (A†u, v) = (Au, v) = (v ,Au)∗,

or equivalently

u† · Av = (A†u)† · v = (Au)† · v = (v† · Au)∗.

An eigenvalue λ of A satisfies Az = λz where z 6= 0 is the corresponding
eigenvector.

The eigenvalues are real

λ =
(z ,Az)

(z , z)
=

(z ,A†z)

(z , z)
=

(z ,Az)∗

(z , z)∗
= λ∗.

A D Kennedy Lánczos Algorithm 5 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

Basic Properties of Symmetric Matrices

The eigenvectors belonging to different eigenvalues are orthogonal

λ(z ′, z) = (z ′,Az) = (Az , z ′)∗ = (z ,Az ′)∗ = λ′
∗
(z , z ′)∗ = λ′(z ′, z),

hence (λ′ − λ)(z ′, z) = 0, so λ 6= λ′ ⇒ (z ′, z) = 0.

We can choose eigenvectors belonging to the same eigenvalue to be
orthogonal, for example by using the Gram–Schmidt procedure, as any
linear combination of such eigenvectors is also an eigenvector.

The set of eigenvectors is a complete basis for the linear space. It follows
any matrix can be reduced to triangular form T by a unitary (orthogonal)
transformation3 (change of basis), A = UTU−1 = UTU†, and

T † = (U†AU)† = U†A†U = U†AU = T .

The columns of U furnish the orthonormal eigenvectors.

3This is “Schur normal form,” which follows from the Cayley–Hamilton theorem that every
matrix satisfies its characteristic equation, and the fundamental theorem of algebra which states
that the characteristic polynomial p(λ) = det(A− λ) has exactly N = dim(A) complex roots,
counting multiplicity.

A D Kennedy Lánczos Algorithm 6 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

Power Method

How do we find eigenvalues and eigenvectors numerically? One obvious
approach is the Power Method.

Start with an arbitrary vector which can, in theory, be expanded in the
orthonormal eigenvector basis {zj}, u0 =

∑
j zj(zj , u0).

Apply A to u0 and normalize the result to get u1, and so forth:
uk+1 = Auk/‖Auk‖, where the norm is ‖x‖ =

√
(x , x).

We then find that
uk ∝

∑
j A

kzj(zj , u0) =
∑

j λ
k
j zj(zj , u0)→ λk

1z1(z1, u0) ∝ z1, where we
label the eigenpairs such that |λ1| > |λ2| > · · · > |λN |.
If the eigenvalue λ1 is degenerate then uk converges to the eigenvector
parallel to u0.

The rate of convergence is governed by |λ2/λ1|k = e−k(ln |λ1|−ln |λ2|).

If we shift the matrix A by a constant then we just shift its eigenvalues by
the same constant and leave the eigenvectors unchanged. However such a
shift does change the rate of convergence of the power method.

A D Kennedy Lánczos Algorithm 7 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

Inverse Iteration

Another fairly obvious method is to use Inverse Iteration.

This is similar to the power method, except that we apply the inverse of A
at each step, uk+1 = A−1uk/‖A−1uk‖.
Clearly, this process converges to an eigenvector belonging to λN , the
eigenvalue of smallest absolute value.

The advantage of inverse iteration is that we may use a shift close to −λN

leading to an almost infinite convergence rate. With a good choice of shift
only a few iterations are required.

The disadvantage is that it is expensive to apply A−1. If A is small then
we can solve the linear equations Av = uk by factoring A into triangular
factors A = LU (Gaussian elimination) or into a product of unitary
(orthogonal) and triangular factors A = QR.

Why an upper triangular matrix is called U (upper) in one case and R
(right) in the other is one of the unfathomable mysteries of numerical
analysis. There is also a QL variant, but who knows whether L stands for
left or lower?

A D Kennedy Lánczos Algorithm 8 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

Givens Rotations

It is useful to understand how such a QR decomposition is effected.

We eliminate the non-zero subdiagonal elements of A successively using
2× 2 unitary (orthogonal) transformations called Givens rotations.

We may eliminate the elements in the order
• • • •
3 • • •
2 5 • •
1 4 6 •

where at the fifth step, for example, we have

Q†5A5 =

1 0 0 0
0 c∗ s∗ 0
0 −s c 0
0 0 0 1

• • • •
0 • • •
0 5 • •
0 0 6 •

 =

• • • •
0 • • •
0 0 • •
0 0 6 •

 = A6,

where c · (A5)32 = s · (A5)22 and |c|2 + |s|2 = 1. The notation just indicates
which elements are non-zero, the actual values may change at each step.

