

Detector Development, a Survey

Project-X Interaction Meeting TIFR, Mumbai, 14 January 2011

Sunil K. Gupta Tata Institute of Fundamental Research, Mumbai

Gaseous
Scintillator
Semiconductor

Indranil Mazumdar & Co-workers Nucl. Instrum. Methods A 611 (2009) 76

High Detection Efficiency Energy Resolution Time Resolution Uniformity Linearity Temperature Stability Lanthanum Halides

Ref: Indranil Mazumdar & Co-workers Nucl. Instrum. Methods A 609 (2009), Nucl. Instrum. Methods A 610 (2009), Nucl. Instrum. Methods A 611 (2009), Nucl. Instrum. Methods A 623 (2010).

Measurements with a small LaBr₃:Ce

1" x 1" Cylinder

0.5 mm Al casing

Glass light guide

Typical spectrum with low energy gamma sources

Nal(Tl)

Counts

Resolution: 7.5% @661.6 keV

LaBr₃:Ce Resolution: < 3% @661.6 keV

- Note:
- •Diifferences in energy resolutions
- •Differences in p/v ratios
- •New peaks in LaBr spectrum

Measured and GEANT4 simulated spectra for ¹³⁷Cs (662 keV) and ⁶⁰Co (1173, 1332 keV).

Calibrated sources used.

No normalization in the comparison

	٤ _{Total}		E _{neak}		GEANT4 Simulation
Distance	GEANT4	Exp	GEANT4	Exp	
(cm) 15	0.105 (0.012)	0.114 (0.005)	0.030 (0.004)	0.027 (0.001)	
25	0.041 (0.003)	0.044 (0.002)	0.011 (0.001)	0.010 (0.001)	

Combination of crystals for full confinement of γ**-rays**

Spectrum recorded with a 3.5" X 6" LaBr₃:Ce

Silicon Photomultiplier

- APD operated above breakdown voltage
 - Geiger response mode
- Essentially a logical device
 - Photon counting by an array of diodes in small area

Silicon Photomultiplier Development

- SiPM characterization facility at GRAPES-3 in Ooty
 - Setup for V-I characteristic, single pixel calibration, linearity, MIP sensitivity etc.
 - Micron resolution optical scanner for studying pixel-to-pixel response to be developed soon at TIFR, Mumbai
- Packaging and assembly of the device
 - For bare SiPMs from HCAL-CMS at BEL, Bangalore
- Device and Process Simulation
 - Under progress
- Fabrication
 - BEL, Banglore
 - Semiconductor Complex Limited, Chandigarh
 - 1st Prototyping Run anticipated in 2011-2012

CMS-HO Upgrade with Silicon Photomultiplier Readout

- Validation of SiPM for CMS environment
 - Test beam studies, stability, radiation hardness, magnetic field immunity, saturation effects
- SiPM Control Boards
 - Prototype fabrication of this board carried out in India
 - Entire production and QC of 120 boards to be carried at Ooty
- SiPM Boards:
 - Each board consists of SiPM
 - Fabrication and QC of 120 boards (2160 channels) at Ooty
- Installation
 - Assembly of Readout boxes, QC and burn-in tests at CERN, jointly by CERN/India

SiPM Response using LED at Ooty

HB Calibration with 150 GeV Muons

All 16 Towers x 4 Depths are calibrated

HB+HO with SiPM Readout: TB2009 at CERN

HB Setup for TB2009

GRAPES-3 Experiment Ooty (11.4N, 76.7E, 2200m) 400 Scintillator detectors (1 m² area) 560 m² muon detector (E =1 GeV)

Objective: Universe at high energies

Acceleration, propagation of highest energy particles, Extreme conditions may require new physics ...

- 1. Acceleration of particles in atmospheric electric field Energy ~100 MeV Scale ~10⁵-10⁶ cm
- 2. Solar flares, Coronal Mass Ejections Energy ~10 GeV Scale ~10¹¹-10¹³ cm
- 3. Galactic Cosmic Rays at "Knee" Energy ~1 PeV Scale ~10²¹-10²³ cm
- 4. Diffuse multi-TeV γ -rays Energy ~100 EeV Scale ~10²⁴-10²⁶ cm

Fabrication of Plastic Scintillator

Plastic Scintillator development:

Decay Time= 1.6 ns Output = 54% Anthracene Timing 25% faster Atten. Length λ = 100 cm Low Cost Max Size 100 cmX100 cm Total > 2000

TIFR, CERN, Osaka, IUAC Delhi, Bose, VECC, etc.

Monte Carlo simulations using Bethe-Block energy loss in Scintillator and Landau distribution;

Photon conversion Efficiency = 100 eV/photon

 $\lambda_{scintillator} = 100 \text{ cm}$ $\lambda_{WLS \text{ fiber}} = 300 \text{ cm}$

 $\tau_{scintillator} = 1.6 \text{ ns}$ $\tau_{WLS \text{ fiber}} = 6.1 \text{ ns}$

Effective Scintillator TIR = 98.5%; Tyvek Reflectivity = 90%

PMT Quantum Eff. = 9%; Photo-electron width = 20%

Proportional Counter Test Setup

MWPC development at IUAC, New Delhi

TOF System for fission experiments

MWPC 8 "X 4 " Electrodes : Au plated W wires – 20µ Electrode separation : 3.5 mm Rise time ~ 10 ns TOF ~ 1 ns (fwhm), Positions ~ 1 mm (fwhm)

Small transmission MWPC 1.5 " X 1.5 " Electrodes : Au plated W wires – 20µ Electrode separation : 2 mm Entrance and exit foils : 0.5µ mylar. Rise times ~ 3.5 ns, TOF < 0.5 ns

Ref : A. Jhingan et. al. Rev. Sci. Instr. 80, 123502 (2009)

INO cavern and detector

D Calina and TICD MAnnalas! In alla

DDC0010 CCI

Details of INO detector

No. of modules	3			
Module dimensions	16m × 16m × 14.5m			
Detector dimensions	48.4m × 16m × 14.5m			
No. of layers	150			
Iron plate thickness	56mm			
Gap for RPC trays	40mm			
Magnetic field	1.3Tesla			
RPC dimensions	1,840mm × 1,840mm × 24mm			
Readout strip pitch	3 0mm			
No. of RPCs/Road/Layer	8			
No. of Roads/Layer/Module	8			
No. of RPC units/Layer	192			
No. of RPC units	28,800 (97,505m2)			
No. of readout strips	3,686,400			

2mx2m RPC: Gas gap

Bottom glass in place

Gluing of buttons

Template for button positions placed below the bottom glass Buttons placed on 20cm x 20cm grid

Currently glue dispensed manually Protective template placed on the glass Auto timer-based glue dispenser being designed

2mx2m RPC: Gas gap

Preparing to glue bottom

Ready to glue top-side spacers

DDCO010 CCI

2mx2m RPC: Gas gap

Leak testing the gap

Fully fabricated gas gap

D Calina a series TICD MANARA -! In alla

DDC0010 CCI

2mx2m RPCs in Cosmic test

D Caluara TIED Manada ! Ind!a

Charge and time distributions

CH-1 adc1 CH-1 tdc1 7426 Entries Entries 5997 LNN00160 LN200 55.78 Mean Mean 601.1 30.58 RMS RMS 21.48 χ^2 / ndf 1322 / 235 γ^2 / ndf 543.1 / 168 Prob Prob 0 160 140 157.4 Constant Constant 121.1 50.26 Mean 602.2 Mean 140 120 Sigma 15.55 Sigma 17.98 120 100 100 80 80 60 60 40 40 20 20 0-50 100 150 200 250 300 600 700 750 400 450 500 550 650 800 850 **QDC Value TDC Value**

D Caluara and the Manada ! In alla

Charge

DDCO010 CCI

Timing

Monitoring operating

Efficiency plateau Noise rate profile

Summary

Gaseous Detectors:

Proportional Counters Multi Wire Proportional Counters Resistive Plate Chambers

Scintillator Detectors:

Inorganic Crystals Plastic Scintillators

Semiconductor Detectors:

Double-sided Silicon Multistrip & Pixel Detectors Silicon Photomultipliers

