EPOS 2 and LHC

Tanguy Pierog, K. Werner, Y. Karpenko, S. Porteboeuf

Institut für Kernphysik, Karlsruhe, Germany

5th Workshop on Astroparticle Physics, Ooty December the 14th 2010

Two developments:

Full EPOS: try to understand all pp and AA data above few 100 GeV, do things the best way possible :

CPU time is no issue!!

 EPOS for CRs: simplified version, which is fast, but grasps the essential features of Full EPOS

This talk:

 Full EPOS, in particular "collective effects in pp@LHC"

- Introduction
- The EPOS model
- Collective effects
 - In AA : ridge@RHIC
 - In pp : ridge@LHC
- Comparison to LHC

5th WAPP – December 2010

T. Pierog, KIT - 3/31

 One decade of RHIC experiments (heavy ion, pp, and dAu scattering,up to 200 GeV)

heavy ion collisions produce matter which expands as an almost ideal fluid

 mainly because azimuthal anisotropies can be explained on the basis of ideal hydrodynamics (mass splitting etc)

LHC pp results: first signs for collective behavior as well ...

Approach (1)

- pp@LHC treated as AuAu@RHIC:
 - Multiple scattering approach EPOS (marriage of pQCD and Gribov-Regge) :
 - initial condition for a hydrodynamic evolution if the energy density is high enough
 - event-by-event procedure
 - taking into the account the irregular space structure of single events :
 - ridge structures in two-particle correlations
 - core-corona separation :
 - only a part of the matter thermalizes;
 - → 3+1 D hydro evolution
 - conservation of baryon number, strangeness, and electric charge

Approach (2)

- pp@LHC treated as AuAu@RHIC:
 - parton-hadron transition
 - realistic equation-of-state, compatible with lattice gauge results
 - cross-over transition from the hadronic to the plasma phase
 - hadronization,
 - Cooper-Frye, using complete hadron table
 - at an early stage (166 MeV, in the transition region)
 - with subsequent hadronic cascade procedure (UrQMD)

details see:

 arXiv:1004.0805, arXiv:1010.0400, arXiv:1011.0375 (ridge in pp)

The EPOS Model

EPOS* is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms) : used for air shower !

EPOS designed to be used for particle physics experiment analysis (SPS, RHIC, LHC)

Introduction

Comparison to LHC

Multiple Scattering

- Quantum mechanical treatment of multiple scattering quite involved!
 - same energy sharing between the parallel scatterings is taken into account for cross section and particle production.

Details:

- Talk at the CORSIKA school
- Parton-based Gribov-Regge Theory, H. J. Drescher, M. Hladik, S. Ostapchenko, T.Pierog, and K. Werner, Phys. Rept. 350 (2001) 93-289;
 - Cutting rule techniques
 - partial cross sections for exclusive event classes
 - simulation with the help of Markov chain techniques.

Elementary scatterings - flux tubes

AA - even pp:

many elementary collisions happening in parallel

elementary scattering = "parton ladder"

- Parton evolutions from the projectile and the target side towards the center (small x)
- Evolution equation

🔶 DGLAP

Parton ladder = quasilongitudinal color field ("flux tube")

relativistic string

- Intermediate gluons
 - kink singularities in relativistic strings
 - Fragmentation : production of quark-antiquark pairs

fragments – identified with hadrons

Kinky Strings

mainly longitudinal object (here parallel to the z-axis)

 due to the kinks there are string pieces moving transversely (in y-direction in the picture).

But despite these kinks, most of the string carries only little transverse momentum!

High Density Core Formation

Heavy ion collisions or very high energy proton-proton scattering:

the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently : core

Each string splitted into a sequence of string segments, corresponding to widths $\delta \alpha$ and $\delta \beta$ in the string parameter space

- If energy density from segments high enough
 - segments fused into core
- If low density (corona)
 - segments remain hadrons

Energy Density

• Initial conditions at proper time $\tau = \tau_0$

→ Energy tensor :

$$T^{\mu\nu}(x) = \sum_{i} \frac{\delta p_{i}^{\mu} \delta p_{i}^{\nu}}{\delta p_{i}^{0}} g(x - x_{i}), \quad \delta p = \left\{ \frac{\partial X(\alpha, \beta)}{\partial \beta} \delta \alpha + \frac{\partial X(\alpha, \beta)}{\partial \alpha} \delta \beta \right\}$$
→ Flavor flow :

$$N_q^{\mu}(x) = \sum_i \frac{\delta p_i^{\mu}}{\delta p_i^0} q_i g(x - x_i), \quad q \in \{u, d, s\}$$

Evolution according to the equations of ideal hydrodynamics:

$$\partial_{\mu}T^{\mu\nu} = 0$$
, using $T^{\mu\nu} = (\epsilon + p) u^{\mu}u^{\nu} - p g^{\mu\nu}$

$$\partial N_k^{\mu} = 0, \quad N_k^{\mu} = n_k u^{\mu},$$

with k = B, S, Q referring to respectively baryon number, strangeness, and electric charge.