A D Kennedy Lánczos Algorithm 9 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

QR Decomposition

We obtain

R = A7 = Q†6A6 = Q†6Q
†
5A5 = · · · = Q†6 · · ·Q

†
1A1 = Q†A

where the matrix Q = Q1 · · ·Q6 is unitary (orthogonal).

We can now solve Ax = QRx = y as Rx = Q†y , which is easily done by
starting from the bottom row and working upwards (back substitution).

This method is particularly efficient if A is of Hessenberg form
• • • •
• • • •
0 • • •
0 0 • •

 ,

where it only requires N − 1 steps rather than 1
2
N(N − 1).

A D Kennedy Lánczos Algorithm 10 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

QR Algorithm

Numerical matrix diagonalization, unlike matrix inversion, has to be an
iterative process. If the initial matrix elements are rational the eigenvalues,
being roots of the characteristic polynomial, will in general be algebraic
numbers and cannot be computed exactly in a finite number of rational
operations.

The preferred method for diagonalizing small matrices is the QR
Algorithm, which iterates the basic step

Ak+1 = RkQk where Ak = QkRk ;

in other words
Ak+1 = Qk

†AkQk = Q̄†kAQ̄k

where Q̄k = Q1 · · ·Qk .

This process converges to A∞ which is diagonal.

A D Kennedy Lánczos Algorithm 11 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

QR Algorithm

To understand why this works note that Ak+1 = Q̄†kAQ̄k means that

Q̄kAk+1 = AQ̄k ;

hence
Q̄k+1Rk+1 = Q̄kQk+1Rk+1 = Q̄kAk+1 = AQ̄k .

The leftmost column of this equation is4

Q̄k+1Rk+1e1 = (Rk+1)11Q̄k+1e1 = AQ̄ke1

whose norm tells us that (Rk+1)11 = ‖AQ̄ke1‖.
In other words the sequence of vectors uk = Q̄ke1 are just the iterates of
the power method, so (Rk)11 → λ1.

4ek is a unit vector in direction k, i.e., (ek)j = δjk .

A D Kennedy Lánczos Algorithm 12 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

QR Algorithm

Likewise, the rightmost column corresponds to inverse iteration.

The conjugate of Q̄k+1Rk+1 = AQ̄k is R†k+1Q̄
†
k+1 = Q̄†kA, and hence

Q̄kR
†
k+1 = AQ̄k+1.

Noting that R†k+1 is a lower or left triangular matrix, we see that the
rightmost column of this equation is

Q̄kR
†
k+1eN = (R†k+1)NNQ̄keN = AQ̄k+1eN

or equivalently A−1uk = uk+1/(R†k+1)NN where here uk = Q̄keN is an
iterate of the inverse iteration algorithm with initial vector eN , and
(R†k+1)NN = 1/‖A−1uk‖ → λN ∈ R.

A D Kennedy Lánczos Algorithm 13 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Basic Properties of Symmetric Matrices
Power Method and Inverse Iteration
QR Decomposition
QR Algorithm

QR Shifts

We can apply the QR algorithm to A− λ for any shift λ, and if this shift is
close to an eigenvalue of A then A− λ is almost singular and the last
column will converge to a corresponding eigenvector very rapidly.

Indeed, we can adjust the shift at every iteration; this is known as a
non-stationary iteration. With a good choice of shifts we usually only need
a few iterations to obtain each eigenvalue to machine precision.

If we have prior knowledge of some eigenvalues then we can make good
use of this information.

Once the Hermitian matrix has been reduced to Hessenberg (and hence
tridiagonal form) the QR iteration preserves this structure. The basic step
can then be optimized by a simple process known as “bump chasing”.

A D Kennedy Lánczos Algorithm 14 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Rayleigh Quotient

We now consider how the eigenvalues and eigenvectors of an
approximation to a matrix are related to the actual eigenpairs. This is
crucial for application to large sparse matrices where direct methods such
as the QR algorithm are too expensive to contemplate.

Consider the Rayleigh quotient ρ(u,A) = (u,Au)/(u, u) which has the
spectral representation

ρ(u,A) =
(u,Au)

(u, u)
=
∑
j

λj
|(zj , u)|2∑
k |(zk , u)|2 .

