Periods of Calabi-Yau Manifolds

 inPhysics and Number Theory

TIFR 15 March 2011

Periods of Calabi-Yau Manifolds

 in
Physics and Number Theory

With X. de la Ossa and F. Rodriguez Villegas

TIFR 15 March 2011

Aims

- To explain why the periods of CY manifolds are important to string theorists.
- These periods are also important to number theorists because they encode important arithmetic information about the manifold.
- I want to speculate about the role of `quantum corrections' and mirror symmetry for the zeta-function.

CY manifolds arise in the "compactification" of string theory from $\mathrm{D}=10$ down to $\mathrm{D}=4$. A desirable consequence of string theory is spacetime supersymmetry and the question arises as to whether this process preserves supersymmetry.

$$
\begin{aligned}
\delta b & =f \epsilon \\
\delta f & =b \epsilon+\nabla \epsilon
\end{aligned}
$$

Very quickly we come to the condition

$$
\nabla \epsilon=0 .
$$

Which we take as a condition on the manifold

$$
[\nabla, \nabla] \epsilon=0
$$

Given ϵ we construct

$$
J_{m}^{n}=-\mathrm{i} \epsilon^{\dagger} \gamma_{m}^{n} \epsilon \quad \Omega_{m n r}=\epsilon^{T} \gamma_{m n r} \epsilon
$$

$$
h^{p q}=\begin{array}{lcccccc}
& & & 0 & 1 & 0 & \\
& 0 & h^{21} & h^{11} & & 0 \\
& 0 & & h^{11} & h^{21} & 0
\end{array}
$$

An example is the quintic threefold:

$$
\mathcal{M}: \quad P(x, \psi)=\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}
$$

This has $h^{11}=1$ and $h^{21}=101$.

An example is the quintic threefold:

$$
\mathcal{M}: \quad P(x, \psi)=\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}
$$

This has $h^{11}=1$ and $h^{21}=101$.

The existence of the holomorphic form is a very useful fact since the form can be constructed explicitly

$$
\begin{aligned}
\Omega & =\frac{1}{2 \pi \mathrm{i}} \oint \frac{\epsilon_{a b c d e} x^{a} d x^{b} d x^{c} d x^{d} d x^{e}}{P} \\
& =\epsilon_{a b c d e} \frac{x^{a} d x^{b} d x^{c} d x^{d}}{\frac{\partial P}{\partial x^{e}}}
\end{aligned}
$$

The coordinates of this line are

$$
\varpi_{\Gamma}=\int_{\Gamma} \Omega
$$

taken over a basis of cycles $\Gamma \in H_{3}(\mathcal{M}, \mathbb{Z})$ and these are the periods.

We may think of the following polynomial as defining a one-parameter subfamily of the ior parameter space of quintics

$$
\mathcal{M}: \quad P(x, \psi)=\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}
$$

In this case there is a simple relation between this family and the one-parameter mirror family

$$
\mathcal{W}=\widehat{\mathcal{M} / \Gamma}
$$

$\Gamma:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mapsto\left(\zeta^{n_{1}} x_{1}, \zeta^{n_{2}} x_{2}, \zeta^{n_{3}} x_{3}, \zeta^{n_{4}} x_{4}, \zeta^{n_{5}} x_{5}\right)$
where $\zeta^{5}=1$ and $\sum_{i} n_{i} \equiv 0 \bmod 5$

Periods for the mirror quintic

Consider Ω for the mirror quintic family, which has just one complex structure parameter so

$$
b^{3}=1+h^{21}+h^{21}+1=4
$$

The quantities

$$
\Omega, \Omega^{\prime}, \Omega^{\prime \prime}, \Omega^{\prime \prime \prime}, \Omega^{\prime \prime \prime \prime}
$$