Check with Heavy Ions : AuAu@RHIC

 After checking successfully hundreds of particle spectra in AuAu

Event-by-Event Energy Density : AuAu

 Bumpy structure of energy density in transverse plane, but translational invariance

pseudorapidity extension of flux tubes

Event-by-Event Energy Density : AuAu

 Bumpy structure of energy density in transverse plane, but translational invariance

Event-by-Event Radial Flow : AuAu

Leads to translational invariance of transverse flows

 give the same collective push to particles produced at different values of η_s at the same azimuthal angle

AuAu : Di-hadron correlation

- ridge-structure in the dihadron correlation $dN/d\Delta\eta d\Delta\phi$ for free

AuAu 0-10%, $3 < p_t^{\text{trig}} < 4 \,\text{GeV/c}$ $2 < p_t^{\text{assoc}} < p_t^{\text{trig}}$

Introduction

pp@7 TeV : Di-hadron correlation

Our calculation provides a similar ridge structure in pp@LHC using particles with 1 < pt < 3GeV/c, for high multiplicity events</p>

close in form and magnitude compared to the CMS result (5.3 times mean multipl., compared to 7 in CMS)

pp@7 TeV : no Hydro

Calculation without hydro => NO RIDGE

hydrodynamical evolution "makes" the effect! HOW?

Event-by-Event Energy Density : pp

 Random azimuthal asymmetries of initial energy density but translationally invariant

pseudorapidity extension of flux tubes

Initial energy density in the transverse plane for two different η_{s}

Event-by-Event Energy Density : pp

 Random azimuthal asymmetries of initial energy density but translationally invariant

pseudorapidity extension of flux tubes

Initial energy density in the transverse plane for two different η_{s}

Event-by-Event Radial Flow : pp

 Elliptical initial shapes leads to asymmetric flows as well translationally invariant (in η)

Radial flow velocity at a later time in the transverse plane

Summary Ridge in pp

Translational invariance of the flow asymmetry means:

- The system gives an increased collective push
- to particles produced at different values of ηs
- at the same azimuthal angle corresponding to a flow maximum

- $\Delta \eta \Delta \phi$ correlation

Pseudorapidity Distribution

Little effect of hydro in MinBias dn/deta

Multiplicity Distribution

Little effect of hydro in MinBias dn/deta

Pt Distribution

 Big effect for Pt distributions for high multiplicity events (here 900 GeV)

Pt Distribution

Summarized in <Pt> versus multiplicity (here 900 GeV)

Radius of Particle Emission

Space-time structure strongly affected (here 900 GeV)

Bose-Einstein Correlations

Consequences for Bose-Einstein correlations

ALICE data. Radii R from exponential fit. KT1= [100, 250], KT3= [400, 550], KT5= [700, 1000]

Summary

EPOS 2 :

- Improved screening and diffractive treatment to multiple scattering in better agreement with LHC
- Complete 3D hydrodynamical calculation

Hydro on event-by-event basis :

- for AuAu@RHIC, explains naturally nontrivial features as "ridge" correlations, elliptical flow
- Explains some nontrivial pp results (ridge, BE correlations)

On-going developments :

- Test all Min Bias LHC data
- Improvement of hard events (jets) in MB
- Selection of hard processes (specific born Pt)
- Both at the same time : underlaying events

Introduction

Outlook for Cosmic Rays

- Preliminary results using EPOS 2 in EAS simulations :
 - No dramatic change in Xmax
 - Small reduction compare to EPOS 1.99
 - New : diquark in hard string end
 - More muons than EPOS 1.99
 - Need more data on baryon number at LHC to constrain muon number
 - mid rapidity (ALICE)
 - a bit more forward (LHCf)
 - very forward (LHCf)

Thank you !

Initial Conditions AuAu@RHIC

EoS

Hirano: QG & resonance gas => 1st order PT, PCE, $\mu_B = \mu_S = \mu_Q = 0$

- **Q3F:** QG & "complete" resonance gas => 1st order PT, excl volume correction, μ_B, μ_S, μ_Q considered, parameters as in Spherio
- **X3F:** crossover : $p = p_Q + \lambda (p_H p_Q), \ \lambda = \exp(-\frac{T Tc}{\delta})\theta(T T_c) + \theta(T_c T)$

"data": Y. Aoki, Z. Fodor, S.D. Katz , K.K. Szabo, JHEP 0601:089,2006

AuAu : Kaon

Collective Effects

Comparison to LHC

AuAu : Lambda

T. