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Physics vs Biology

Physics vs Biology

Physics

Unifying Principles
Effective Theories; minimal
models
Mathematical “proof”
e.g. Free energy minimisation

Biology

System details
Models with many parameters
to fit data
Argumentation
e.g. Evolutionary pressures
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What can physicists bring to biophysical
modelling?

Ideas from (statistical) physics
many particle behaviour
non equilibrium phenomena
fluctuations and stochastic effects
idea of scales

Model building savoir faire

minimal models
exact solutions; good approximations

What physicists shouldn’t bring

Arrogance and ignorance
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II Switching: Basic Biology for Physicists

Gene
Stretch of DNA ∼ 1000 base pairs long
Transcription by RNAp→ mRNA
Translation→ amino acids→
production of proteins→ . . . → Phenotype

Regulation
regulatory sites at ends of gene
known as ‘operators’
gene switched off/on by binding of repressors/enhancers known
as
‘Transcription factors’
genes can produce transcription factors for themselves or other
genes
→ genetic network

M. R. Evans Models of Switching in Biophysical Contexts



Heterogeneity

Populations of bacteria are often heterogeneous even if
environmentally and genetically identical
Happens when bacteria frequently switches between different
states:

Multistable genetic switches
Stochastic “oscillation” between different states

It represents a strategy against environmental changes and
stresses
Examples:

Bacterial persistence
Phase variation (e.g.: fimbriae)
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Example: Bacterial persistence

Non persistent state
Vulnerable to antibiotics
Fast growth

Persistent state
Resists against antibiotics
Very slow growth

Balaban, Merrin, Chait, Kowalik, Leibler, Science, 2004
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Examples of population “strategies”

“Bet Hedging” – small fraction of population in unfit “persistor state”
which can survive catastrophes e.g. antibiotics

“Once and for all” – Population splits into groups with long lived
phenotypes i.e. bistability

Defence against immune response – small fraction of population in
fit state since too successful a population would evoke
an immune response
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Models of genetic switches

Existing models for bistable gene regulatory networks

Mutually repressing genes
Positive feedback loop

Typically: bistable systems

state

effective potential

state 1 state 2

But this is not how the most
common bacterial phase varia-
tion systems work!
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Example: Uropathogenic E.Coli

Urinary tract

Attached, fimbriated

Detached, fimbriated
Detached, non fimbriated

Attached vulnerable to
immune system

Detached vulnerable to
flushing

M. R. Evans Models of Switching in Biophysical Contexts



Example: Uropathogenic E. Coli

Fimbriated state Non fimbriated state
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The fim switch

DNA inversion switch
fim system controls production of fimbriae
short piece of DNA can be inserted in two orientations
in one orientation fimbrial genes transcribed and fimbriae
produced (“on state”)
inversion of DNA element mediated by recombinase enzymes
FimE recombinase which flips the switch on to off is produced
more strongly in the on state “orientational control”
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III Model of stochastic linear feedback switch
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Reaction network

R1
k1−→ ∅

Son
k2−→ Son + R1

 R1 variations

Son + R1
kon

3−→ Soff + R1

Son
k4−⇀↽−
k4

Soff

 switching reactions

Reaction rates
k1 R1 decay
k2 R1 production

kon
3 R1 mediated switching (only on to off)
k4 spontaneous switching (both directions)
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Scales

t

n
k2

k1

0
τR

τon τoff

Three timescales

τR relaxation time of n: ∼ 1/k1
τon on to off switching time: ∼ 1/(〈n〉on kon

3 + kon
4 )

τoff off to on switching time: ∼ 1/koff
4

Two n scales

non asymptotic value of n in the on state: ∼ k2/k1
noff asymptotic value of n in the off state: ∼ 0
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Some examples

τR � τS

τR ∼ τS

τR � τS
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Statistical description

Define
ps(n, t) probability that there are n enzymes and the switch is in

position s ≡ {on,off} at time t .

