# Physics with the ICAL detector and Synergy with Long Baseline Experiments

D. Indumathi / Amol Dighe

IMSc, Chennai / TIFR, Mumbai For the INO Collaboration (http://www.ino.tifr.res.in/)

Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences:  $\Delta m_{ij}^2 = m_i^2 - m_j^2$  and the mixing angles  $\theta_{ij}$ . Phase(s) unknown.

Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences:  $\Delta m_{ij}^2 = m_i^2 - m_j^2$  and the mixing angles  $\theta_{ij}$ . Phase(s) unknown.



Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences:  $\Delta m_{ij}^2 = m_i^2 - m_j^2$  and the mixing angles  $\theta_{ij}$ . Phase(s) unknown.

$$\Delta m^2_{21} \sim 0.8 imes 10^{-4} \ {
m eV}^2$$
 ;  $|\Delta m^2_{32}| \sim 2.0 imes 10^{-3} \ {
m eV}^2$  ;  $\sum_i m_i < 0.7$ –2 eV.



Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences:  $\Delta m_{ij}^2 = m_i^2 - m_j^2$  and the mixing angles  $\theta_{ij}$ . Phase(s) unknown.



(APS multi-divisional neutrino study, physics/0411216)

#### INO Status, in brief

- Stage 0 : Site survey, clearances, construction; we are here
  - Site: Bodi West Hills, 100 km west of Madurai 9°58′ N; 77°16′ E.
  - Detector R & D facility: at Madurai
  - Awaiting MoEF clearance; AEC for financial sanction.
  - Detector R & D proceeding apace; 1/1000 prototype at Kolkata; to start work on 1/100 model (actually 1/40 scale of one module).
- Stage I: Study of atmospheric neutrinos with magnetised iron calorimeter detector, ICAL; focus of this talk
- Stage II: Study of long-baseline neutrinos, from a neutrino factory/beta beam; attractive future possibility
- Collaboration: From all over India and one member from U. Hawaii.
- This is an open collaboration: we welcome you to join!

#### The choice of detector: ICAL

Use (magnetised) iron as target mass and RPC as active detector element. Extension of KGF detector; Similar to MONOLITH.

Atmospheric neutrinos have large L and E range. So ICAL has

- Large target mass: current design 52 kton;
- Nearly  $4\pi$  coverage in solid angle (except near horizontal);
- Upto  $\sim 20$  GeV muons contained in fid. vol.: most interesting region for observing matter effects in 2–3 sector is 5–15 GeV;
- Good tracking and energy resolution;
- ho  $\sim ns$  time resolution for up/down discrimination; good directionality;
- ullet Good charge resolution; magnetic field  $\sim 1.5$  Tesla;
- Ease of construction (modular; 3 modules of 17 kTons each).

Note: Is sensitive to muons only, very little sensitivity to electrons.

#### The ICAL detector

- ${\color{red} {\bf \_9}}$  50 kton iron, magnetised to  $\sim 1.3$  T with 150 layers of 5.6 cm plates in three modules
- $\blacksquare$  Each module =  $16 \times 16 \times 14.4 \text{ m}^3$







# Specifications of the ICAL detector

| ICAL                                                                                                                                                                          |                                                                                                                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| No. of modules Module dimension Detector dimension No. of layers Iron plate thickness Gap for RPC trays Magnetic field                                                        | $3$ $16 \text{ m} \times 16 \text{ m} \times 14.4 \text{ m}$ $48 \text{ m} \times 16 \text{ m} \times 14.4 \text{ m}$ $150$ $5.6 \text{ cm}$ $4.0 \text{ cm}$ $1.5 \text{ Tesla}$ |  |  |  |
| RPC                                                                                                                                                                           |                                                                                                                                                                                   |  |  |  |
| RPC unit dimension Readout strip width No. of RPC units/Road/Layer No. of Roads/Layer/Module No. of RPC units/Layer Total no. of RPC units No. of electronic readout channels | $2 \text{ m} \times 2 \text{ m}$ $3 \text{ cm}$ $8$ $8$ $192$ $\sim 30,000$ $3.9 \times 10^6$                                                                                     |  |  |  |

Needs large industry interface.

