Crystal growth of rare-earth intermetallics and pnictide superconductors

Dr. A. Thamizhavel

DCMPMS, TiFR

Outline of my talk

Various crystal growth methods to grow metallic crystals

Crystal growth and superconducting properties of $CaFe_{2-x}T_xAs_2$ (T = Co and Ni) single crystals

Crystal Growth

Crystal Growth

Art

Technology

Crystal Growth is a Technology:

Estimated shares of world crystal production

Importance of single crystals

This week, one of the most ambitious and High-energy unusual bulk orders in science will finally be particles pass-

Large Hadron Collider

76,000 crystals of PbWO₄ is used in the Compact Muon Solenoid (CMS) Detector.

Electronic devices

Wednesday 16 March 2011

Crystals that grow in our body

Calcium phosphate

Single Crystal vs. Poly crystal

Single crystal: A homogenous body consisting of a three dimensional periodic arrangement of atoms, ions or molecules

Materials which produce diffraction spots are single crystalline

Poly crystal: A very large number of tiny crystallites

Single crystal:

Poly crystal:

No grain boundaries Phase pure Grain boundaries Multi-phase

Average of three principal directions

Large anisotropy reflecting the orthorhombic crystal structure

Some more examples

Anisotropy in magnetism requires oriented single crystal

Superconductivity - very sensitive to magnetic disorder / impurities

Orientation of the single crystal

Laue method

θ is fixed λ is varying

Orientation and cutting

Polychromatic X-ray source

Goniometer

EDM cutting machine

Crystal Growth

Crystals can be grown by variety of methods

Low temperature solution growth

Melt growth

Bridgman method

Czochralski method

High temperature solution growth

Vapour growth

Physical vapour transport

Chemical vapour transport

Phase diagram - recap

Binary phase diagrams can be simply thought of as maps. They show the regions of liquid and solid

Kota

Jabalpu

Chhat

Guntu

AmravatiNagpur

Hyderabad

Ahmedabad Indore

Nashik

Pune

Hubl

Surat

Binary phase diagram of Ag-Nd

Congruent melting

Transforms from a homogenous liquid to homogenous solid

Peritectic reaction

Decompose into a mixed solid and a liquid phase (Incongruent metling)

Crystal growth methods

Temperature gradient method - Static Freeze method

Typical temperature gradient 10 to 30 °C

Crystal growth of CeMg₃

CeMg₃ melts congruently Mg has high vapor pressure

CeMg₃ continued...

Czochralski method

Prof. Jan Czochralski Poland (1885 - 1953) Solidification of metals

Materials that melt congruently can be grown by this method

About 90 years ago

Si single crystal

200 kg

Czochralski method for rare-earth intermetallics

Necking, to select a single crystal seed

During crystal growth

Crystal pulling 10 - 15 mm/hr

Czochralski growth of $Lu_5Ir_4Si_{10}$

Tetragonal crystal structure

Czochralski growth of CeRh₃B₂

Strong itinerant magnetism in ternary boride $CeRh_3B_2$

S K Dhar, S K Malik and R Vijayaraghavan Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Received 5 February 1981

Laue Pattern of CeRh₃B₂ single crystal

As grown single crystal

Solid state electrotransport 10⁻⁹ Torr 40 A current

Anisotropic magnetic properties of CeRh₃B₂

Crystal growth from High Temperature Solution (Flux growth)

Crystal growth from High Temperature Solution (Flux growth)

Low Temperature Solution Growth:

Crystal growth from High Temperature Solution (Flux growth)

Crystal growth is done at high temperature Incongruently melting compounds can be grown Materials that have high vapour pressure

The growing crystal is **NOT** exposed to steep temperature gradient – the crystal grows free from mechanical and thermal constraints into the solution and so develop FACETS.

Since the crystal growth process is at elevated temperatures, one has to take care about the crucible (container material) and the choice of the flux

Choice of the crucible: Al_2O_3

Choice of solvents:

Should have low melting pointHigh solubilityLow reactivity with the crucibleDoes not incorporate into the crystal

Commonly used fluxes to grow metallic crystals

	1 IA		L C															
GO .	1 1.0079	http://www.ktf-split.hr/pc											plit.hr/perio	xdni/en/		2 4.0026		
ERI	H GROUP NUMBERS GROUP NUMBERS														He			
-	HYDROGEN	EN 2 IIA (1985) (1986)											13 IIIA	HELIUM				
	3 6.941	4 9.0122											5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20,180
2	Li	Be	Be									B	C	N	0	F	Ne	
	LITHIUM	BERYLLIUM	SYMBOL B										BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
	11 22.990	BORON ELEMENT NAME											13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na	Mg		VIIID										Si	P	S	Cl	Ar
	SODIUM	MAGNESIUM	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
ł	CAESIUM	BARJUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)				
7	Fr	Ra	Ac-Lr	IRf	Db	Sg	IBh	IHIS	Mť	Uum	Uuu	Uub		Dug				
	FRANCIUM	RADIUM	Actinide	RUTHERFORDUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM				
		LANTHANIDE Copyright © 1998-2002 EniG. (eni@kt															eni@ktf-split.hr)	
(1) Pure	Appl. Chem., 7	1. No. 4. 667-6	83 (2001)	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
Relative atomic mass is shown with five 6 significant figures. For elements have no stable				La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
nuclides, the value enclosed in brackets indicates the mass number of the longest-lived			LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARJUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM	
How	ever three such e	er three such elements (Th, Pa, and U)			3													
composition, and for these an atomic weight is tabulated.			89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
			7	Ac	Th	Pa	U	ND	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	ILr
Edit	or: Aditya Vardh	an (adivar@net	finx.com)	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

Ce : Co : In 1 : 1 : 24 1400-2 days CeCoIn₅ Temperature (°C) 1230 6 hrs 1213 1200 1153 1203 1118 121/2 days 1050 1000-Temperature, °C 1 day 10 hrs (Co) ht 800-795 Ce2Co7 hex / Ce2Co7 rhom 0 200 300 100 400 CeCo₅ ht / Ce₅₅Co₅₂ ht 600-Time (Hrs.) 442 440 427 400-40 Ce2Con rt Ce₂₄Co₁ È CeCo CeCo2 35 CeCoIn₅ 200-0 J || [100] 30 15 30 70 90 50 60 100 10 20 40 80 25 Ce at. % Co ρ (μΩ·cm) $(\tilde{u})^{10} = T_c = 2.3 \text{ K}$ 20 15 10 5 10 K 2 4 6 8 0 0 100 200 0 300 Tempearture (K)

Starting composition

Flux growth example: CeCoIn₅

Flux growth of CeAg₂Ge₂

Individual metals of Ce, Ag and Ge

CeAg₂Ge₂ Single crystals

10 mm x 8 mm x 2mm The flat plane of the crystal corresponds to (001)

Powder X-ray Diffraction

Magnetic properties of CeAg₂Ge₂

Pnictide superconductors

1908 Liquefaction of He

Heike Kamerlingh Onnes

Oxides and non-transition metals were not serious contenders for High Tc

Oxide superconductors

Pnictides

Greek : Choking or suffocation

Group V elements

Published on Web 07/15/2006

Iron-Based Layered Superconductor: LaOFeP

Yoichi Kamihara,[†] Hidenori Hiramatsu,[†] Masahiro Hirano,^{†,‡} Ryuto Kawamura,[§] Hiroshi Yanagi,[§] Toshio Kamiya,^{†,§} and Hideo Hosono^{∗,†,‡}

ERATO-SORST, JST, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, and Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-4, 4259 Nagatsuta, Yokohama 226-8503, Japan

Received May 15, 2006; E-mail: hosono@msl.titech.ac.jp

 $\underbrace{J|A|C|S}_{\text{communications}}$

Published on Web 02/23/2008

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

$\frac{J|A|C|S}{\text{communications}}$

Published on Web 07/15/2006

Iron-Based Layered Superconductor: LaOFeP

Yoichi Kamihara,[†] Hidenori Hiramatsu,[†] Masahiro Hirano,^{†,‡} Ryuto Kawamura,[§] Hiroshi Yanagi,[§] Toshio Kamiya,^{†,§} and Hideo Hosono^{*,†,‡}

