Models of Switching in Biophysical Contexts

Martin R. Evans
SUPA, School of Physics and Astronomy, University of Edinburgh, U.K.

March 7, 2011

Collaborators:
Paolo Visco (MSC, Paris)
Rosalind J. Allen (Edinburgh)
Satya N. Majumdar (LPTMS, Paris)

I Thoughts on biophysical modelling
II Switching between states
III Microscopic dynamics: model linear feedback switch
IV Macroscopic dynamics: population growth in a catastrophic environment

References:

P. Visco, R. J. Allen, M. R. Evans, Phys. Rev. Lett. 2008, Phys. Rev. E 2009
P. Visco, R. J. Allen, S. N. Majumdar, M. R. Evans, Biophysical Journal 2010

Physics vs Biology

Physics vs Biology

Physics

- Unifying Principles
- Effective Theories; minimal models
- Mathematical "proof" e.g. Free energy minimisation

Biology

- System details
- Models with many parameters to fit data
- Argumentation
e.g. Evolutionary pressures

What can physicists bring to biophysical modelling?

Ideas from (statistical) physics

- many particle behaviour
- non equilibrium phenomena
- fluctuations and stochastic effects
- idea of scales

Model building savoir faire

- minimal models
- exact solutions; good approximations

What can physicists bring to biophysical modelling?

```
Ideas from (statistical) physics
- many particle behaviour
- non equilibrium phenomena
- fluctuations and stochastic effects
- idea of scales
```


Model building savoir faire

- minimal models
- exact solutions; good approximations

What physicists shouldn't bring

- Arrogance and ignorance

I Thoughts on biophysical modelling
II Switching between states
III Microscopic dynamics: model linear feedback switch
IV Macroscopic dynamics: population growth in a catastrophic environment

References:

P. Visco, R. J. Allen, M. R. Evans, Phys. Rev. Lett. 2008, Phys. Rev. E 2009
P. Visco, R. J. Allen, S. N. Majumdar, M. R. Evans, Biophysical Journal 2010

II Switching: Basic Biology for Physicists

Gene

- Stretch of DNA ~ 1000 base pairs long
- Transcription by RNAp \rightarrow mRNA

Translation \rightarrow amino acids \rightarrow production of proteins $\rightarrow \ldots \rightarrow$ Phenotype

Regulation

- regulatory sites at ends of gene known as 'operators'
- gene switched off/on by binding of repressors/enhancers known as
'Transcription factors’
- genes can produce transcription factors for themselves or other genes
\rightarrow genetic network

Heterogeneity

- Populations of bacteria are often heterogeneous even if environmentally and genetically identical
- Happens when bacteria frequently switches between different states:
- Multistable genetic switches
- Stochastic "oscillation" between different states
- It represents a strategy against environmental changes and stresses
- Examples:
- Bacterial persistence
- Phase variation (e.g.: fimbriae)

Example: Bacterial persistence

Non persistent state

- Vulnerable to antibiotics
- Fast growth

Persistent state

- Resists against antibiotics
- Very slow growth

F 6:50
G 7:38
H 8:39

Balaban, Merrin, Chait, Kowalik, Leibler, Science, 2004

Examples of population "strategies"

"Bet Hedging" - small fraction of population in unfit "persistor state" which can survive catastrophes e.g. antibiotics
"Once and for all" - Population splits into groups with long lived phenotypes i.e. bistability

Defence against immune response - small fraction of population in fit state since too successful a population would evoke an immune response

Models of genetic switches

Existing models for bistable gene regulatory networks

- Mutually repressing genes
- Positive feedback loop

Typically: bistable systems

effective potential

Example: Uropathogenic E.Coli

Example: Uropathogenic E. Coli

Fimbriated state

Non fimbriated state

The fim switch

DNA inversion switch

- fim system controls production of fimbriae
- short piece of DNA can be inserted in two orientations
- in one orientation fimbrial genes transcribed and fimbriae produced ("on state")
- inversion of DNA element mediated by recombinase enzymes
- FimE recombinase which flips the switch on to off is produced more strongly in the on state "orientational control"

III Model of stochastic linear feedback switch

Reaction network

$$
\begin{gathered}
\left.\left.\begin{array}{c}
R_{1} \xrightarrow{k_{1}} \emptyset \\
S_{\text {on }} \xrightarrow{k_{2}} S_{\text {on }}+R_{1}
\end{array}\right\} \quad \begin{array}{r}
R_{1} \text { variations } \\
S_{\text {on }}+R_{1} \xrightarrow{k_{3}^{\mathrm{on}}} S_{\text {off }}+R_{1} \\
S_{\text {on }} \underset{k_{4}}{\stackrel{k_{4}}{\rightleftharpoons}} S_{\text {off }}
\end{array}\right\} \text { switching reactions }
\end{gathered}
$$

