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Aims
• To explain why the periods of CY manifolds are 

important to string theorists.

• These periods are also important to number theorists 
because they encode important arithmetic information 
about the manifold.

• I want to speculate about the role of `quantum 
corrections’ and mirror symmetry for the zeta-function.
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CY manifolds arise in the “compactification” of string 
theory from D=10 down to D=4. A desirable consequence of 
string theory is spacetime supersymmetry and the question 
arises as to whether this process preserves supersymmetry.

δb = f �

δf = b � +∇�

Very quickly we come to the condition

Which we take as a condition on the manifold
[∇,∇]� = 0 .

∇� = 0 .

Given    we construct�

Ωmnr = �Tγmnr �Jm
n = −i�†γm

n�
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hpq =

1
0 0

0 h11 0
1 h21 h21 1

0 h11 0
0 0

1

M : P (x, ψ) =
5�

i=1

x5
i − 5ψ x1x2x3x4x5 .

An example is the quintic threefold:

This has              and                  .h11 = 1 h21 = 101
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The existence of the holomorphic form is a very useful 
fact since the form can be constructed explicitly

Ω =
1

2πi

�
�abcde xadxbdxcdxddxe

P

= �abcde
xadxbdxcdxd

∂P
∂xe
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The manifold depends on parameters 
and these may be thought of as the 
coefficients in the defining polynomials.
There is more canonical way to give 
coordinates on the space of complex 
structures. The holomorphic form is 
defined up to scale but is otherwise 
unique so defines a line in                  .H

3(M, Z)

�Γ =
�

Γ
Ω

The coordinates of this line are

taken over a basis of cycles                         and these 
are the periods.

Γ ∈ H3(M, Z)
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M : P (x, ψ) =
5�

i=1

x5
i − 5ψ x1x2x3x4x5 .

We may think of the following polynomial as defining a 
one-parameter subfamily of the 101 parameter space of 
quintics

In this case there is a simple relation between this family 
and the one-parameter mirror family

ζ5 = 1
�

i

ni ≡ 0 mod 5where             and

W = �M/Γ

Γ : (x1, x2, x3, x4, x5) �→ (ζn1x1, ζ
n2x2, ζ

n3x3, ζ
n4x4, ζ

n5x5)
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Periods for the mirror quintic

Consider     for the mirror quintic family, which has just 
one complex structure parameter so 

Ω

b3 = 1 + h21 + h21 + 1 = 4

Ω, Ω�, Ω��, Ω���, Ω����

The quantities

are all 3-forms, and there are five of them, so there is 
a linear relation

LΩ = 0
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� = − 5ψ

(2πi)3

�

γ2×γ3×γ4

x1dx2dx3dx4

∂P
∂x5

= − 5ψ

(2πi)4

�

γ2×γ3×γ4×γ5

x1dx2dx3dx4dx5

P

= − 5ψ

(2πi)5

�

γ1×γ2×γ3×γ4×γ5

dx1dx2dx3dx4dx5

P

=
1

(2πi)5

�

Γ

dx1dx2dx3dx4dx5

x1x2x3x4x5
�
1−

P
i(x

i)5

5ψ x1x2x3x4x5

�

=
1

(2πi)5

�

Γ

dx1dx2dx3dx4dx5

x1x2x3x4x5

∞�

m=0

�
(x1)5 + . . . + (x5)5

5ψ x1x2x3x4x5

�m

=
∞�

n=0

(5n)!
(n!)5

1
(5ψ)5n
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We expect the period to satisfy a fourth order differential 
equation, and indeed it does

L� = 0 ; �(λ) =
∞�

n=0

(5n)!
(n!)5

λn , λ =
1

(5ψ)5

where

L = ϑ4 − 5λ
4�

i=1

(5ϑ + i) ; ϑ = λ
d

dλ
.

The point           is a regular singular point with all four 
indices equal to zero. Thus the solutions near the origin 
are asymptotic to

λ = 0

1, log λ, log2 λ, log3 λ
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More precisely the solutions are of the form
�0(λ) = f0(λ)

�1(λ) = f0(λ) log λ + f1(λ)

�2(λ) = f0(λ) log2 λ + 2f1(λ) log λ + f2(λ)

�3(λ) = f0(λ) log3 λ + 3f1(λ) log2 λ + 3f2(λ) log λ + f3(λ)

where the          are power series. These series will enter 
into the Yukawa couplings and into the calculation of the 
numbers of      -rational points of      . Recall that these 
solutions may be found by the method of Fröbenius. That 
is by seeking solutions

fj(λ)

Fp M

�(λ, ε) =
∞�

m=0

am(ε) λm+ε to the eqn. L�(λ, ε) = ε4λε .
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Yukawa couplings and 
integral series

This is the expression for the Yukawa coupling

yttt = 5
�

2πi
5

�3 ψ2

�0(ψ)2(1− ψ5)

�
dψ

dt

�3

= 5 +
∞�

k=0

nkk3qk

1− qk
,

where, in these expressions 

t =
1

2πi
�1(λ)
�0(λ)

and q = exp(2πit)
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t =
1

2πi
�1(λ)
�0(λ)

q = exp(2πit)

