

Detector R&D: Programs and Facilities for Future Projects

Marcel Demarteau HEP Division Argonne National Laboratory demarteau@anl.gov

India - US Meeting on Physics with Project X Mumbai, January 13-14, 2011

Project X Physics Program

- Rare decay experiments: muon-to-electron conversion, nuclear and neutron electron dipole moments, ultra-rare kaon decays
 - A continuous wave (CW), very high power, superconducting 3 GeV Linac has also many other uses: Standard Model tests with nuclei (ISOL targets), possible energy and transmutation applications, cold neutrons
- Long baseline neutrino oscillation experiments
 - CW Linac coupled to an 8 GeV pulsed Linac (and to the Recycler and Main Injector) gives the most intense beams of neutrinos at high energy (LBNE) and low energy running simultaneously with the neutrino program
- Platform for evolution to a Neutrino Factory and Muon Collider
 - Links the Intensity frontier and the Energy frontier with a Lepton Collider
- Associated experiments in this laboratory environment

Outline

- In Search of a Radical Solution
- Experimental Challenges
- Types and Levels of Future Detector Development
- Current Projects and Opportunities
- Facilities
- Conclusions

In Search of the Radical Solution

 In the current issue, January 2011, of the magazine Scientific American there is an interview with a famous Indian scientist :

"In Search of the Radical Solution"

 The sentiment in that interview applies, I believe, equally well to detector development in our field.

In Search of the Radical Solution

 In the current issue, January 2011, of the magazine Scientific American there is an interview with a famous Indian scientist :

"In Search of the Radical Solution"

 The sentiment in that interview applies, I believe, equally well to detector development in our field.

 "The greatest payoffs will come from fundamentally reinventing mainstream technologies"

-- Vinod Khosla

co-founder SUN microsystems

venture capitalist

http://www.scientificamerican.com/article.cfm?id=in-search-of-the-radical-solution http://ScientificAmerican.com/jan2011/khosla

Experimental Challenges

The next generation of detectors are extremely challenging

Often, a scaling of existing technologies is difficult to justify

Types of Detector R&D

- All development efforts are of course driven by the science
- What is needed is a return to the fundamentals to develop the "radical solution"

Levels of Detector R&D

- R&D on basic technologies:
 - Investigate the feasibility of a new technology
 - Test of a concept
- R&D on technology development:
 - Building and testing of small scale, real devices
- R&D on detector development:
 - Incorporating the technology in a real engineered detector design
- Experiments and Detectors are of ever-increasing complexity
- Significant increase in reach and sensitivity of current detectors required
- Limits of scaling of existing technologies
- To reach our goals, this set of conditions leads to:
 - Combination of different areas of expertise: materials science, solid state physics, ...
 - Understanding of the fundamentals: "Back to Basics"
 - Industrial partners

Si sensor → module → tracker

Current Projects and Opportunities

- Large Liquid Argon Time Projection Chambers
- Large Area Picosecond Photo Detectos
- Calorimetry
- Vertically Integrated, tiered Silicon Detectors
- Data Communication

Liquid Argon Detectors

- R&D aimed at Large Detectors for long baseline neutrino physics:
 - Argon purity (without evacuation)
 - Large volume TPC design
 - Cold Electronics (in LAr)
 - DAQ reconstruction, analysis, simulation
- Can the technology be scaled and what is the scaling law?
- LAr TPC prototype at Fermilab: Argoneut
 - 175 liter active volume (550 liter vessel)
 - 480 channels of signal
 - 'Imaging' neutrino detector !

Liquid Argon Purity Demonstration

Phase I:

Demonstrate that the required electron lifetimes can be achieved without evacuation in a 20 ton Liquid Argon tank

- Will also monitor the temperature gradients, concentrations of water, O₂, and N₂
- Phase II:

Demonstrate that the purity can be maintained while placing TPC materials in the volume

Phase III – IV – V: moving to larger scale

LAr R&D Station

 A stand-alone R&D station for LAr purity monitoring established at Fermilab and operated as a user facility

Photo Multiplier Tubes

- "Old" Technology
 - Used for decades
 - Robust, generally low noise
 - Simple biasing
- Time resolution ~2-3 nsec
- Spatial resolution limited by tube radius
- Total coverage offered is typically less than 40%
- Typical photocathode efficiency ~25%
- Few vendors
- Can this technology address the challenges of the next generation of H₂O Čerenkov experiments?