Reaction rates

$$
\begin{aligned}
k_{1} & R_{1} \text { decay } \\
k_{2} & R_{1} \text { production } \\
k_{3}^{\text {on }} & R_{1} \text { mediated switching (only on to off) } \\
k_{4} & \text { spontaneous switching (both directions) }
\end{aligned}
$$

III Model of stochastic linear feedback switch

Reaction network

$$
\begin{array}{r}
\left.\left.\begin{array}{c}
R_{1} \xrightarrow{k_{1}} \emptyset \\
S_{\circ \mathrm{n}} \xrightarrow{k_{2}} S_{\circ \mathrm{n}}+R_{1}
\end{array}\right\} \quad \begin{array}{r}
R_{1} \text { variations } \\
S_{\mathrm{on}}+R_{1} \xrightarrow{k_{3}^{\mathrm{on}}} S_{\circ f \mathrm{f}}+R_{1} \\
S_{\mathrm{on}} \underset{k_{4}}{\stackrel{k_{4}}{\rightleftharpoons}} S_{\mathrm{off}}
\end{array}\right\} \text { switching reactions }
\end{array}
$$

In the on state:

$$
\frac{d n}{d t}=k_{2}-k_{1} n
$$

III Model of stochastic linear feedback switch

Reaction network

$$
\begin{array}{r}
\left.\left.\begin{array}{c}
R_{1} \xrightarrow{k_{1}} \emptyset \\
S_{\circ \mathrm{n}} \xrightarrow{k_{2}} S_{\circ \mathrm{n}}+R_{1}
\end{array}\right\} \quad \begin{array}{r}
R_{1} \text { variations } \\
S_{\mathrm{on}}+R_{1} \xrightarrow{k_{3}^{\mathrm{on}}} S_{\circ f \mathrm{f}}+R_{1} \\
S_{\mathrm{on}} \underset{k_{4}}{\stackrel{k_{4}}{\rightleftharpoons}} S_{\mathrm{off}}
\end{array}\right\} \text { switching reactions }
\end{array}
$$

In the on state:

$$
n(t)=\frac{k_{2}}{k_{1}}\left[1-\exp \left(-k_{1} t\right)\right] \quad \frac{k_{2}}{k_{1}} \uparrow
$$

III Model of stochastic linear feedback switch

Reaction network

$$
\begin{array}{r}
\left.\left.\begin{array}{c}
R_{1} \xrightarrow{k_{1}} \emptyset \\
S_{\circ \mathrm{n}} \xrightarrow{k_{2}} S_{\circ \mathrm{n}}+R_{1}
\end{array}\right\} \quad \begin{array}{r}
R_{1} \text { variations } \\
S_{\mathrm{on}}+R_{1} \xrightarrow{k_{3}^{\mathrm{on}}} S_{\circ f \mathrm{f}}+R_{1} \\
S_{\mathrm{on}} \underset{k_{4}}{\stackrel{k_{4}}{\rightleftharpoons}} S_{\mathrm{off}}
\end{array}\right\} \text { switching reactions }
\end{array}
$$

In the off state:

$$
\frac{d n}{d t}=-k_{1} n
$$

III Model of stochastic linear feedback switch

Reaction network

$$
\begin{gathered}
\left.\left.\begin{array}{c}
R_{1} \xrightarrow{k_{1}} \emptyset \\
S_{\circ \mathrm{n}} \xrightarrow{k_{2}} S_{\circ \mathrm{n}}+R_{1}
\end{array}\right\} \quad \begin{array}{r}
R_{1} \text { variations } \\
S_{\circ \mathrm{on}}+R_{1} \xrightarrow{k_{3}^{\mathrm{on}}} S_{\circ f \mathrm{f}}+R_{1} \\
S_{\mathrm{on}} \underset{k_{4}}{\stackrel{k_{4}}{\rightleftharpoons}} S_{\text {off }}
\end{array}\right\} \text { switching reactions }
\end{gathered}
$$

In the off state:

$$
n(t)=n_{0} \exp \left(-k_{1} t\right)
$$

Scales

Three timescales

```
\(\tau_{R} \quad\) relaxation time of \(n: \quad \sim 1 / k_{1}\)
    \(\tau_{\text {on }}\) on to off switching time: \(\sim 1 /\left(\langle n\rangle_{\text {on }} k_{3}^{\circ \text { on }}+k_{4}^{\circ \mathrm{n}}\right)\)
\(\tau_{\text {off }}\) off to on switching time:
\(\sim 1 / k_{4}^{\circ f f}\)
```


Two n scales

$n_{\text {on }} \quad$ asymptotic value of n in the on state: $\quad \sim k_{2} / k_{1}$ $n_{\text {off }}$ asymptotic value of n in the off state: ~ 0

Some examples

$$
\tau_{R} \ll \tau_{S}
$$

$\tau_{R} \sim \tau_{S}$

$$
\tau_{R} \gg \tau_{S}
$$

Statistical description

Define

$p_{s}(n, t)$ probability that there are n enzymes and the switch is in position $s \equiv\{o n, o f f\}$ at time t.