are all 3 -forms, and there are five of them, so there is a linear relation

$$
\mathcal{L} \Omega=0
$$

$$
\begin{aligned}
\varpi & =-\frac{5 \psi}{(2 \pi \mathrm{i})^{3}} \int_{\gamma_{2} \times \gamma_{3} \times \gamma_{4}} \frac{x^{1} d x^{2} d x^{3} d x^{4}}{\frac{\partial P}{\partial x^{5}}} \\
& =-\frac{5 \psi}{(2 \pi \mathrm{i})^{4}} \int_{\gamma_{2} \times \gamma_{3} \times \gamma_{4} \times \gamma_{5}} \frac{x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{P} \\
& =-\frac{5 \psi}{(2 \pi \mathrm{i})^{5}} \int_{\gamma_{1} \times \gamma_{2} \times \gamma_{3} \times \gamma_{4} \times \gamma_{5}} \frac{d x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{P} \\
& =\frac{1}{(2 \pi \mathrm{i})^{5}} \int_{\Gamma} \frac{d x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{x^{1} x^{2} x^{3} x^{4} x^{5}\left(1-\frac{\sum_{i}\left(x^{i}\right)^{5}}{5 \psi x^{1} x^{2} x^{3} x^{4} x^{5}}\right)} \\
& =\frac{1}{(2 \pi \mathrm{i})^{5}} \int_{\Gamma} \frac{d x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{x^{1} x^{2} x^{3} x^{4} x^{5}} \sum_{m=0}^{\infty}\left(\frac{\left(x^{1}\right)^{5}+\ldots+\left(x^{5}\right)^{5}}{5 \psi x^{1} x^{2} x^{3} x^{4} x^{5}}\right)^{m} \\
& =\sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}} \frac{1}{(5 \psi)^{5 n}}
\end{aligned}
$$

$$
\begin{aligned}
\varpi & =-\frac{5 \psi}{(2 \pi \mathrm{i})^{3}} \int_{\gamma_{2} \times \gamma_{3} \times \gamma_{4}} \frac{x^{1} d x^{2} d x^{3} d x^{4}}{\frac{\partial P}{\partial x^{5}}} \\
& =-\frac{5 \psi}{(2 \pi \mathrm{i})^{4}} \int_{\gamma_{2} \times \gamma_{3} \times \gamma_{4} \times \gamma_{5}} \frac{x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{P} \\
& =-\frac{5 \psi}{(2 \pi \mathrm{i})^{5}} \int_{\gamma_{1} \times \gamma_{2} \times \gamma_{3} \times \gamma_{4} \times \gamma_{5}} \frac{d x^{1}}{x^{1}} \\
& =\frac{1}{(2 \pi \mathrm{i})^{5}} \int_{\Gamma} \frac{d x^{1} d x^{3} d x^{4} d x^{5}}{P} \\
& =\frac{1}{(2 \pi \mathrm{i})^{5} x^{2} d x^{3} d x^{4} d x^{5}} \int_{\Gamma} \frac{d x^{4} d x^{2} d x^{3} d x^{4} d x^{5}}{x^{1} x^{2} x^{3} x^{4} x^{5}} \sum_{m=0}^{\infty}\left(\frac{\sum_{i}\left(x^{1}\right)^{5}}{5 \psi)^{5}+\ldots+\left(x^{5}\right)^{5}}\right)^{m} \\
& =\sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}} \frac{1}{(5 \psi)^{5 n}}
\end{aligned}
$$

$$
\begin{aligned}
\varpi & =-\frac{5 \psi}{(2 \pi \mathrm{i})^{3}} \int_{\gamma_{2} \times \gamma_{3} \times \gamma_{4}} \frac{x^{1} d x^{2} d x^{3} d x^{4}}{\frac{\partial P}{\partial x^{5}}} \\
& =-\frac{5 \psi}{(2 \pi \mathrm{i})^{4}} \int_{\gamma_{2} \times \gamma_{3} \times \gamma_{4} \times \gamma_{5}} \frac{x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{P} \\
& =-\frac{5 \psi}{(2 \pi \mathrm{i})^{5}} \int_{\gamma_{1} \times \gamma_{2} \times \gamma_{3} \times \gamma_{4} \times \gamma_{5}} \frac{d x^{1}}{x^{1}} \\
& =\frac{1}{(2 \pi \mathrm{i})^{5}} \int_{\Gamma} \frac{d x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{P} \frac{\sum_{i}\left(x^{i}\right)^{5} x^{4} x^{3} d x^{5}}{x^{4} x^{4} x^{5}\left(1-\frac{x^{1}}{5 \psi x^{1} x^{2} x^{3} x^{4} x^{5}}\right)} \\
& =\frac{1}{(2 \pi \mathrm{i})^{5}} \int_{\Gamma} \frac{d x^{1} d x^{2} d x^{3} d x^{4} d x^{5}}{x^{1} x^{2} x^{3} x^{4} x^{5}} \sum_{m=0}^{\infty}\left(\frac{\left(x^{1}\right)^{5}+\ldots+\left(x^{5}\right)^{5}}{5 \psi x^{1} x^{2} x^{3} x^{4} x^{5}}\right)^{m} \\
& =\sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}} \frac{1}{(5 \psi)^{5 n}}
\end{aligned}
$$