Master equation

dps(n)

dt
= k1[(n + 1)ps(n + 1)− nps(n)]

+ ks
2 [ps(n − 1)− ps(n)]

+ n[k1−s
3 p1−s(n)− ks

3 ps(n)]

+ k4[p1−s(n)− ps(n)]

Removal of R1

Production of R1
(if the switch is on)

R1–mediated switching

spontaneous switching
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Steady state: two coupled equations

(n + 1)k1pon(n + 1) + k2pon(n − 1) + k4poff(n)

= (nk1 + k2 + nkon
3 + k4)pon(n)

(n + 1)k1poff(n + 1) + nkon
3 pon(n) + k4pon(n)

= (nk1 + k4)poff(n)

Exact solution

pon(n) = a0
(u1 − u0)n

n!

(η)n

(ζ)n
1F1(η + n, ζ + n,u0)

poff(n) = κδn,0 +
k2

k1

pon(n − 1)

n
− pon(n)

where u1,u0, η, ζ are combinations of the reaction rates and κ, a0 are
normalising constants
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Test against simulations

Plot of p(n) = pon(n) + poff(n)

Perfect agreement
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Flipping time distribution

Flipping time distribution

Fon(t)dt probability that the switch flips at time t → t + dt
Compare with mean first passage times and
persistence distributions of stochastic processes

We would like to see peak around typical time to be in on-state

t

F (t)

m

Can the model achieve this? require
dF (t)

dt

∣∣∣∣
t=0

> 0
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Measurement ensemble

F (T ) depends on the initial condition of ni

Two choices:
Switch change ensemble SCE
Steady state ensemble SSE

Initial distribution W (ni ) defines the ensemble
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Relation between ensembles

time

switch position

on

off

t

T

T1 T2

Probability that t is an interval T : Prob(T )dT =
T F SCE(T )dT∫∞

0 T ′F SCE(T ′)dT ′

Prob(T2|T )dT =
θ(T − T2)dT

T
(uniform)

F SSE(T2) =

∫ ∞
T2

Prob(T2|T )Prob(T )dT =

∫∞
T2

F SCE(T )dT∫∞
0 TF SCE(T )dT

General relation from renewal theory:
dF SSE

dT
= −F SCE(T )

〈T 〉SCE
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Peak in the distribution

never a peak in SSE
in SCE require

k2kon
3 − (k4)2 − kon

3 (k1 + 2k4) 〈n〉W − (kon
3 )2〈n2〉W > 0
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IV Population dynamics in changing environments

Consider whether switching rate to a less fit state is advantageous for
the population

Previous studies
Thattai and Van Oudenaarden, Genetics 2004 2 environments, 2
phenotypes, Poissonian environmental changes
Kussell and Leibler, Science 2005 many environments and
phenotypes, different phentotypes have preferred environment
Random switching between phenotypes good strategy when
environmental changes unpredictable
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General scenario

Single environment
Population of bacteria, say, with two possibles states for
individuals:

Fit state has fast growth
Unfit (persistor) state has slow growth but withstands
catastrophes
Catastrophes occur stochastically, coupled to growth of
population
Question: what is best ‘strategy’ of population to maximise
growth?
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Model

Deterministic growth

Two subpopulations nA and nB.

Exponential growth rates γA > γB

Individuals switch states with rates kA, kB

dnA

dt
= γAnA + kBnB − kAnA ,

dnB

dt
= γBnB + kAnA − kBnB .

Stochastic catastrophes

Catastrophe rate β(nA,nB)
β is the environmental response function

When a catastrophe occurs nA → n′A < nA, with probability density
ν(n′A|nA).