Master equation

$$
\begin{aligned}
\frac{d p_{s}(n)}{d t} & =k_{1}\left[(n+1) p_{s}(n+1)-n p_{s}(n)\right] \\
& +k_{2}^{s}\left[p_{s}(n-1)-p_{s}(n)\right] \\
& +n\left[k_{3}^{1-s} p_{1-s}(n)-k_{3}^{s} p_{s}(n)\right] \\
& +k_{4}\left[p_{1-s}(n)-p_{s}(n)\right]
\end{aligned}
$$

Removal of R_{1}

Production of R_{1} (if the switch is on)

R_{1}-mediated switching
spontaneous switching

Steady state: two coupled equations

$$
\begin{aligned}
(n+1) k_{1} p_{\mathrm{on}(}(n+1)+k_{2} p_{\mathrm{on}}(n-1) & +k_{4} p_{\mathrm{off}}(n) \\
& =\left(n k_{1}+k_{2}+n k_{3}^{\mathrm{on}}+k_{4}\right) p_{\mathrm{on}}(n) \\
(n+1) k_{1} p_{\mathrm{off}}(n+1)+n k_{3}^{\mathrm{on}} p_{\mathrm{on}}(n)+k_{4} p_{\mathrm{on}}(n) & \\
& =\left(n k_{1}+k_{4}\right) p_{\mathrm{off}}(n)
\end{aligned}
$$

Exact solution

$$
\begin{aligned}
& p_{\text {on }}(n)=a_{0} \frac{\left(u_{1}-u_{0}\right)^{n}}{n!} \frac{(\eta)_{n}}{(\zeta)_{n}}{ }_{1} F_{1}\left(\eta+n, \zeta+n, u_{0}\right) \\
& p_{\text {off }}(n)=\kappa \delta_{n, 0}+\frac{k_{2}}{k_{1}} \frac{p_{\text {on }}(n-1)}{n}-p_{\text {on }}(n)
\end{aligned}
$$

where $u_{1}, u_{0}, \eta, \zeta$ are combinations of the reaction rates and κ, a_{0} are normalising constants

Test against simulations

Plot of $p(n)=p_{\text {on }}(n)+p_{\text {off }}(n)$

\rightarrow Perfect agreement

Flipping time distribution

Flipping time distribution
$F_{\text {on }}(t) d t$ probability that the switch flips at time $t \rightarrow t+d t$
Compare with mean first passage times and
persistence distributions of stochastic processes

We would like to see peak around typical time to be in on-state

Can the model achieve this? require $\left.\frac{d F(t)}{d t}\right|_{t=0}>0$

Measurement ensemble

$F(T)$ depends on the initial condition of n_{i}

Two choices:
O Switch change ensemble SCE
O Steady state ensemble SSE
Initial distribution $W\left(n_{i}\right)$ defines the ensemble

Relation between ensembles

Probability that t is an interval $T: \quad \operatorname{Prob}(T) d T=\frac{T F^{\mathrm{SCE}}(T) d T}{\int_{0}^{\infty} T^{\prime} F^{\mathrm{SCE}}\left(T^{\prime}\right) d T^{\prime}}$

$$
\operatorname{Prob}\left(T_{2} \mid T\right) d T=\frac{\theta\left(T-T_{2}\right) d T}{T} \quad \text { (uniform) }
$$

$$
F^{\mathrm{SSE}}\left(T_{2}\right)=\int_{T_{2}}^{\infty} \operatorname{Prob}\left(T_{2} \mid T\right) \operatorname{Prob}(T) d T=\frac{\int_{T_{2}}^{\infty} F^{\mathrm{SCE}}(T) d T}{\int_{0}^{\infty} T F^{\mathrm{SCE}}(T) d T}
$$

General relation from renewal theory: $\frac{\mathrm{d} F^{\mathrm{SSE}}}{\mathrm{d} T}=-\frac{F^{\mathrm{SCE}}(T)}{\langle T\rangle_{\mathrm{SCE}}}$