## **Physics Studies**

- All results shown are old and appear in various documents, including INO Report 2006.
- Fully revised studies going on. Major changes in
  - detector coding ported from GEANT3 → GEANT4,
  - analyses for track reconstruction/fitting, esp. for muons,
  - neutrino generator.

So expect substantial improvement from older results.

- $oldsymbol{\wp}$  Primary focus on muon detection for E,L, with hadron energy reconstruction; all hadrons leave similar signature in ICAL.
- Electrons leave few traces (rad. length 1.8 (11) cm in iron (glass)).
- Reiterate that primary goals are
  - ullet study of 2–3 mixing: magnitudes of  $\Delta m^2_{32}$  and  $heta_{23}$
  - The sign of  $\Delta m_{32}^2$  and octant of  $\theta_{23}!$
- ullet Best scenario if Daya Bay/D-CHOOZ/MINOS/T2K find signs of non-zero  $heta_{13}$ .

## Precision measurement of parameters

m extstyle extstyle



Shown are 90 CL contours in comparison with Super-K and MINOS results. (Mar 2010)

 $3\sigma$  precision:

 $|\Delta m_{32}^2|$ : 20%

 $\sin_{23}^2$ : 60%

Adapted from the MINOS Neutrino 2010 talk, with INO contours added by hand.

#### Matter effect with atmospheric neutrinos



ullet Matter effects involve the participation of all three (active) flavours; hence involves both  $\sin \theta_{13}$  and the CP phase  $\delta_{\rm CP}$ , in general.

# Sensitivity to $\delta_{\mathrm{CP}}$

Variation of  $P_{\mu\mu}$  as a function of nadir angle with the CP phase  $\delta$  for  $\theta_{13}=9^\circ$  .



- ightharpoonup Mostly independent of the CP phase,  $\delta_{\rm CP}$ .
- Arr Hence sensitive to the mass ordering of the 2–3 states, provided  $heta_{13} > 6^{\circ}$ ; however, needs large exposures.

## The observable: the asymmetry

Hierarchy discriminator: difference in interactions between  $\nu$  and  $\overline{\nu}$ .

$$\mathcal{A} = (U/D)_{\nu} - (\bar{U}/\bar{D})_{\bar{\nu}}$$

$$P_{\mu\mu}^{m}(A,\Delta) \approx P_{\mu\mu}^{(2)} - \sin^{2}\theta_{13} \times \left[ \frac{A}{\Delta - A} T_{1} + \left( \frac{\Delta}{\Delta - A} \right)^{2} \left( T_{2} \sin^{2}[(\Delta - A)x] + T_{3} \right) \right]$$

$$\overline{P}_{\mu\mu}^{m}(A,\Delta) \approx P_{\mu\mu}^{(2)} - \sin^{2}\theta_{13} \times$$

$$\left[\frac{-A}{\Delta + A}T_1 + \left(\frac{\Delta}{\Delta + A}\right)^2 \left(T_2\sin^2[(\Delta + A)x] + T_3\right)\right]$$

where  $T_i$  are functions of the parameters.  $A \propto \rho E$ . Changes sign between neutrinos and anti-neutrinos.

So 
$$\mathcal{A}(A,\Delta) pprox -\mathcal{A}(A,-\Delta) = -\mathcal{A}(-A,\Delta) = \mathcal{A}(-A,-\Delta)$$
 an 13, 2011, TIFR, Mumbai – p. 14 p. 15 p. 15

## A: The difference asymmetry

Asymmetry as a function of  $\theta_{13}$  and L(km) / E(GeV)



Sign of 
$$\delta \equiv \Delta m_{32}^2$$
 for

$$\theta_{13} = 5, 7, 9, 11^{\circ}$$

Hence sensitive to the mass ordering (red vs blue) of the 2–3 states;

however, needs large exposures of about 500–1000 kton-years

(Resolutions determine the error bars!)