ERATO-SORST, JST, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, and Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-4, 4259 Nagatsuta, Yokohama 226-8503, Japan

Received May 15, 2006; E-mail: hosono@msl.titech.ac.jp

Feb. 2008 Tc = 26 K

 $\underset{\text{communications}}{J|A|C|S}$

Published on Web 02/23/2008

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

Superconductivity at 43 K in Samarium-arsenide Oxides

 $SmFeAsO_{1-x}F_x$

X. H. Chen* and T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang

Hefei National Laboratory for Physical Science at Microscale and Department of Physics,

University of Science and Technology of China,

Hefei, Anhui 230026,

People's Republic of China arXiv:0803.3603v1 [cond-mat.supr-con] 25 Mar 2008

(Dated: March 25, 2008)

Published on Web 07/15/2006

Iron-Based Layered Superconductor: LaOFeP

Yoichi Kamihara,[†] Hidenori Hiramatsu,[†] Masahiro Hirano,^{†,‡} Ryuto Kawamura,[§] Hiroshi Yanagi,[§] Toshio Kamiya,^{†,§} and Hideo Hosono^{*,†,‡}

ERATO-SORST, JST, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, and Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-4, 4259 Nagatsuta, Yokohama 226-8503, Japan

Received May 15, 2006; E-mail: hosono@msl.titech.ac.jp

(Dated: March 25, 2008)

nature	nternational weekly journal of scie
--------	-------------------------------------

Sign In | My EndNote Web | My ResearcherID | My Citation Alerts | My Saved Searches | Log Out | F

ISI Web of Knowledge[™] Web of Science Additional Resources Cited Reference Search Search History Marked List (0) Search Advanced Search Web of Science® Results Topic=(La[O1-xFx]FeAs) Scientific WebPlus View Web Results Timespan=All Years, Databases=SCI-EXPANDED. I Page 1 of 1 Go | M Sort by: Times Cited Results: 6 🖃 Analyze Resu (Print) (E-mail) (Add to Marked List) (Save to EndNote Web) (Save to EndNote), Ref Man, ProCite) more options Create Citation Repr Refine Results Search within results for 1. Title: Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) with T-c=26 K Search Author(s): Kamihara Y, Watanabe T, Hirano M, et al. Source: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Volume: 130 Issue: 11 Pages: 3296-+ Published: MAR 19 2008 Subject Areas Refine Times Cited: 1,625 PHYSICS, MULTIDISCIPLINARY (3) Full Text CHEMISTRY, MULTIDISCIPLINARY (1) 2. Title: Superconductivity in the PbO-type structure alpha-FeSe MULTIDISCIPLINARY SCIENCES (1) Author(s): Hsu FC, Luo JY, Yeh KW, et al. Source: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Volume: 105 Issue: 38 Pages: 14262-14264 Published: SEP 23 2008 PHYSICS, CONDENSED MATTER (1) Times Cited: 315 more options / values.. Full Text Document Types Refine 3. Title: Competing orders and spin-density-wave instability in La(O1-xFx) FeAs ARTICLE (6) Author(s): Dong J, Zhang HJ, Xu G, et al. Authors Source: EPL Volume: 83 Issue: 2 Article Number: 27006 Published: 2008 Times Cited: 288 Source Titles Full Text Publication Years 4. Title: Superconductivity at 25K in hole-doped (La(1-x)Sr4(x)) OFeAs Institutions b Author(s): Wen HH, Mu G, Fang L, et al. 6. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China superconductivity in the related compound SmFeAsO1.xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43 K. This provides a new material base for studying the origin of Correspondence to: Pengcheng Dail (an). 2 (Inc) Correspondence and requests for materials should be addressed to P.D. (Email: daip@ornl.go high-temperature superconductivity. :S

University of Science and Technology of China,

Hefei, Anhui 230026,

People's Republic of China arXiv:0803.3603v1 [cond-mat.supr-con] 25 Mar 2008

(Dated: March 25, 2008)

Swine flu, space interest scientists most Top Ten most cited articles in 2009 1 2009

pdated 1/3/2010 10:15 PM | Comments 28 | Recommend 5 y Dan Vergano, USA TODAY

E-mail | Save | Print | Reprints & Permissions | RSS

Science marches on, sometimes with headlines and awards, but most often with little fanfare. A look at the year's most-cited papers in science, ones that scientists themselves referenced in their own work, for example, finds studies that did and didn't make any "Top Ten" lists.

Here are the top 10:

•NASA's measures of the age, expansion and distribution of galaxies throughout the universe based on observations by its WMAP probe, launched in 2001. Not on a lot of lists, but, "the studies just provide a wealth of data that everyone in physics from cosmology to high-energy physicists will use for years," Pendlebury says.

- 2 Prostate cancer studies suggesting that screening and Vitamin E had few benefits in treating the disease. These made news but were also highly cited by other researchers.
- New England Journal of Medicine and Journal of the <u>American Medical Association</u> studies showing problems 3 with the blood-thinning drug Clopidogrel for heart patients. Another newsmaker.
- Diabetes treatment consensus statements that were updated this year. "Such articles are typically highly cited," 4 Pendlebury says.
- 5 Swine flu studies. They racked up a lot of citations this year. (You may not be too surprised.)

 Iron-based superconductors, which rivaled swine flu for citations among scholars. For two decades, physicists have chased after superconductors, which transmit juice with zero power loss, to replace less efficient copper wires. Iron superconductors look like the latest hope. "Recent discovery of superconductivity in iron-based layered compounds may have opened a new pathway to room temperature superconductivity," begins a highly cited EPL journal paper by Vladimir Cvetkovic of Johns Hopkins University in Baltimore. Did you hear about this? You may hear more in the next few years.

- Cancer treatments that target blood vessel growth, or anti-angiogenesis. They also made the news, but for the 7 wrong reasons. Highly-cited papers linked anti-angiogenesis to tumor growth.
- Graphene, single-atom layers of carbon that have semiconductor properties. They "look like a coming revolution" 8 in electronics," Pendlebury says. Science magazine included graphene on its "Top Ten" list of breakthroughs for the year.
- Small <u>RNA</u>'s, genetic materials that regulate genes in cells. They've emerged in "an astounding landscape" 9 notes a highly-cited Nature Reviews Molecular Cell Biology survey led by V. Narry Kim of South Korea's Seoul National University. They have potential to treat diseases and reveal how genes work on a fundamental level inside cells. But not a big news item.
- Obesity gene, biology and diet studies. A New England Journal of Medicine report that found cutting calories. 10 whatever their origin, mattered the most to losing weight garnered a surprisingly high number of citations, considering it confirmed long-standing advice.

6

	Swine flu, space interest scientists most	
Top Ten	A 2009	
most cited and	Updated 1/3/2010 10:15 PM Comments 28 Recommend 5 E-mail Save Print Reprints & Permissions RSS	
in 200	Science marches on, sometimes with headlines and awards, but most often with little fanfare. A look at the year's most-cited papers in science, ones that scientists themselves referenced in their own work, for example, finds studies that did and didn't make any "Top Ten" lists.	
	Here are the top 10:	
1	 •NASA's measures of the age, expansion and distribution of galaxies throughout the universe based on observations by its <u>WMAP probe</u>, launched in 2001. Not on a lot of lists, but, "the studies just provide a wealth of data that everyone in physics from cosmology to high-energy physicists will use for years," <u>Pendlebury</u> says. 	
2	 Prostate cancer studies suggesting that screening and Vitamin E had few benefits in treating the disease. These made news but were also highly cited by other researchers. 	
3	 New England Journal of Medicine and Journal of the <u>American Medical Association</u> studies showing problems with the blood-thinning drug <u>Clopidogrel</u> for heart patients. <u>Another newsmaker</u>. 	
4	 Diabetes treatment consensus statements that were updated this year. "Such articles are typically highly cited," <u>Pendlebury says.</u> 	
5	•Swine flu studies. They racked up a lot of citations this year. (You may not be too surprised.)	
6	 Iron-based superconductors, which rivaled swine flu for citations among scholars. For two decades, physicists have chased after superconductors, which transmit juice with zero power loss, to replace less efficient copper wires. Iron superconductors look like the latest hope. "Recent discovery of superconductivity in iron-based layered compounds may have opened a new pathway to room temperature superconductivity," begins a highly cited EPL journal paper by Vladimir Cvetkovic of Johns Hopkins University in Baltimore. Did you hear about this? You may hear more in the next few years. 	
7	 Cancer treatments that target blood vessel growth, or anti-angiogenesis. They also made the news, but for the wrong reasons. Highly-cited papers linked anti-angiogenesis to <u>tumor growth</u>. 	
8	 Graphene, single-atom layers of carbon that have semiconductor properties. They "look like a coming revolution in electronics," <u>Pendlebury</u> says. Science magazine included graphene on its "Top Ten" list of <u>breakthroughs for</u> the year. 	
9	 Small <u>RNA</u>'s, genetic materials that regulate genes in cells. They've emerged in "an astounding landscape" notes a highly-cited <i>Nature Reviews Molecular Cell Biology</i> survey led by V. <u>Narry</u> Kim of South Korea's <u>Seoul</u> <u>National University</u>. They have potential to treat diseases and reveal how genes work on a fundamental level inside cells. But not a <u>big news item</u>. 	
10	 Obesity gene, biology and diet studies. A New England Journal of Medicine report that found cutting calories, whatever their origin, mattered the most to losing weight garnered a surprisingly high number of citations, considering it confirmed <u>long-standing advice</u>. 	