Peak in the distribution

- never a peak in SSE
- in SCE require

$$
k_{2} k_{3}^{\mathrm{on}}-\left(k_{4}\right)^{2}-k_{3}^{\mathrm{on}}\left(k_{1}+2 k_{4}\right)\langle n\rangle_{w}-\left(k_{3}^{\mathrm{on}}\right)^{2}\left\langle n^{2}\right\rangle_{w}>0
$$

Visco, Allen, Evans, PRL 101118104 (2008);

IV Population dynamics in changing environments

Consider whether switching rate to a less fit state is advantageous for the population

Previous studies

- Thattai and Van Oudenaarden, Genetics 20042 environments, 2 phenotypes, Poissonian environmental changes
- Kussell and Leibler, Science 2005 many environments and phenotypes, different phentotypes have preferred environment
- Random switching between phenotypes good strategy when environmental changes unpredictable

General scenario

- Single environment
- Population of bacteria, say, with two possibles states for individuals:

Fit state has fast growth
Unfit (persistor) state has slow growth but withstands catastrophes

- Catastrophes occur stochastically, coupled to growth of population
- Question: what is best 'strategy' of population to maximise growth?

Deterministic growth

Two subpopulations n_{A} and n_{B}.
Exponential growth rates $\gamma_{A}>\gamma_{B}$
Individuals switch states with rates k_{A}, k_{B}

$$
\begin{aligned}
\frac{\mathrm{d} n_{A}}{\mathrm{~d} t} & =\gamma_{A} n_{A}+k_{B} n_{B}-k_{A} n_{A}, \\
\frac{\mathrm{~d} n_{B}}{\mathrm{~d} t} & =\gamma_{B} n_{B}+k_{A} n_{A}-k_{B} n_{B} .
\end{aligned}
$$

Stochastic catastrophes

Catastrophe rate $\beta\left(n_{A}, n_{B}\right)$
β is the environmental response function
When a catastrophe occurs $n_{A} \rightarrow n_{A}^{\prime}<n_{A}$, with probability density $\nu\left(n_{A}^{\prime} \mid n_{A}\right)$.
ν is the catastrophe strength distribution

Biological definition: instantaneous growth rate of population Here f is fraction of population in fit state

$$
\begin{gathered}
f=\frac{n_{A}}{n_{A}+n_{B}} \\
\frac{\mathrm{~d} n}{\mathrm{~d} t}=\gamma_{A} n_{A}+\gamma_{B} n_{B}=\left(\gamma_{B}+\Delta \gamma f\right) n
\end{gathered}
$$

Deterministic growth:

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=v(f)=\Delta \gamma\left(f_{+}-f\right)\left(f-f_{-}\right),
$$

where $\Delta \gamma=\gamma_{A}-\gamma_{B}$ and $f_{ \pm}$are the roots of

$$
f^{2}-\left(1-\frac{k_{A}+k_{B}}{\Delta \gamma}\right) f-\frac{k_{B}}{\Delta \gamma}=0 .
$$

Typical trajectory

Piecewise Deterministic Markov Processes

- used extensively in context of queueing theory

Catastrophe rate

Threshold sigmoid function

- Catastrophes triggered when a threshold is reached
- Our choice:

$$
\beta_{\lambda}(f)=\frac{\xi}{2}\left(1+\frac{f-f^{*}}{\sqrt{\lambda^{2}+\left(f-f^{*}\right)^{2}}}\right)
$$

parameters

ξ plateau value
f^{*} threshold value
λ sharpness of the transition

Catastrophe strength

$n_{A} \rightarrow n_{A}^{\prime}=u \times n_{A}$, where $0<u<1$ is a random number sampled from:

$$
P(u)=(\alpha+1) u^{\alpha} \quad \alpha>-1
$$

$-1<\alpha<0$ strong catastrophes
$\alpha>0$ weak catastrophes

- To each jump $n_{A} \rightarrow n_{A}^{\prime}$ corresponds a jump $f \rightarrow f^{\prime}$
- Catastrophe strengh distribution $\mu\left(f^{\prime} \mid f\right)$, where

$$
\mu\left(f^{\prime} \mid f\right)=\Theta\left(f-f^{\prime}\right) \frac{d}{d f^{\prime}} \frac{m\left(f^{\prime}\right)}{m(f)} \quad \text { with } \quad m(f)=\left(\frac{f}{1-f}\right)^{1+\alpha}
$$