ν is the catastrophe strength distribution
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Fitness

Biological definition: instantaneous growth rate of population

Here f is fraction of population in fit state

f =
nA

nA + nB

dn
dt

= γAnA + γBnB = (γB + ∆γf )n

Deterministic growth:

df
dt

= v(f ) = ∆γ(f+ − f )(f − f−) ,

where ∆γ = γA − γB and f± are the roots of

f 2 −
(

1− kA + kB

∆γ

)
f − kB

∆γ
= 0 .
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Typical trajectory

0 2 4 6 8 10

t

0.0

0.5

f
(t

)

f+

105

1010

1015 log(nA)
log(nB)

Piecewise Deterministic Markov Processes
- used extensively in context of queueing theory

M. R. Evans Models of Switching in Biophysical Contexts



Catastrophe rate
Threshold sigmoid function

Catastrophes triggered when a threshold is reached
Our choice:

βλ(f ) =
ξ

2

(
1 +

f − f ∗√
λ2 + (f − f ∗)2

)

parameters
ξ plateau value

f ∗ threshold value
λ sharpness of the

transition 0.0 0.2 0.4 0.6 0.8 1.0

f

0

1

β
λ
(f

)

λ = 0.01
λ = 0.1
λ = 1
λ = 10

M. R. Evans Models of Switching in Biophysical Contexts



Catastrophe strength

nA → n′A = u × nA, where 0 < u < 1 is a random number sampled
from:

P(u) = (α + 1)uα α > −1

0.0 0.2 0.4 0.6 0.8 1.0

n′/n

0

1

2

3

4

n
ν

(n
′ |n

)

α = −0.5
α = 0
α = 1
α = 10 −1 < α < 0 strong catastrophes

α > 0 weak catastrophes

To each jump nA → n′A corresponds a jump f → f ′

Catastrophe strengh distribution µ(f ′|f ), where

µ(f ′|f ) = Θ(f − f ′)
d

df ′
m(f ′)
m(f )

with m(f ) =

(
f

1− f

)1+α
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Exact Solution for Stationary State

Constant flux condition

0 f ′′ f f ′ f+

β(f ′)µ(f ′′|f ′)

v(f )
Recall

df
dt

= v(f )

µ(f ′′|f ′) =
d

df ′′
m(f ′′)
m(f ′)

m(f ) =

(
f

1− f

)1+α

p(f )v(f ) =

∫ f+

f
df ′
∫ f

0
df ′′ p(f ′)β(f ′)µ(f ′′|f ′)

p(f ) = C
m(f )

v(f )
exp

(
−
∫
β(f )

v(f )

)
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Examples

0.0 0.2 0.4 0.6 0.8 1.0

f /f+

0.0

0.5

1.0

1.5

2.0

2.5

p
(f
/f

+
)

(c)

0.0 0.2 0.4 0.6 0.8 1.0

f /f+

(d)

0.0

0.5

1.0

1.5

p
(f
/
f +

)

(a) (b)

M. R. Evans Models of Switching in Biophysical Contexts



Optimal strategies

We characterise the population strategy by the value of kA, which is
the control parameter for the population balance.

We define Optimal Strategies as the values of kA which maximise
the average fitness 〈f 〉 in the stationary state.

Two optimal strategies emerge:

0.0 0.5 1.0 1.5 2.0

kA

0.0

0.1

0.2

0.3

0.4

0.5

〈f
〉

λ = 10
λ = 1
λ = 0.1
λ = 0.01
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Optimal strategies cont.

Two possible optimal strategies
1 kA = 0 (no switching to unfit state)

2 kA ' k∗A where k∗A yields f+ = f ∗

(saturation fitness = response threshold)

0 10 20

t

0

1

f
(t

)

no switching

0 10 20

t

switching

M. R. Evans Models of Switching in Biophysical Contexts



Conclusions for population dynamics in changing
environments

New kind of environments
Catastrophic
Responsive

Switching can be a good strategy
Threshold mechanism (different from bet hedging)
Two main strategies:
no switching: grow faster oblivious to catastrophes

switching: grow slower but try not to get caught
Outlook: Generalise to saturating populations
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