Fe-based Superconductors rivaled Swine flu

	Swine flu, space interest scientists most	
Top Ten 1 articles	A 2009	
most cited are	Updated 1/3/2010 10:15 PM Comments 28 Recommend 5 E-mail Save Print Reprints & Permissions RSS	
in 200	Science marches on, sometimes with headlines and awards, but most often with little fanfare.	
	for example, finds studies that did and didn't make any "Top Ten" lists.	
	Here are the top 10:	
1	 •NASA's measures of the age, expansion and distribution of galaxies throughout the universe based on observations by its <u>WMAP probe</u>, launched in 2001. Not on a lot of lists, but, "the studies just provide a wealth of data that everyone in physics from cosmology to high-energy physicists will use for years," <u>Pendlebury</u> says. 	
2	 Prostate cancer studies suggesting that screening and Vitamin E had few benefits in treating the disease. These made news but were also highly cited by other researchers. 	
3	 New England Journal of Medicine and Journal of the <u>American Medical Association</u> studies showing problems with the blood-thinning drug <u>Clopidogrel</u> for heart patients. <u>Another newsmaker.</u> 	
4	 Diabetes treatment consensus statements that were updated this year. "Such articles are typically highly cited," <u>Pendlebury says.</u> 	
5	 Swine flu studies. They racked up a lot of <u>citations this year</u>. (You may not be too surprised.) 	
6	 Iron-based superconductors, which rivaled swine flu for citations among scholars. For two decades, physicists have chased after superconductors, which transmit juice with zero power loss, to replace less efficient copper wires. Iron superconductors look like the latest hope. "Recent discovery of superconductivity in iron-based layered compounds may have opened a new pathway to room temperature superconductivity," begins a highly cited EPL journal paper by Vladimir Cvetkovic of Johns Hopkins University in Baltimore. Did you hear about this? You may hear more in the next few years. 	
7	 Cancer treatments that target blood vessel growth, or anti-angiogenesis. They also made the news, but for the wrong reasons. Highly-cited papers linked anti-angiogenesis to <u>tumor growth</u>. 	
	 Graphene, single-atom layers of carbon that have semiconductor properties. They "look like a coming revolution in electronics," <u>Pendlebury</u> says. Science magazine included graphene on its "Top Ten" list of <u>breakthroughs for</u> the year. 	
9	 Small <u>RNA</u>'s, genetic materials that regulate genes in cells. They've emerged in "an astounding landscape" notes a highly-cited Nature Reviews Molecular Cell Biology survey led by V. <u>Narry</u> Kim of South Korea's <u>Seoul</u> 	
	National University. They have potential to treat diseases and reveal how genes work on a fundamental level inside cells. But not a big news item.	
10	 <u>National University</u>. They have potential to treat diseases and reveal how genes work on a fundamental level inside cells. But not a <u>big news item</u>. Obesity gene, biology and diet studies. A <i>New England Journal of Medicine</i> report that found cutting calories, whatever their origin, mattered the most to losing weight garnered a surprisingly high number of citations, considering it confirmed <u>long-standing advice</u>. 	