This is a weighted mean of eigenvalues, so it satisfies the inequalities

λi ≤ min
u∈span(zi ,...,zi+j)

u 6=0

ρ(u,A) = min
u∈span(zi ,...,zi+j)

‖u‖=1

(u,Au) ≤ λi+j

where we now have ordered the eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ λN .

A D Kennedy Lánczos Algorithm 15 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Ritz Pairs

The extrema of the Rayleigh quotient may be found by varying the
components ui = (zi , u) of u subject to the constraint that ‖u‖ = 1.
Introducing a Lagrange multiplier µ we find (A− µ)u = 0, whose solutions
are the eigenpairs µ = λj with u = zj for j = 1, . . . ,N.

If we restrict u to an m-dimensional subspace Sm ⊆ RN then the extrema
of the Rayleigh quotient are the Ritz pairs µ = θj with u = yj for
j = 1, . . . ,m.

The Ritz pairs are the eigenvalues and eigenvectors of the restriction H of
A to the subspace, H = Q†AQ, that is Hsj = θjsj . Here Q is an N ×m
matrix with orthonormal columns (Q†Q = 1) and QQ† is an orthogonal
projector onto Sm.

Note that the vectors yj = Qsj ∈ RN are not eigenvectors of A, although
Q†(A− θj)yj = 0, since the residual R = AQ − QH 6= 0 in general.

For large matrices our strategy is to compute the Ritz pairs of A for
suitably chosen subspaces Sm; so we are interested in how well these may
approximate the actual eigenvalues of A itself.

A D Kennedy Lánczos Algorithm 16 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

MinMax and MaxMin Bounds

Let Sj ⊆ RN be an arbitrary subspace of dimension j , and Cj−1 ⊆ RN

another arbitrary subspace of codimension j − 1, i.e., a subspace of
dimension N − j + 1 (if N <∞).

There must be a non-zero vector v ∈ Sj ∩ Cj−1. v depends upon Sj and
Cj−1, of course. Hence minu∈Sj ρ(u,A) ≤ ρ(v ,A) ≤ maxu∈Cj−1 ρ(u,A).

Taking the maximum over all Sj and the minimum over all Cj−1 we obtain
maxSj⊆RN minu∈Sj ρ(u,A) ≤ minCj−1⊆RN maxu∈Cj−1 ρ(u,A).

For the particular subspace Sj = span(z1, . . . , zj) we know that the
minimum of the Rayleigh quotient is λj , and likewise for
Cj−1 = span(zj , . . . , zN) its maximum is also λj , so

λj ≤ max
Sj⊆RN

min
u∈Sj

ρ(u,A) ≤ min
Cj−1⊆RN

max
u∈Cj−1

ρ(u,A) ≤ λj .

We have thus established the MaxMin and MinMax bounds

max
Sj⊆RN

min
u∈Sj

ρ(u,A) = λj = min
Cj−1⊆RN

max
u∈Cj−1

ρ(u,A).

A D Kennedy Lánczos Algorithm 17 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Spectral Stability

From these bounds we see that for any subspace Sm the Ritz values satisfy
λj ≥ θj ≥ λj+N−m for j = 1, . . . ,m.

For the first bound note that θj = maxSj⊆Sm minu∈Sj ρ(u,A).

For the second replace A by −A to get λN−j′ ≥ θm−j′ , and set j ′ = m − j .

More precisely, one can show that there are m of A’s eigenvalues λj′ such
that |λj′ − θj | ≤ ‖R‖ for j = 1, . . . ,m.

Similarly, we can also show that the eigenvalues are stable against small or
low-rank perturbations of the matrix A; this is crucial because

The spectrum of a good discrete approximation to a continuous operator is
close to the spectrum of the underlying operator itself.
We can often extract reliable estimates for the spectrum of A from the
spectrum of the restriction of A to relatively small subspaces, in which we
can use dense matrix methods such as the QR algorithm discussed before.

Such nice behaviour does not always hold for the eigenvectors.
This should not be suprising: consider small perturbations of a matrix with
a degenerate eigenvalue; different perturbations can lift the degeneracy in
completely different directions.
On the other hand, the eigenspaces corresponding to well-separated
eigenvalues are stable.

A D Kennedy Lánczos Algorithm 18 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Krylov Spaces

We want to consider a sequence of subspaces such that the restriction of
A to them converges to A.