#### **Hierarchy Reach**

- Greater sensitivity in the case of Normal hierarchy
- ullet Reiterate: Result independent of the CP phase  $\delta_{\mathrm{CP}}$



 With exposures of 500 kton-years, can get a 90%CL result if

$$\sin^2 2\theta_{13} > 0.09$$
 (10%  $R_{\theta}, R_{E}$ )  
 $\sin^2 2\theta_{13} > 0.07$  (5%  $R_{\theta}, R_{E}$ )

• However, needs large exposures of about 1000 kton-years for smaller  $\theta_{13}$  or worse resolutions:

$$\sin^2 2\theta_{13} > 0.07$$
 (10%  $R_{\theta}$ , 15%  $R_{E}$ )  
 $\sin^2 2\theta_{13} > 0.05$  (5%  $R_{\theta}$ ,  $R_{E}$ )

R. Gandhi et al., Phys.Rev.D76:073012,2007.

#### The octant of $\theta_{23}$

$$P_{\mu\mu}^{m} \approx 1 - \sin^{2} 2\theta_{23} \left[ \sin^{2} \theta_{13}^{m} \sin^{2} \Delta_{21}^{m} + \cos^{2} \theta_{13}^{m} \sin^{2} \Delta_{32}^{m} \right] - \sin^{4} \theta_{23} \sin^{2} 2\theta_{13}^{m} \sin^{2} \Delta_{31}^{m} ,$$

$$P_{e\mu} \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}^{m} \sin^{2} \Delta_{31}^{m} ,$$

- Deviations of 20% from maximality at 99% CL provided  $\sin^2\theta_{13}>0.015$  and 1000 kton-yr exposure
- Results much poorer for inverted hierarchy and solution in second octant.
- Will be strongly improved using neutrino-factory beams.

#### Rates at ICAL: E=5–10 GeV



- Contributions from both  $P_{e\mu}$  and  $P_{\mu\mu}$ .
- m extstyle extstyle
- This cannot be confused with the deviations in the ratio due to effects of  $\theta_{13}$  (where peaks and troughs are systematically away from extremal).

## Other physics possibilities

- ... with atmospheric neutrinos
- Reminder: Both hierarchy and discrimination of octant of  $\theta_{23}$  require  $\theta_{13} > 7^{\circ}$  (sin<sup>2</sup>  $2\theta_{13} > 0.06$ ); hard
- Discrimination between oscillation of  $\nu_{\mu}$  to active  $\nu_{\tau}$  and sterile  $\nu_{s}$  from up/down ratio in "muon-less" events?
- Probing CPT violation from rates of neutrino to rates of anti-neutrino events in the detector: either from separate analysis of neutrino and anti-neutrino data (recent MINOS results) or via sensitivity to the  $\delta b$ , term which adds to  $\Delta m_{32}^2/(2E)$  in oscillation probability expression (LSND/MiniBooNe?)
- ullet Constraining long-range leptonic forces by introducing a matter-dependent term in the oscillation probability even in the absence of  $U_{e3}$ , so that neutrinos and anti-neutrinos oscillate differently.
  - Only  $L_e L_{\mu}, L_e L_{\tau}, L_{\mu} L_{\tau}$  can be gauged in anomaly-free way. If neutrinos are massive, then these are broken and have light relevant gauge bosons. This would influence nu-osc.

## **Cosmic Ray Muons**

are a signal, not background, at high energies, due to pair-production (pair meter technique).



Muon charge ratio gives information on meson production by primary cosmic rays. Example:  $\pi^+/\pi^-$ ,  $K^+/K^-$ , etc.

MINOS results in P. Schreiner, XVI Int. Symp. very high energy cosmic real series of the company of the company

# Stage II: Neutrino factories and INO

- In the magic baseline, where the event rate is independent of the CP phase  $\delta_{\rm CP}$ , occurs at  $\sqrt{2}G_Fn_eL=n\pi$ . So  $L\sim7400$  km. (*P. Huber, W. Winter, Phys.Rev. D68 (2003) 037301.*)
- The degeneracies associated with  $\delta_{\rm CP}$ – $\Delta m_{32}^2$  and  $\delta_{\rm CP}$ – $\sin^2\theta_{13}$  are lifted. Implies greater sensitivity to both  $\theta_{13}$  and the magnitude and sign of  $\Delta m_{32}^2$ .
- Standard route: wrong sign muons as a signal of oscillation.
- ullet Technical point: the uncertainties will be reduced compared to atm. experiment because there is no uncertainty in L.



# $\theta_{13}$ sensitivity



Case:  $10^{-4} < \sin^2 2\theta_{13} < 10^{-2}$ : Mass hierarchy determined for all  $\delta_{\rm CP}$ ; may be sensitive to matter profile.

Case:  $\sin^2 2\theta_{13} > 10^{-2}$ : max. sensitive to matter profile; helps unfold degeneracies with shorter baselength detector.

R. Gandhi, W. Winter, Phys.Rev.D75:053002,2007

# Hierarchy sensitivity



Sensitivity to hierarchy and CP violation as a function of baselength with a 50 GeV muon factory beam.

P. Huber, et al., 10.1103/PhysRevD.74.073003.

#### Magic baseline beta beams

- ▶ Beta beams are pure  $\nu_e$  (<sup>8</sup>B) /  $\bar{\nu}_e$  (<sup>8</sup>Li) beams, so muons clearly indicate oscillation.
- End-point energies are low:  $\sim 13$  MeV; so large boosts needed.  $\gamma \sim 250,500$  for B and Li. So challenging.
- Since muons are already a signal for oscillation, much less dependent on charge identification.



## Sensitivity of beta beams



- $m{\omega}$   $3\sigma$  sensitivity/discovery reach with 1.1(2.9)  $imes 10^{18}$  useful decays/year
- $m{\wp}$  5 years, both  $\nu$  and  $\overline{\nu}$  data.
- S. K. Agarwalla, S. Choubey, A. Raychaudhuri, Nucl. Phys. B798:124-145,2008.

## How magical is it?



- Effect of adding both neutrino and antineutrino channels is to constrain  $\theta_{13}$  in such a way that the wrong hierarchy is rejected down to values of  $\sin^2 2\theta_{13}$  more than 15–20 times smaller!
- Figure shows effect of varying  $\delta_{\rm CP}$  from 0–2 $\pi$  at L=7150 km (old CERN–INO baseline).
- So need to redo the results for new baselines.

#### **Outlook**

- Hoping for quick clearances and movement on INO construction front.
- The physics case studies look good: need strengthening by detailed simulations which is now in progress.
  - Atmospheric neutrinos provide sensitivity to 2–3 mixing parameters, although not to  $\theta_{13}$ .
  - Non-oscillation physics is possible via study of high energy cosmic muons.
  - ICAL at INO is well suited (both because of its physical characteristics such as charge identification capability and its large mass, and its unique near-magic-baseline location) to be a far-end detector for a future beam facility.
  - Hence there is also a good case to explore the physics of ICAL with muon factory beams and/or beta beams.

#### **Additional Slides**

# $3\sigma$ Precision of parameters

at  $\Delta m_{32}^2 = 2.0 \times 10^{-3} \text{ eV}^2$  and  $\sin^2 \theta_{23} = 0.5$ 

| Experiment                               | $P( \Delta m_{32}^2)$ | $P(\sin^2 	heta_{23})$ | hierarchy                    |
|------------------------------------------|-----------------------|------------------------|------------------------------|
| Current                                  | 88%                   | 79%                    | _                            |
| MINOS                                    | 17%                   | 65%                    | _                            |
| CNGS                                     | 37%                   | _                      | _                            |
| ${ m NO} u{ m A}$ ( $6	imes10^{21}$ pot) | $\sim$ 5%             | $\sim$ 9%              | in comb                      |
| T2K (Super-K, 0.75 MW)                   | 12%                   | 46%                    |                              |
| ICAL (50 kton)                           | 20%                   | 60%                    | $\sin^2 2\theta_{13} > 0.06$ |