Fe-based Superconductors rivaled Swine flu

Crystal Structure of LaFeAsO_{1-x}F_x

Tetragonal Space group : *P4/nmm*

er Dopant Layer

Conduction Layer

Lattice constants

a = 4.035 Å c = 8.740 Å

Two formula units per unit cell

Alternate stacking of (R₂O₂)²⁺ and (Fe₂As₂)²⁻ layers

Electrical Resistivity

LaFeAsO_{1-x}F_x

J. Am. Chem. Soc. 130 (2008) 3296

Tc max ≈ 26 K for x = 0.11

$SmFeAsO_{1-x}F_x$

Superconductivity at 43 K. *Chen et al , Nature 453 (2008) 761.*

Highest Tc 55 K

(RE)FeAsO_{1-x} F_x where RE = Ce, Pr, Nd, Sm, Gd and Tb also showed superconducting transitions close to 50 K. AFe_2As_2 (A = Ba, Sr, Ca and Eu)

Structural similarity

LaFeAsO

AFe₂As₂

Exchanging $(R_2O_2)^+$ layer with a single large *A* atom leads to ThCr₂Si₂ type structure

To keep the electron count *A* has to be divalent

Heat capacity of AFe_2As_2 (A = Ba, Sr, Ca and Eu)

 $BaFe_2As_2 T_{SDW} = 137 K$

 $SrFe_2As_2 T_{SDW} = 198 K$

$CaFe_2As_2 T_{SDW} = 170 K$

 $EuFe_2As_2 T_{SDW} = 195 K; T_N = 19 K$

X-ray diffraction of BaFe₂As₂

Splitting of (110) and (112) reflections

M Rotter Phys. Rev. B 78 (2008) 020503

20 K Orthorhombic Fmmm a = 5.614 Åb = 5.574 Å*c* = 12.940 Å

Neutron diffraction studies of AFe₂As₂

Below the magnetic ordering in the orthorhombic phase

Fe orders AF along a and c axes and Ferromagnetically along *b*-axis

0.87 μ_B

Superconductivity AFe₂As₂

All of the AFe₂As₂ compounds exhibit superconductivity either by doping or by applying pressure

crystal B 0.32 p (mΩ cm) H=140 kOe ♦ ♦ ♦ | 0 kOe 0.16 I || [100] H⊥c 0.00 0.32 H=140 kOe 0 kOe

$Ba_{1-x}K_xFe_2As_2$ Tc = 30 K

$BaFe_{2-x}Co_xAs_2$ Tc = 22 K

Pressure induced superconductivity CaFe₂As₂

A. Kreyssig et al Phys. Rev B 78 (2008) 184517

Magnetically ordered Orthorhombic phase - Non magnetically ordered collapsed tetragonal phase Pressure induced superconductivity appears in the collapsed tetragonal phase

Wednesday 16 March 2011

Crystal growth of AFe₂As₂

Binary Phase diagram of Fe-As

Crystal growth of AFe_2As_2 (A = Ca, Sr, Ba and Eu)

Using Sn as flux

A : Fe : As : Sn 1 : 2 : 2 : 19

As grown single crystals

CaFe₄As₃ needle like crystals on the surface

CaFe₂As₂ crystals

SrFe₂As₂ crystal

Wednesday 16 March 2011

$CaFe_2As_2$

Magnetic Susceptibility

170 K

Structural / Magnetic transition

$CaFe_{1.94}Co_{0.06}As_2$

No SDW ordering

Tc = 17 K

Electrical Resistivity

Increase in resistivity at 170 K is due to the energy gaps introduced into the parts of the Fermi surface by SDW which reduce the number of carriers

Electrical Resistivity in Applied Magnetic Fields

Neeraj Kumar et al., Phys. Rev. B **79**, 012504 (2009)

Estimation of H_{c2}

Werthamer - Helfand - Hohenberg (WHH) theory

Neeraj Kumar et al., Phys. Rev. B **79**, 012504 (2009)