Here we are assuming that there is some underlying “continuum” operator
in an infinite dimensional Hilbert space, and that we can use the topology
on this space to define what we mean by convergence.

In practice we do not have an explicit matrix representation of the large
(sparse) matrix A, but we merely have some functional “black box”
representation that allows us to apply it to a vector in RN .

Almost the only spaces we can construct from this are the Krylov spaces
Kn (A, u) = span(u,Au,A2u, . . . ,An−1u) where u is some more-or-less
arbitrary starting vector.

The only simple generalization are block Krylov spaces where we start
from more than one vector.

A D Kennedy Lánczos Algorithm 19 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Arnoldi Method

The vectors {Aju} do not form an orthonormal basis for the Krylov space.

Furthermore, the corresponding unit vectors Aju/‖Aju‖ converge to the
largest eigenvector of A, as they are just successive iterates of the power
method. They therefore provide a particularly bad choice of basis for
numerical computations.

It is natural to construct a good orthonormal basis by deflation and
normalization,

q1 = u/‖u‖, uj+1 = Aqj −
j∑

k=1

qk(qk ,Aqj), qj+1 =
uj+1

‖uj+1‖
;

in other words the Gram–Schmidt procedure. This is called the Arnoldi
method. We see immediately that (qj+1,Aqj) = (qj+1, uj+1) = ‖uj+1‖.
The n × n matrix Q whose columns are Qej = qj therefore furnishes an
orthogonal projector onto Kn (A, u).

A D Kennedy Lánczos Algorithm 20 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Arnoldi Method

The restriction of A to the Krylov space is Hessenberg:

H = Q†AQ =

H1,1 H1,2 H1,n−2 H1,n−1 H1,n

H2,1 H2,2 · · · H2,n−2 H2,n−1 H2,n

0 H3,2 H3,n−2 H3,n−1 H3,n

...
. . .

...
0 0 Hn−1,n−2 Hn−1,n−1 Hn−1,n

0 0 · · · 0 Hn,n−1 Hn,n

.

We can diagonalize this matrix using the QR algorithm to obtain
Θ = Y †HY , where Θ is the diagonal matrix of Ritz values, Θij = θjδij ,
and Y the n × n unitary (orthogonal) matrix whose columns are the
corresponding Ritz vectors, yj = Yej .

We may hope that some of the Ritz values approximate the eigenvalues of
A, θj ≈ λj′ , and that some of the Ritz vectors approximate its
eigenvectors, QYej = Qyj ≈ zj′ , if the residual is small, since
A(QY) = (QH + R)Y = (QY)Θ +O(‖R‖).

A D Kennedy Lánczos Algorithm 21 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Lánczos Algorithm

We are interested the special case of the Arnoldi method for a Hermitian
matrix A, which means that the matrix H is also Hermitian
H† = (Q†AQ)† = Q†A†Q = H. A matrix which is both Hessenberg and
Hermitian is tridiagonal:

H = Q†AQ =

α1 β1 0 0 0 0
β1 α2 β2 · · · 0 0 0
0 β2 α3 0 0 0
0 0 β3 0 0 0

...
. . .

...
0 0 0 αn−2 βn−2 0
0 0 0 · · · βn−2 αn−1 βn−1

0 0 0 0 βn−1 αn

where βj = ‖uj+1‖ = (qj+1,Aqj) and αi = (qi ,Aqi) are real.

A D Kennedy Lánczos Algorithm 22 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Lánczos Algorithm

We thus have a three-term recurrence relation

Aqj = βjqj+1 + αjqj + βj−1qj−1.

This defines the Lánczos algorithm.

This greatly simplifies the computation; not only is it particularly easy to
diagonalize a tridiagonal matrix using the QR algorithm, but also means
that Aqj is automatically (implicitly) orthogonal to all qi except for qi−1,
qi , and qi+1.

Unfortunately, floating-point arithmetic does not respect implicit
orthogonality.

A D Kennedy Lánczos Algorithm 23 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Loss of Implicit Orthogonality

The figure shows the lower triangle
of the matrix Q†Q where the
absolute values of the elements are
colour-coded from blue (zero) to
red (one) on a logarithmic scale.

This is not very significant when
we use the Lánczos scheme to
invert a matrix, as in the
conjugate gradient or SYMMLQ
algorithms, but here it leads to the
well-known disease that the same
eigenvectors are found multiple
times.

The goal of the LANSO algorithm
is to alleviate this problem.