We expect the period to satisfy a fourth order differential equation, and indeed it does

$$
\mathcal{L} \varpi=0 ; \quad \varpi(\lambda)=\sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}} \lambda^{n}, \quad \lambda=\frac{1}{(5 \psi)^{5}}
$$

where

$$
\mathcal{L}=\vartheta^{4}-5 \lambda \prod_{i=1}^{4}(5 \vartheta+i) ; \quad \vartheta=\lambda \frac{d}{d \lambda}
$$

The point $\lambda=0$ is a regular singular point with all four indices equal to zero. Thus the solutions near the origin are asymptotic to

$1, \log \lambda, \log ^{2} \lambda, \log ^{3} \lambda$

More precisely the solutions are of the form
$\varpi_{0}(\lambda)=f_{0}(\lambda)$
$\varpi_{1}(\lambda)=f_{0}(\lambda) \log \lambda+f_{1}(\lambda)$
$\varpi_{2}(\lambda)=f_{0}(\lambda) \log ^{2} \lambda+2 f_{1}(\lambda) \log \lambda+f_{2}(\lambda)$
$\varpi_{3}(\lambda)=f_{0}(\lambda) \log ^{3} \lambda+3 f_{1}(\lambda) \log ^{2} \lambda+3 f_{2}(\lambda) \log \lambda+f_{3}(\lambda)$
where the $f_{j}(\lambda)$ are power series. These series will enter into the Yukawa couplings and into the calculation of the numbers of \mathbb{F}_{p}-rational points of \mathcal{M}. Recall that these solutions may be found by the method of Fröbenius. That is by seeking solutions
$\varpi(\lambda, \varepsilon)=\sum_{m=0}^{\infty} a_{m}(\varepsilon) \lambda^{m+\varepsilon}$ to the eqn. $\mathcal{L} \varpi(\lambda, \varepsilon)=\varepsilon^{4} \lambda^{\varepsilon}$.

Yukawa couplings and integral series

This is the expression for the Yukawa coupling
$y_{t t t}=5\left(\frac{2 \pi \mathrm{i}}{5}\right)^{3} \frac{\psi^{2}}{\varpi_{0}(\psi)^{2}\left(1-\psi^{5}\right)}\left(\frac{d \psi}{d t}\right)^{3}=5+\sum_{k=0}^{\infty} \frac{n_{k} k^{3} q^{k}}{1-q^{k}}$,
where, in these expressions

$$
t=\frac{1}{2 \pi \mathrm{i}} \frac{\varpi_{1}(\lambda)}{\varpi_{0}(\lambda)} \quad \text { and } \quad q=\exp (2 \pi \mathrm{i} t)
$$

$$
t=\frac{1}{2 \pi \mathrm{i}} \frac{\varpi_{1}(\lambda)}{\varpi_{0}(\lambda)} \quad q=\exp (2 \pi \mathrm{i} t)
$$

These relations give the mirror map. Note that integers arise here also

$$
\begin{aligned}
\lambda=q+154 & q^{2}+179139 q^{3}+313195944 q^{4} \\
+ & 657313805125 q^{5}+1531113959577750 q^{6} \\
& +3815672803541261385 q^{7} \\
& +9970002717955633142112 q^{8}+\ldots
\end{aligned}
$$

Arithmetic of the Quintic

Now ask what is, for a physicist, a very strange question: For the quintic

$$
\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}=0
$$

How many solutions to this equation are there with integer x^{k} and how does this number vary with ψ ?
Since the x^{k} are coordinates in a projective space we are free to multiply by a common scale, so there is no difference between a solution in integers and a solution in rational numbers. This formulation is better because \mathbb{Q} is a field but is still hard.
Easier: How many solutions are there over a finite field?

Field Theory for Physicists

A field \mathbb{F} is a set on which + and \times are defined and have the usual associative and distributive properties.
\mathbb{F} is an abelian group with respect to and + $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$ is an abelian group with respect to \times.

Finite fields are uniquely classified by the number of elements, which is p^{N} for some prime p and integer N.

\mathbb{F}_{7}							
x	0	1	2	3	4	5	6
x^{-1}	$*$	1	4	5	2	3	6

An old result, going back to Fermat, is $a^{p}=a$, write this as

$$
a\left(a^{p-1}-1\right)=0 \quad \text { it follows that } \quad a^{p-1}=\left\{\begin{array}{l}
1, \text { if } a \neq 0 \\
0, \text { if } a=0
\end{array}\right.
$$

There is another elementary fact that is very useful

$$
\sum_{a \in \mathbb{F}_{p}} a^{n}=\sum_{a \in \mathbb{F}_{p}}(b a)^{n}=b^{n} \sum_{a \in \mathbb{F}_{p}} a^{n}
$$

It follows that, for $a \neq 0$,

$$
\sum_{a \in \mathbb{F}_{p}} a^{n}=\left\{\begin{array}{l}
0, \text { if } p-1 \text { does not divide } n \\
-1, \text { if } p-1 \text { divides } n
\end{array}\right.
$$

A Zero'th Order Result

Take now $x \in \mathbb{F}_{p}^{5}$ and $5 \psi \in \mathbb{F}_{p}, p \neq 5$ and let

$$
\nu_{\lambda}=\#\{x \mid P(x, \psi)=0\}, \quad \lambda=\frac{1}{(5 \psi)^{5}}
$$

This number can be computed $\bmod p$ with relative ease.

$$
\begin{aligned}
& \nu_{\lambda} \equiv \sum_{x \in \mathbb{F}_{p}^{5}}\left(1-P(x, \psi)^{p-1}\right) \\
& \nu_{\lambda} \equiv{ }^{[p / 5]} \varpi_{0}(\lambda)=\sum_{m=0}^{[p / 5]} \frac{(5 m)!}{(m!)^{5}} \lambda^{m}
\end{aligned}
$$

p-Adic Numbers

ν_{λ} is a definite number so we may seek to compute it exactly.

$$
\nu_{\lambda}=\nu_{\lambda}^{(0)}+\nu_{\lambda}^{(1)} p+\nu_{\lambda}^{(2)} p^{2}+\nu_{\lambda}^{(3)} p^{3}+\nu_{\lambda}^{(4)} p^{4}
$$

with $0 \leq \nu_{\lambda}^{(j)} \leq p-1$ and evaluate $\bmod p^{2}, \bmod p^{3}$ and so on. This leads naturally to p -adic analysis. Given $r \in \mathbb{Q}$ we write

$$
r=\frac{m}{n}=\frac{m_{0}}{n_{0}} p^{\alpha}
$$

The p -adic norm of r is defined by

$$
\|r\|_{p}=p^{-\alpha}, \quad\|0\|_{p}=0
$$

Counting the Points Exactly

The result is most simply stated for the case $5 \nmid p-1$
$\nu_{\lambda}={ }^{p} f_{0}(\Lambda)+\left(\frac{p}{1-p}\right)^{p} f_{1}^{\prime}(\Lambda)+\frac{1}{2!}\left(\frac{p}{1-p}\right)^{2} f_{2}^{\prime \prime}(\Lambda)$

$$
+\frac{1}{3!}\left(\frac{p}{1-p}\right)^{3}{ }^{p} f_{3}^{\prime \prime \prime}(\Lambda)+\frac{1}{4!}\left(\frac{p}{1-p}\right)^{4}{ }_{f}^{4 \prime \prime \prime \prime}(\Lambda)+\mathcal{O}\left(p^{5}\right)
$$

In this expression

$$
\Lambda=\operatorname{Teich}(\lambda)=\lim _{n \rightarrow \infty} \lambda^{p^{n}} \text { and }{ }^{p} f_{0}(\Lambda)=\sum_{m=0}^{p-1} \frac{(5 m)!}{(m!)^{5}} \Lambda^{m}
$$

We can also perform the sum in this expression for the number of points

$$
\nu_{\lambda}=\sum_{m=0}^{p-1} \beta_{m} \Lambda^{m}
$$

with coefficients

$$
\beta_{m}=\lim _{n \rightarrow \infty} \frac{a_{m\left(1+p+p^{2}+\ldots+p^{n+1}\right)}^{a_{m}\left(1+p+p^{2}+\ldots+p^{n}\right)}=(-1)^{m} G_{5 m} G_{-m}^{5} \text { }}{G_{m}}
$$

Mirror Symmetry and the Zeta Function

We work now over $\mathbb{F}_{p^{r}}$ and denote by $N_{r}(\psi)$ the number of projective solutions to the equation $P(x, \psi)=0$.

$$
\zeta(T, \psi)=\exp \left(\sum_{r=1}^{\infty} \frac{N_{r}(\psi) T^{r}}{r}\right)
$$

Numerator of deg. $2 h^{21}+2$ dep. on the cpx. structure of \mathcal{M}
Denominator of deg. $2 h^{11}+2$

Explicitly for the quintic we have
$\zeta_{\mathcal{M}}(T, \psi)=\frac{R_{0}(T, \psi) R_{\mathcal{A}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{20}{\rho}} R_{\mathcal{B}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{30}{\rho}}}{(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)}$
$\zeta_{\mathcal{W}}(T, \psi)=\frac{R_{0}(T, \psi)}{(1-T)(1-p T)^{101}\left(1-p^{2} T\right)^{101}\left(1-p^{3} T\right)}$
where $\rho=1,2,4$ is the smallest integer such that $5 \mid\left(p^{\rho}-1\right)$

Explicitly for the quintic we have
$\zeta_{\mathcal{M}}(T, \psi)=\frac{R_{0}(T, \psi) R_{\mathcal{A}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{20}{\rho}} R_{\mathcal{B}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{30}{\rho}}}{(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)}$
$\zeta_{\mathcal{W}}(T, \psi)=\frac{R_{0}(T, \psi)}{(1-T)(1-p T)^{101}\left(1-p^{2} T\right)^{101}\left(1-p^{3} T\right)}$
where $\rho=1,2,4$ is the smallest integer such that $5 \mid\left(p^{\rho}-1\right)$

Explicitly for the quintic we have

$$
\begin{aligned}
& \zeta_{\mathcal{M}}(T, \psi)=\frac{R_{0}(T, \psi) R_{\mathcal{A}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{20}{\rho}} R_{\mathcal{B}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{30}{\rho}}}{(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)} \\
& \zeta_{\mathcal{W}}(T, \psi)=\frac{R_{0}(T, \psi)}{(1-T)(1-p T)^{101}\left(1-p^{2} T\right)^{101}\left(1-p^{3} T\right)}
\end{aligned}
$$

where $\rho=1,2,4$ is the smallest integer such that $5 \mid\left(p^{\rho}-1\right)$

The 5-adic Limit

The desired relations are true in the 5 - adic limit. For all p and ψ
$R_{0}(T, \psi)=(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)+\mathcal{O}\left(5^{2}\right)$
$R_{\mathcal{A}}(T, \psi)^{20} R_{\mathcal{B}}(T, \psi)^{30}=(1-p T)^{100}\left(1-p^{2} T\right)^{100}+\mathcal{O}\left(5^{2}\right)$
Compare this with the quantum corrections to the classical Yukawa coupling

$$
\frac{y_{t t t}}{y_{t t t}^{(0)}}=1+\frac{1}{5} \sum_{k=0}^{\infty} \frac{n_{k} k^{3} q^{k}}{1-q^{k}}=1+\mathcal{O}\left(5^{2}\right)
$$

since Lian and Yau have shown that $5^{3} \mid n_{k} k^{3}$ for each k.