CaFe_{2-x}Ni_xAs₂

CaFe_{2-x}Ni_xAs₂

Nominal Composition (x)	Actual Composition (x)
0	
0.05	0.006
0.10	0.008
0.15	0.015
0.20	0.020
0.30	0.027
0.40	0.030
0.50	0.053
0.60	0.060
0.80	0.075
1.0	0.1

Rietveld analysis of CaFe_{2-x}Ni_xAs₂

Neeraj Kumar et al., Phys. Rev. B 80 (2009) 144524

Variation of lattice constant with Ni doping

Wednesday 16 March 2011

Electrical Resistivity of CaFe_{2-x}Ni_xAs₂

Tc = 15 K for x = 0.06

No superconductivity

Superconductivity

Co-existence of magnetism & superconductivity

T_{SDW} decreases with Ni doping

Neeraj Kumar et al., Phys. Rev. B 80 (2009) 144524

Hc2 of CaFe_{1.94}Ni_{0.06}As₂

 $H_{c2} = 14 \text{ T for H } // [001]$
Magnetic susceptibility of CaFe_{2-x}Ni_xAs₂

Heat capacity of CaFe_{2-x}Ni_xAs₂

 γ increases for $x \ge 0.027$ suggests appreciable enhancement of density of states at the Fermi level Single crystal neutron diffraction BT-7 and BT-9 triple axis spectrometer at NIST center for Neutron Research

Neutron wavelength: 2.359 Å

Pyrolyic graphite (PG) monochromator

Tetragonal (220) reflection spits into orthorhombic (400) and (040)

Neeraj Kumar et al., Phys. Rev. B 80 (2009) 144524

Intensity maps of structural & magnetic Bragg peaks in CaFe_{1.994}Ni_{0.006}As₂

Below *T*_{SDW} peaks are not symmetric about the tetragonal position - Change in the area of the *ab*-plane - decrease in the area of orthorhombic phase

Below *T*_{SDW} sudden decrease in the position of the <u>*c*-axis</u> lattice parameter. This tends to <u>compensate for</u> the decrease in the area of the <u>*ab*-</u> plane

Sudden appearance and disappearance of the magnetic peak on warming and cooling

Neeraj Kumar et al., Phys. Rev. B 80 (2009) 144524

Nature of orthorhombic distortion as a function of doping

Temperature maps of $(2,2,0)_T$ to $(4,0,0)_O$, $(0,4,0)_O$ peaks for 4 different compositions:

Temperature dependence of (103) magnetic Bragg peak for various concentration of Ni doping

for small *x* there is a jump in the magnetic scattering intensity - First order

At higher *x* the ordered moment is smaller and the transition appears to be continuous

Temperature dependence of the lattice constants for various Ni concentration

In the superconducting state the structural transition does not occur

Temperature dependence of the lattice constants for various Ni concentration

In the superconducting state the structural transition does not occur

From Neutron diffraction:

Ni Doping	Structural Transition (K)	Magnetic ordering	Ordered moment (µ _B)
0	172	172	0.8
0.008	161	160.9	0.728
0.015	151	150.9	0.621
0.020	146	148	0.162
0.0273	129	128.3	0.058
0.0532	80	80	0.037
0.063	No transition	No transition	No moment

Phase diagram of CaFe_{2-x}Ni_xAs₂

Neeraj Kumar et al., Phys. Rev. B 80 (2009) 144524

TM doping in $BaFe_{2-x}T_xAs_2$ (T = Co and Ni)

P.C. Canfield et al., Phys. Rev. B 80 (2009) 060501(R)

Suppression of the structural/antiferromagnetic transition is a <u>necessary</u> condition for observing superconductivity in these compounds

But...!!

Successfully grown the single crystals of AFe₂As₂

Superconductivity is observed by electron doping in the tetragonal phase of $CaFe_{2-x}T_xAs_2$

Superconductivity is observed for an optimum doping concentration of x = 0.06

A phase diagram has been constructed based on the systematic study of Ni-doping in $CaFe_{2-x}Ni_xAs_2$

Thank you...!!!

Group Website: <u>http://www.tifr.res.in/~crystalgrowth</u>

Personal Website: <u>http://www.thamizhavel.com</u>