Large Area Picosecond Photo Detectors (LAPPD)

- Project with four primary goals:
 - 1. Large-Area Low-Cost Photo-detectors with good correlated time and space resolution (target 10 \$/sq-in incremental area cost)
 - 2. Large-Area TOF particle/photon detectors with pico-second time resolution
 - < 1psec at 100 photo-electrons
 - 3. Understanding photo-cathodes so that we can reliably make high QE cathodes with tailored spectral response, and develop new materials and geometries
 - QE > 50%?, public formula
 - 4. Produce commercializable modules within 3 years
 - transfer technology to industry

The Development of Large-Area Fast Photo-detectors

April 15, 2009

John Anderson, Karen Byrum, Gary Drake, Edward May, Alexander Paramonov, Mayly Sanchez, Robert Stanek, Hendrik Weerts, Matthew Wetstein¹, Zikri Yusof *High Energy Physics Division* Argonne National Laboratory, Argonne, Illinois 60439

> Bernhard Adams, Klaus Attenkofer Advanced Photon Source Division Argonne National Laboratory, Argonne, Illinois 60439

> Zeke Insepov Mathematics and Computer Sciences Division Argonne National Laboratory, Argonne, Illinois 60439

- Unique collaboration:
 - 3 National Laboratories
 - 6 Divisions at Argonne
 - 3 Universities
 - 3 Commercial Companies

http://psec.uchicago.edu/

LAPPD: Approach

- Base on Existing Technology: Micro Channel Plate (MCP) photo-multiplier
 - Picosecond-level time resolution
 - Micron-level spatial resolution
 - Excellent photon-counting capabilities
 - Expensive
- New Aspect: Fully Integrated Approach

- Preserve time and space resolutions of conventional micro-channel plate detectors
- At low enough cost per unit area

1. Photo-Cathode (PC)

- Conversion of photons to electrons
- Engineer III-V materials to develop robust high QE photo-cathodes
- 2. Micro-Channel Plates
 - Amplification of signal: two plates with tiny pores, held at high potential difference. Use Atomic Layer Deposition for emissive material on inert substrates to create avalanche
- 3. Transmission line, high speed readout
 - Anodes is a 50Ω scalable strip line silk-screen printing on glass ground plane (Borofloat 33)
- 4. Hermetic Packaging
 - Maintain vacuum and provide support. No internal connections; no penetrations
- 5. Electronics
 - Readout at both ends with fast custom CMOS SCA chip with 10GHz waveform digitization

- 1. Photo-Cathode (PC)
 - Conversion of photons to electrons
 - Engineer III-V materials to develop robust high QE photo-cathodes
- 2. Micro-Channel Plates
 - Amplification of signal: two plates with tiny pores, held at high potential difference. Use Atomic Layer Deposition for emissive material on inert substrates to create avalanche
- 3. Transmission line, high speed readout
 - Anodes is a 50Ω scalable strip line silk-screen printing on glass ground plane (Borofloat 33)
- 4. Hermetic Packaging
 - Maintain vacuum and provide support. No internal connections; no penetrations
- 5. Electronics
 - Readout at both ends with fast custom CMOS SCA chip with 10GHz waveform digitization

- 1. Photo-Cathode (PC)
 - Conversion of photons to electrons
 - Engineer III-V materials to develop robust high QE photo-cathodes
- 2. Micro-Channel Plates
 - Amplification of signal: two plates with tiny pores, held at high potential difference. Use Atomic Layer Deposition for emissive material on inert substrates to create avalanche

3. Transmission line, high speed readout

- Anodes is a 50Ω scalable strip line silk-screen printing on glass ground plane (Borofloat 33)
- 4. Hermetic Packaging
 - Maintain vacuum and provide support. No internal connections; no penetrations
- 5. Electronics
 - Readout at both ends with fast custom CMOS SCA chip with 10GHz waveform digitization