These relations give the mirror map. Note that integers 
arise here also                            

λ = q + 154 q2 + 179139 q3 + 313195944 q4

+657313805125 q5 + 1531113959577750 q6

+3815672803541261385 q7

+9970002717955633142112 q8 + . . . .
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Arithmetic of the Quintic
Now ask what is, for a physicist, a very strange question:
For the quintic

5�

i=1

x5
i − 5ψ x1x2x3x4x5 = 0

How many solutions to this equation are there with integer
     and how does this number vary with    ?xk ψ

Since the      are coordinates in a projective space we are 
free to multiply by a common scale, so there is no 
difference between a solution in integers and a solution in 
rational numbers. This formulation is better because     is a 
field but is still hard. 
Easier: How many solutions are there over a finite field?

xk

Q
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Field Theory for Physicists
A field    is a set on which     and     are defined and have 
the usual associative and distributive properties. 

F ×+

F   is an abelian group with respect to and
                     is an abelian group with respect to    .F∗ = F \ {0} ×

+

Finite fields are uniquely classified by the number of 
elements, which is      for some prime    and integer    .   pN p N

F7

x 0 1 2 3 4 5 6

x−1 * 1 4 5 2 3 6
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An old result, going back to Fermat, is            , write this asap = a

a(ap−1 − 1) = 0 it follows that ap−1 =






1, if a �= 0

0, if a = 0 .

There is another elementary fact that is very useful
�

a∈Fp

an =
�

a∈Fp

(ba)n = bn
�

a∈Fp

an .

�

a∈Fp

an =






0, if p− 1 does not divide n

−1, if p− 1 divides n .

It follows that, for          , a �= 0
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A Zero’th Order Result
Take now             and                            and letx ∈ F5

p 5ψ ∈ Fp , p �= 5

νλ = #
�
x

�� P (x, ψ) = 0
�
, λ =

1
(5ψ)5

This number can be computed            with relative ease.mod p

νλ ≡
�

x∈F5
p

�
1− P (x, ψ)p−1

�

νλ ≡ [p/5]�0(λ) =
[p/5]�

m=0

(5m)!
(m!)5

λm .
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p-Adic Numbers
νλ     is a definite number so we may seek to compute it 
exactly.     

νλ = ν(0)
λ + ν(1)

λ p + ν(2)
λ p2 + ν(3)

λ p3 + ν(4)
λ p4

with                            and evaluate                            and so 
on. This leads naturally to p-adic analysis. Given            we 
write                                                            

0 ≤ ν(j)
λ ≤ p− 1 mod p2, mod p3

r ∈ Q

r =
m

n
=

m0

n0
pα

The p-adic norm of    is defined by       r

�r�p = p−α , �0�p = 0
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Counting the Points Exactly
The result is most simply stated for the case 5� | p− 1

νλ = pf0(Λ) +
�

p

1− p

�
pf �

1(Λ) +
1
2!

�
p

1− p

�2
pf ��

2 (Λ)

+
1
3!

�
p

1− p

�3
pf ���

3 (Λ) +
1
4!

�
p

1− p

�4
pf ����

4 (Λ) +O(p5)

In this expression

Λ = Teich(λ) = lim
n→∞

λpn

and pf0(Λ) =
p−1�

m=0

(5m)!
(m!)5

Λm
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We can also perform the sum in this expression for the 
number of points

νλ =
p−1�

m=0

βm Λm

with coefficients

βm = lim
n→∞

am(1+p+p2+...+pn+1)

am(1+p+p2+...+pn)
= (−1)m G5m G5

−m
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Mirror Symmetry and the 
Zeta Function

We work now over       and denote by            the number 
of projective solutions to the equation                     .

Fpr Nr(ψ)
P (x, ψ) = 0

ζ(T, ψ) = exp

� ∞�

r=1

Nr(ψ)T r

r

�

=
Numerator of deg. 2h21 + 2 dep. on the cpx. structure ofM

Denominator of deg. 2h11 + 2
.
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Explicitly for the quintic we have

ζM(T, ψ) =
R0(T, ψ) RA(pρT ρ, ψ)

20
ρ RB(pρT ρ, ψ)

30
ρ

(1− T )(1− pT )(1− p2T )(1− p3T )

ζW(T, ψ) =
R0(T, ψ)

(1− T )(1− pT )101(1− p2T )101(1− p3T )

where                   is the smallest integer such that ρ = 1, 2, 4 5|(pρ − 1)
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The 5-adic Limit
The desired relations are true in the 5-adic limit. For all
    and p ψ

Compare this with the quantum corrections to the 
classical Yukawa coupling

since Lian and Yau have shown that               for each   .53|nkk3 k

yttt

y(0)
ttt

= 1 +
1
5

∞�

k=0

nkk3qk

1− qk
= 1 +O

�
52

�

R0(T, ψ) = (1− T )(1− p T )(1− p2T )(1− p3T ) +O(52)

RA(T, ψ)20RB(T, ψ)30 = (1− p T )100(1− p2T )100 +O(52)
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