A D Kennedy Lánczos Algorithm 24 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Selective Orthogonalization

We will deem a Ritz vector yj to be “good” if it lies within the Krylov
space, that is if (Qyj , qn+k) = (Qyj ,Qen+k) = (yj , en+k) ≈ 0 for
k = 1, 2, Eigenvalues that are not good will be called “bad”.

Paige showed that the loss of implicit orthogonality occurs primarily in the
direction of the good Ritz vectors. This is not suprising:

If qn+1 and qn+2 are orthogonal to an eigenvector z of A then all future
Lánczos vectors will also be orthogonal to z, since

(z, qn+k) = 0⇒ (z,Aqn+k) = (Az, qn+k) = λ(z, qn+k) = 0⇒ (z, qn+k+1) = 0.

Therefore, any rounding errors that appear in the computation of qn+k with
a component in the direction z will not be suppressed by orthogonalization
to the previous two Lánczos vectors.
Moreover, the this component will grow as (λ/λ′)k where λ′ is the largest
“bad” eigenvalue.

It therefore suffices to explicitly orthogonalize the current Lánczos vectors
qn and qn+1 with respect to good eigenvectors sufficiently frequently. This
is much cheaper than explicitly orthogonalizing with respect to all the
previous Lánczos vectors at each step as in the Arnoldi method.

A D Kennedy Lánczos Algorithm 25 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

LANSO

The question is how often do we need to carry out this orthogonalization?

As rounding errors are of order5 ε it seems reasonable to choose to do so
when the loss of orthogonality has accumulated to be of O(

√
ε).

We therefore choose to orthogonalize qn′ and qn′+1 with respect to a good
eigenvector z when (z , qn′) >

√
ε.

In their LANSO algorithm Parlett & Scott introduce two bounds:
The τ bound, τij ≥ |(zi , qj)|, that is used to trigger orthogonalisation with
respect to zi . This bound is cheaply computed by a three-term scalar
recurrence.
The κ bound, κ ≥ ‖Q†Q − 1‖, that is used to trigger a search for new good
eigenvectors by running the QR algorithm. This is computed by a more
complicated scalar recurrence.

5ε is the smallest number such that 1⊕ ε 6= 1 in floating-point arithmetic, it is approximately
10−7 for single precision and 10−14 for double precision.

A D Kennedy Lánczos Algorithm 26 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

LANSO Bounds

The figure shows these bounds as a function of the number of Lánczos
steps j (dimension of the Krylov subspace).

The vertical blue lines show when the κ bound triggers a search for new
eigenvectors followed by an orthogonalisation with respect to the good
ones found.

The green lines show the value of the τ bounds for six good eigenvectors,
and the red lines the actual values for |(zi , qj)|.
We see that while the κ bound works it is very loose, and so the τ bounds
never get a chance to trigger a selective orthogonalization with respect to
their eigenvectors.

A D Kennedy Lánczos Algorithm 27 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

LANSO Bounds

Instead of using the κ bound we decided to look at the τ bound for the
“least bad eigenvector”, namely the one most likely to converge next.

The figure shows that the QR algorithm is run much less often. Selective
orthogonalization is performed after each such “pause”, but not more
frequently.

The κ trigger still occurs at the start to trigger the first QR pause.

A D Kennedy Lánczos Algorithm 28 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Recovery of Orthogonality

Left: Lower triangle of the matrix Q†Q for Lanczos algorithm with the absolute
values of the elements are colour-coded from blue (zero) to red (one) on a
logarithmic scale.

Right: The same quantity for Lanczos algorithm with selective orthogonalization
(LANSO).

A D Kennedy Lánczos Algorithm 29 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Rayleigh Quotient
Ritz Pairs
Subspace Bounds
Krylov Spaces and Lánczos Algorithm
Lánczos Algorithm in Floating Point

Degenerate Eigenspaces and Restarting

In exact arithmetic only one eigenvector will be found for each distinct
eigenvalue: if an eigenvalue is degenerate then the this vector will be the
projection of the initial vector onto its eigenspace.

In floating-point arithmetic rounding errors will eventually cause the other
eigenvectors to appear; this will take longer in higher-precision arithmetic.
This is a case where using floating-point arithmetic is an advantage.

Such degenerate eigenvectors can also be found by restarting the Lánczos
algorithm with a new initial vector and deflating with respect to the
previously known good eigenvectors. This can be repeated until no more
degenerate eigenvectors are found. Presumably a block version of the
algorithm could be used too, but the choice of block size is not obvious if
the maximum degeneracy is not known a priori.