- 1. Photo-Cathode (PC)
 - Conversion of photons to electrons
 - Engineer III-V materials to develop robust high QE photo-cathodes
- 2. Micro-Channel Plates
 - Amplification of signal: two plates with tiny pores, held at high potential difference. Use Atomic Layer Deposition for emissive material on inert substrates to create avalanche
- 3. Transmission line, high speed readout
 - Anodes is a 50Ω scalable strip line silk-screen printing on glass ground plane (Borofloat 33)
- 4. Hermetic Packaging
 - Maintain vacuum and provide support. No internal connections; no penetrations
- 5. Electronics
 - Readout at both ends with fast custom CMOS SCA chip with 10GHz waveform digitization

- 1. Photo-Cathode (PC)
 - Conversion of photons to electrons
 - Engineer III-V materials to develop robust high QE photo-cathodes
- 2. Micro-Channel Plates
 - Amplification of signal: two plates with tiny pores, held at high potential difference. Use Atomic Layer Deposition for emissive material on inert substrates to create avalanche
- 3. Transmission line, high speed readout
 - Anodes is a 50Ω scalable strip line silk-screen printing on glass ground plane (Borofloat 33)
- 4. Hermetic Packaging
 - Maintain vacuum and provide support. No internal connections; no penetrations
- 5. Electronics
 - Readout at both ends with fast custom CMOS SCA chip with 18 GHz waveform digitization; optimized design yields pico-second timing resolution

• Start with glass capillary array (borosilicate), pulled to appropriate pore size

- Obtained MCP arrays with 33mm diameter, pore size 5 μm
- Goal is L/D = 40, D = 5 μm, 8"x8"

• Apply resistive coating, 17nm, using Atomic Layer Deposition, in Beneq reactor

• Apply emissive Al_2O_3 layer, using using Trimethyl Aluminum $Al(CH_3)_3$ and ALD

- Wide parameter space studied
 - Relative composition of materials
 - Temperature for ALD
 - Different materials and thicknesses
- Figure shows secondary electron emission coefficient as function of electron energy (keV)

• Apply conductive coating for HV, using thermal evaporation or sputtering

 First time applying new technology, a factor >5 improvement obtained in gain of ALD treated MCPs compared to commercial MCPs; area will be substantially increased

Applications

- Large area H₂O Čerenkov detectors
- Pico-second timing resolution allows for π⁰/e rejection
 - 100 ps time resolution corresponds to about 1 cm space resolution
 - Vertex separation many cm
- Medical Imaging (PET)
- The better the timing resolution, the more accurate the image of depth of interaction
- Example:
 - Alternating radiator and planar MCP-PMT with 30-50 psec timing resolution on each side
- Collider environment
 - Reconstruction of real 4-momenta

MCP MCP MCP MCP MCP MCP

2a 2b 3a 3b

MCP

1b

MPC

Transmission Line Anode

Legand

MCP Channel plates

Calorimetry

- Total absorption calorimetry, based on crystals, proven to be highly successful for electromagnetic calorimeters.
 - σ(E)/E < 1 %
- Can this be extended to hadron calorimeters?
 - To date, best hadronic jet energy resolution $\sigma(E)/E = 50\% / VE$
 - Is $\sigma(E)/E$ of 20-25% / VE achievable?
 - This resolution would enable discrimination of W and Z boson decays into hadronic jets;
- Two approaches to reaching substantially improved hadronic energy resolution
 - Total Absorption Dual Readout Calorimetry
 - Digital Imaging Calorimetry

Total Absorption Dual Readout Calorimetry

- Dual-readout calorimetry: measure every shower twice
 - Scintillation light: from all charged particles
 - Čherenkov light: β =1 particles, mainly EM
- Correct on a shower-by-shower basis using the correlation of the total observed ionization (S) and Čherenkov (Č) light
 - MC: Energy resolution (0.1-0.2)/√E (Gaussian)
 - MC: No constant term up to 200 GeV
- Development of crystals is key:
 - Density > 7 gr/cm³
 - Scintillation and Čherenkov light separation

PPD or Silicon Photomultiplier

- This type of hadron calorimetry is enabled because of the availability of the PPD: Pixelized Photon Detector
 - Avalanche photodiode operating in Geiger-mode
 - Array of pixels connected to a single output
 - Digital device read out in analog way
 - Signal = Sum of all cells fired
 - Devices compact, insensitive to B-field low bias voltage
- Developed general facility for characterization of PPDs
 - Dark and photo response
- Mount on crystals and readout both types of light, in the lab and in the beam test