Exact Solution for Stationary State

Constant flux condition

Recall

- $\frac{d f}{d t}=v(f)$
- $\mu\left(f^{\prime \prime} \mid f^{\prime}\right)=\frac{d}{d f^{\prime \prime}} \frac{m\left(f^{\prime \prime}\right)}{m\left(f^{\prime}\right)}$
- $m(f)=\left(\frac{f}{1-f}\right)^{1+\alpha}$

$$
p(f) v(f)=\int_{f}^{f_{+}} d f^{\prime} \int_{0}^{f} d f^{\prime \prime} p\left(f^{\prime}\right) \beta\left(f^{\prime}\right) \mu\left(f^{\prime \prime} \mid f^{\prime}\right)
$$

Exact Solution for Stationary State

Constant flux condition

Recall

- $\frac{d f}{d t}=v(f)$
- $\mu\left(f^{\prime \prime} \mid f^{\prime}\right)=\frac{d}{d f^{\prime \prime}} \frac{m\left(f^{\prime \prime}\right)}{m\left(f^{\prime}\right)}$
- $m(f)=\left(\frac{f}{1-f}\right)^{1+\alpha}$

$$
p(f) v(f)=\int_{f}^{f_{+}} d f^{\prime} \frac{p\left(f^{\prime}\right) \beta\left(f^{\prime}\right)}{m\left(f^{\prime}\right)} \int_{0}^{f} d f^{\prime \prime} \frac{d}{d f^{\prime \prime}} m\left(f^{\prime \prime}\right)
$$

Exact Solution for Stationary State

Constant flux condition

Recall

- $\frac{d f}{d t}=v(f)$
- $\mu\left(f^{\prime \prime} \mid f^{\prime}\right)=\frac{d}{d f^{\prime \prime}} \frac{m\left(f^{\prime \prime}\right)}{m\left(f^{\prime}\right)}$
- $m(f)=\left(\frac{f}{1-f}\right)^{1+\alpha}$

$$
\frac{p(f) v(f)}{m(f)}=\int_{f}^{f_{+}} d f^{\prime} \frac{p\left(f^{\prime}\right) \beta\left(f^{\prime}\right)}{m\left(f^{\prime}\right)}
$$

Exact Solution for Stationary State

Constant flux condition

Recall

- $\frac{d f}{d t}=v(f)$
- $\mu\left(f^{\prime \prime} \mid f^{\prime}\right)=\frac{d}{d f^{\prime \prime}} \frac{m\left(f^{\prime \prime}\right)}{m\left(f^{\prime}\right)}$
- $m(f)=\left(\frac{f}{1-f}\right)^{1+\alpha}$

$$
\frac{d}{d f} \frac{p(f) v(f)}{m(f)}=-\frac{p(f) \beta(f)}{m(f)}
$$

Exact Solution for Stationary State

Constant flux condition

Recall

- $\frac{d f}{d t}=v(f)$
- $\mu\left(f^{\prime \prime} \mid f^{\prime}\right)=\frac{d}{d f^{\prime \prime}} \frac{m\left(f^{\prime \prime}\right)}{m\left(f^{\prime}\right)}$
- $m(f)=\left(\frac{f}{1-f}\right)^{1+\alpha}$

$$
\frac{d}{d f} \frac{p(f) v(f)}{m(f)}=-\frac{p(f) \beta(f)}{m(f)}
$$

$$
p(f)=C \frac{m(f)}{v(f)} \exp \left(-\int \frac{\beta(f)}{v(f)}\right)
$$

Examples

Optimal strategies

We characterise the population strategy by the value of k_{A}, which is the control parameter for the population balance.
We define Optimal Strategies as the values of k_{A} which maximise the average fitness $\langle f\rangle$ in the stationary state.

Two optimal strategies emerge:

Optimal strategies cont.

Two possible optimal strategies

(1) $k_{A}=0$ (no switching to unfit state)
(2) $k_{A} \simeq k_{A}^{*}$ where k_{A}^{*} yields $f_{+}=f^{*}$ (saturation fitness $=$ response threshold)

Conclusions for population dynamics in changing environments

- New kind of environments
- Catastrophic
- Responsive
- Switching can be a good strategy
- Threshold mechanism (different from bet hedging)
- Two main strategies:
no switching: grow faster oblivious to catastrophes switching: grow slower but try not to get caught
- Outlook: Generalise to saturating populations

Summary

I Thoughts on biophysical modelling
II Switching between states
III Microscopic dynamics: model linear feedback switch
IV Macroscopic dynamics: population growth in a catastrophic environment

References:

P. Visco, R. J. Allen, M.R. Evans, Phys. Rev. Lett 2008, Phys. Rev. E 2009
P. Visco, R. J. Allen, S. N. Majumdar, M.R. Evans, Biophysical Journal 2010