A cluster of nearby eigenvalues behaves just like a degenerate subspace
until sufficient accuracy to resolve the eigenvalues has been attained.

A D Kennedy Lánczos Algorithm 30 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Polynomials and Krylov Spaces

Let us now study how rapidly we may expect eigenpairs to be computed to
a given accuracy. We shall follow the method introduced by Kaniel, and
corrected and extended by Paige and Saad.

Consider the angle ∠(zj , u) between an eigenvector zj and an arbitary
vector u ∈ Kn (A, v).

We shall assume that the intial vector is not orthogonal to the eigenvector,
(zj , v) 6= 0: this would be very unlikely for a randomly chosen v . Indeed,
we expect than on average (zj , v) ≈ 1/

√
N if v is a random unit vector.

As u is in the Krylov space it can be written as u = p(A)v where p is a
polynomial with deg p ≤ n − 1. This relationship between matrix
polynomials and Krylov vectors is central to the analysis.

A D Kennedy Lánczos Algorithm 31 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Angle Between Eigenvector and Krylov Space

We may expand u in the eigenbasis of A as

u = p(A)
∑
i

zi (zi , v) =
∑
i

p(λi)zi (zi , v).

Taking the ratio of the norm of the component of u perpendicular to zj to
the component parallel to it we see that

|tan∠(zj , u)|2 =
‖u − zj(zj , u)‖2

‖zj(zj , u)‖2
=

∑
i 6=j |p(λi)(zi , v)|2

|p(λj)(zj , v)|2 .

The angle ∠j,n between zj and the nearest vector in Kn (A, v) is therefore
given by

| tan∠j,n|2 = min
u∈Kn(A,v)

|tan∠(zj , u)|2 = min
p

∑
i 6=j |p(λi)(zi , v)|2

|p(λj)(zj , v)|2 .

We can find a good upper bound by a judicious choice of polynomial p; we
want to make |p(λi)| as small as possible for all i 6= j while making |p(λj)|
as large as possible.

A D Kennedy Lánczos Algorithm 32 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Chebyshev Polynomials

A very useful class of polynomials for this purpose are
Chebyshev polynomials of the first kind, which may be
defined as

Tn(x) = cos(n cos−1 x).

It is immediately obvious that |Tn(x)| ≤ 1 for |x | ≤ 1.

At first sight it is perhaps suprising that it is a polynomial
in x , but application of the binomial theorem shows that

Tn(x) =
∑bn/2c

j=0

∑j
`=0

(
2n
j

)(
j
`

)
(−1)j+`xn+2(`−j),

so it is indeed a polynomial of degree n.

Moreover it is also easy to see that

Tn(x) = 1
2

[
e
n ln

(
x+
√

x2−1
)

+ e
n ln

(
x−
√

x2−1
)]

.

We thus deduce that Tn(x) ≥ 1
2
e
n ln

(
x+
√

x2−1
)

for x ≥ 1.

6

5

T (x)
4

T10(x)

3

2

1

0

‐1.2 1.2

‐1

A D Kennedy Lánczos Algorithm 33 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Bounds on Convergence of the Largest Eigenvalue

To bound the angle between the largest eigenvector and Kn (A, v) we can
choose the polynomial p(x) = Tn−1

(
γ1(x)

)
, where

γi (x) = 2
x − λN

λi+1 − λN
− 1 = 1 + 2

x − λi+1

λi+1 − λN
,

which maps the interval [λi+1, λN] 7→ [−1, 1].

This choice gives the bound

| tan∠1,n| ≤
1

Tn−1

(
γ1(λ1)

)√∑i 6=1 |(zi , v)|2

|(z1, v)|2

≤ | tan∠1,1|
Tn−1

(
γ1(λ1)

) ≤ 2| tan∠1,1|e−(n−1)
(

2µ1+O(µ2
1)
)

where γi (λi) = 1 + 2µ2
i with µi =

√
λi−λi+1

λi+1−λN
and

ln
(
γi (λ1) +

√
γi (λi)2 − 1

)
= 2µi + O(µ2

i).

A D Kennedy Lánczos Algorithm 34 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Bounds on Convergence of Other Eigenvalue

For smaller eigenvalues (λj for j > 1), we can choose the polynomial

p(x) = Tn−j

(
γj(x)

) j−1∏
i=1

λi − x

λi − λN
.