PPD Readout

- Developed TB4 (test beam 4-channel) readout
 - 12bit ADC (large dynamic range)
 - 212 MSPS (4.7ns)
 - ~100MHz bandwidth
 - Bipolar signals
 - USB setup, readout Ethernet
 - On-board bias generation
 - Allows for online signal processing
- Developing plans for dedicated ASIC for PPD readout

Digital Imaging Calorimeter

- Very fine-grained calorimeter based on glass Resistive Plate Chamber (RPC) technology
- Built 1 m³ sandwich calorimeter
 - Absorber 20 mm thick steel plates
 - Active element Resistive Plate Chamber 150 RPCs built (90cmx30cm)
- Configuration
 - Longitudinally 40 layers individually readout
 - Laterally 1x1 cm² pads
 - Depth ~ 4λ
- Readout
 - Fermilab designed 128 channel DCAL asic
 - Total of ~350,000 readout channels
 - Resolution Is 1 bit / pad
- Tested in Fermilab testbeam
 - Excellent performance
- Broad use of RPCs as particle detector

Testbeam Results

Results from a 32 GeV Pion run in Fermilab Testbeam

Pion shower

Single muon ... no noise

Silicon Detectors

- The physics reach of many experiments is greatly enhanced through the use of silicon detectors, often precision tracking and vertex detectors
- These detectors are highly demanding in terms of material budget, power, readout channels, ...
- To address these issues, Monolithic Active Pixel Sensors (MAPS) are being studied
- These detector integrate detector and front-end readout electronics on the same substrate
 - Signals generated in the epitaxial layer
 - Few microns thick, small signals
 - Charge collection through diffusion
 - Device not depleted, relatively long collection time
- But, industry is pursuing other venue for memory logic, FPGA speed, ...

Vertical Integration in Silicon - 3D

- Vertical integration of thinned and bonded silicon tiers with vertical interconnects between the IC layers
- Technology driven by industry; offers potential for transformational new detectors

3D Demonstrator Chip

- Fermilab started to actively pursue the 3D technology in early 2006 in collaboration with MIT-LL
 - MIT-LL offered three-tier multi-project wafer (MWP) runs
- Designed Vertical Integrated Pixel (VIP) Chip for ILC detector readout

- VIP-I Design
 - 3D design in three-tier, via last,
 0.18 mm SOI process
 - 64 x 64 pixel array, 20x20 mm2 pixels, scalable to 1M pixels
 - Data sparsification, 5-bit digital and analog time stamp, high speed token passing
 - Analog output
 - No integrated sensor

Test Results of VIP Demonstrator Chip

- VIP-1 chips tested in 2008; chip works !
- Major breakthrough in the development of advanced ASICs and integrated detector systems
 - An improved version of VIP-1 has been submitted to MIT-LL

- 3D technology driven by industry
- Started an initiative with leading local company (Tezzaron) to develop 3D technology
- Advantages:
 - Existing rules for vias and bonding
 - One stop shopping for wafer fabrication, via formation, thinning, bonding
 - Process is available to all customers
 - Lower cost

Fermilab 3D Multi-Project Run

- Fermilab formed a 3D collaboration and hosted a 3D multi project run with Tezzaron
 - Two layers of electronics fabricated in the Chartered
 130 nm process, useful reticle size is 16x24 mm
 - Wafers will be bonded face to face
 - Submission closed September 2009
- 17 Participating institutions in the MPW run
 - Fermilab host
 - 14 European institutions
 - Two US institutions (LBNL, BNL)
- Application for b-factory, ILC, CMS, ATLAS, imaging, ...
 - Application is completely free to user!
- Frame divided into 12 sub-reticules for consortium members; more than 25 two-tier designs

Multi Project Wafer: Full Frame Layout

Application: Momentum Trigger

- In a collider experiment, only select high momentum tracks: track-trigger at the first trigger level for sLHC
 - Momentum filter using a pair of Si sensors separated by ~1mm
- Data flow is vertical !
 - Hits from two sensors correlated
 - Need Through Silicon Vias (TSVs) to transfer data from one sensor to the next

Chip design:

- The top tier looks for hits from long strips to provide phi information
- The bottom tier looks for coincidence between phi and shorter z strips connected to bottom tier through interposer

Application: Pattern Recognition

- To perform real-time pattern recognition, for example to identify displaced vertices, use Content Addressable Memory (CAM) cells
- The number of patterns that can be stored is limited
 - Memory available

Classic CAM

dedicated to

ONE Detectos Layer

- Technology used (130 nm)
- Size of stored content

The Extre "Stuff"

that malcae

a PRAM

Application: Pattern Recognition in 3D

Use 3D silicon technology to store each layer in a silicon tier

- Large number of patterns can be stored (~200k)
- Large number of Through Silicon
 Vias (TSV) needed
 - Currently can reliably achieve 160k
 TSV/mm²
 - Via size is ~2μm
 - Contact yield is 99.9999%
- Note: vertical stacking in space domain; time domain may be equally possible
 - Possibilities may ultimately be limited by our own imagination

Data Communication

- Next generation of detectors characterized by very large volumes and very large data size. Power is an issue, cables are impractical and constitute a lot of mass
- Explore optical / wireless data transmission
- Silicon is mostly transparent to infrared light
 - Test with four different wavelengths
 - Signal sent through 2*2mm thick Si
 - Bit Error Rate < 10⁻¹⁴

- Can modulate the laser beam by the signal itself (GeSi-modulators), combined with MEMS technology to steer the beams
- Could allow for ultra-low energy consumption (50 fJ/bit, or 50 μW at 1Gb/s), with GHz bandwidth

Existing Effort

- Fermilab and Delhi University are working with Bharat Electronics (BEL) in Bangalore on the development of double-sided silicon detectors
 - Fermilab provided blank Si wafers
 - Delhi University did simulation and mask design
- First single-sided wafers for testing will be available in March
- After characterization of single-sided wafers, will develop double-sided design following the Dzero double-sided detector design

Quality, Technology and Innovation

Facilities: Fermilab

- Excellent electrical and mechanical engineering
 - Strong ASIC engineering group
 - Example ASICS: SVX, FSSR, TRIP, QIE, DCAL
- Unique facilities with trained technical staff
 - Silicon Detector Center
 - Built silicon detectors for CDF, Dzero, CMS, BTeV, Phenix
 - 7000 square feet of clean room
 - Wirebonding facilities
 - Scintillator extrusion
 - Thin film deposition
 - LAr cryogenics
 - Chamber stringing
 - CNC routing
 - Metrology on small and large scales

Facilities: Testbeam

- Fermilab Test Beam Facility (FTBF) with three operating modes open to all users
 - Proton mode: 120 GeV
 - Pion Mode: 8-66 GeV (secondary beam)
 - Low Energy mode: 500 MeV 8 GeV (tertiary beam)
- Beam structure
 - One 4s spill every 1-2 minutes
 - Beam rate 100k per spill at 16 GeV
- Beamline Instrumentation
 - Cherenkov counters, Time-of-flight
 - Silicon pixel tracking stations, ...
- Facility use in 2010:
 - 224 physicists from 72 institutions from 16 countries carried out 13 experiments
- Test beam experiments are generally one of the best learning experiences for physicists

Facilities: Argonne

- Advanced Photon Source (APS)
 - 35 sectors, 3-100 keV photons
- Center for Nanoscale Materials (CNM)
 - Nano-scale lithography
 - Etching
 - ...
- Both user facilities are freely available to the whole scientific community
- Material Science Division
 - Engineering of materials

CNM MEMS mirror for optical communication

Concluding Remarks

- We are "In Search of Radical Solutions" to enable better experimental science
- We believe these solutions can only be found through partnerships:
 - Partnerships with other disciplines to bring modern, new technologies to bear on the development for future detectors and sensors
 - Materials Sciences: Materials by Design (Atomic Layer Deposition, Thin film development, ...)
 - Semiconductor Technologies
 - Nano-materials
 - Partnerships with other institutions
 - Partnerships with industry
- These solutions require going back to the basics of the underlying physics
- Argonne and Fermilab have initiated a program that is a first step to enable the search to find radical, transformational solutions
- We welcome new partners!

Backup Slides

Pore Activation via Atomic Layer Deposition (ALD)

Example:

 CH_3

Trimethyl Aluminum

CH₂ CH₂