This ensures that p(λi) = 0 for i < j and |p(λi)| ≤ 1 for i > j while
p(λj) = Tn−j(1 + 2µ2

j)/Kj grows exponentially in n, the number of
Lánczos steps.

Unfortunately the constant Kj =
∏j−1

i=1
λi−λN
λi−λj

grows exponentially with j ,

as is particularly large for densely spaced eigenvalues.

This leads to the bound

| tan∠j,n| ≤
|Kj tan∠j,1|
Tn−j

(
γj(λj)

) ≤ 2| tan∠j,1|Kje
−(n−j)

(
2µj+O(µ2

1)
)
.

We can tinker with the polynomial, but nevertheless it seems hopeless to
get a useful bound for the eigenvalues far into the interior of the spectrum,
which are exactly the ones that we are interested in.

A D Kennedy Lánczos Algorithm 35 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Bounds on Eigenvalue and Eigenvectors

It is easy to show from the MinMax and MaxMin bounds that

0 ≤ λj − θj ≤ ρ(u, λj − A)

for any vector u ∈ Kn (A, v) that is orthogonal to the j − 1 largest Ritz
vectors, (yi , u) = 0 for i < j .

This Rayleigh quotient may be bounded6 in terms of the angle ∠j,n to give

0 ≤ λj − θj ≤ (λj − λN)

(
Kj tan∠j,1

Tn−j

(
γj(λj)

))2

.

There is an analogous formula for the error in the Ritz vector ‖zj − yj‖, but
as discussed before this must be weaker for nearly degenerate eigenspaces.

6For details see chapter 12 of Beresford N. Parlett, The Symmetric Eigenvalue Problem, SIAM,
ISBN 0-89871-402-8.

A D Kennedy Lánczos Algorithm 36 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Bounds on Convergence of Interior Eigenvalues

Nevertheless, notice that the “interior” eigenvalues of A near Λ are the
largest eigenvalues of A′ = −(A− Λ)2.

Furthermore the Krylov space for A is contained within that for A′, albeit
with twice the size but the same number of applications of A:
Kn

(
−(A− Λ)2, v

)
⊆ K2n (A, v). The Kaniel–Paige–Saad bounds for

Kn

(
−(A− Λ)2, v

)
must therefore also hold for the latter.

The eigenvalues of A′ are λ′1 > λ′2 > · · · > λ′N , with λ′i = −(λπi − Λ)2

where the permutation π of the indices is required because the non-linear
transformation is not order preserving.

Since the matrix has been squared the “scaled gap” becomes∣∣∣∣ λ′i − λ′i+1

λ′i+1 − λ′N

∣∣∣∣ =

∣∣∣∣ (λπi − Λ)2 − (λπi+1 − Λ)2

(λπi+1 − Λ)2 − (λπN − Λ)2

∣∣∣∣ =

∣∣∣∣ (λπi − λπi+1)(λπi + λπi+1 − 2Λ)

(λπi − λπN)(λπi+1 + λπN − 2Λ)

∣∣∣∣ .
This quantity is maximized by taking Λ as far away from the average of
λπi and λπi+1 as possible, but we cannot make it too big without
reordering the eigenvalues and changing the permutation π.

If λi is near a big gap in the spectrum then we can choose Λ near the
middle of the gap to get a good bound.

A D Kennedy Lánczos Algorithm 37 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Kaniel–Paige–Saad Theory
Bounds for Large Eigenvalues
Bounds for Interior Eigenvalues
Comparison with Numerical Results

Numerical Results

‐4

λ = 7.7518
7.7518 Bound4
λ = 7.7515
7.7515 Bound
λ = 7.7512
7.7512 Bound
λ 1 0663

‐5

λ = 1.0663
1.0663 Bound
λ = 1.0666
1.0666 Bound
λ = 1.0670

‐6m
in
 ln

 |
λ‐
θ| 1.0670 Bound

‐7

‐8

0 1000 2000 3000 40000 1000 2000 3000 4000
n

The figure shows the convergence of the
three largest and three smallest positive
eigenvalues of our typical Hermitian
Wilson–Dirac operator with
N = 7, 962, 624.

The spectrum is more-or-less symmetric
about zero, with a large gap around zero.

The solid lines show the
Kaniel–Paige–Saad bounds for the large
Ritz values of the same colour.

The dashed lines show the bounds for the
interior Ritz values obtained using the
bounds for −A2, i.e., Λ = 0.

Note the appearance of degenerate (or
nearly degenerate) eigenvectors due to
rounding errors.

A D Kennedy Lánczos Algorithm 38 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Implementation
Parallelization and Pipelining
Conclusions

Implementation

After prototyping variants of the
LANSO algorithm in Maple we
implemented it in the Chroma
software system, which allows it to
run efficiently on a variety of
massively parallel architectures.

Our implementation uses the same
interface as the current Chroma
eigensolver, which uses a “Ritz
functional” method.

We carried out our tests using the
UK’s HECToR CRAY XT4, XT6,
and XE6 systems
(www.hector.ac.uk).

A D Kennedy Lánczos Algorithm 39 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Implementation
Parallelization and Pipelining
Conclusions

Parallelization and Pipelining

The “large” linear algebra operations and application of the Hermitian
Wilson–Dirac operator are carried out in parallel, with each processor
working on a small local block of the space-time lattice.

The “small” linear algebra operations, namely the QR algorithm executed
at each pause, is not (yet) parallel; we make use of the efficient
implementation of LAPACK available on the CRAY system for this.

The most time consuming part of the code is the parallel construction of
the “large” eigenvectors from the “small” Ritz vectors after each pause, as
this requires running through the all the Lánczos vectors qj .

There are some interesting architecture-dependent trade-offs to be
investigated here. Depending on the amount of memory available and the
memory bandwith we can choose between

1 Storing the Lánczos vectors in main memory (DRAM);
2 Storing the Lánczos vector in secondary storage (disk or Flash RAM);
3 Recomputing the Lánczos vectors at each pause. This minimizes off-chip

data transfer, and is “embarassingly parallel” up to a few global sum
operations (for inner products and norms).

A D Kennedy Lánczos Algorithm 40 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Implementation
Parallelization and Pipelining
Conclusions

Conclusions

Our implementation of LANSO is significantly faster than the Ritz method
currently implemented in Chroma, which is widely used.

The Ritz method finds the eigenpairs of A2 and then has to separate the
positive and negative eigenvalues of A that become nearly degenerate
upon squaring.

We have shown that the bounds for convegence of the physically
interesing small-magnitude eigenvalues of A in the Lánczos algorithm are
essentially the same as for A2, and that these bounds are comparable with
those for the large-magnitude eigenvalues because there is a large void in
the spectrum of A around zero.

Moreover, by using the Krylov space for A rather than A2 the positive and
negative eigenvalues are automatically separated.

A D Kennedy Lánczos Algorithm 41 / 42

nucrest-large

Introduction and Motivation
Finding Eigenvalues of Small Matrices

Subspace Approximations
Error Bounds

Implementation Issues

Implementation
Parallelization and Pipelining
Conclusions

Conclusions

We have modified the original LANSO procedure by ignoring the κ bound
(which tests for loss of orthogonality), as it is too pessimistic for our large
matrix.

In its place we use the τ bound for the “least bad eigenvector”; this
appears to work very satisfactorily.

We only look for Ritz values in a specified interval when running the QR
algorithm at pauses, so we do not have to compute eigenpairs we are not
interested in.

This means we expect to lose orthogonality w.r.t. good Ritz eigenvectors
outside this interval, but we do not care as we only generate spurious
duplicate eigenvectors for eigenvalues we are ignoring.
This makes the κ bound useless.

We follow the original LANSO suggestion of restarting the algorithm (but
deflating w.r.t. previously found good eigenvectors) until we have found all
degenerate eigenvectors in the spectral interval of interest with correct
multiplicities.

A D Kennedy Lánczos Algorithm 42 / 42

	Introduction and Motivation
	Finding Eigenvalues of Small Matrices
	Basic Properties of Symmetric Matrices
	Power Method and Inverse Iteration
	QR Decomposition
	QR Algorithm

	Subspace Approximations
	Rayleigh Quotient
	Ritz Pairs
	Subspace Bounds
	Krylov Spaces and Lánczos Algorithm
	Lánczos Algorithm in Floating Point

	Error Bounds
	Kaniel–Paige–Saad Theory
	Bounds for Large Eigenvalues
	Bounds for Interior Eigenvalues
	Comparison with Numerical Results

	Implementation Issues
	Implementation
	Parallelization and Pipelining
	Conclusions

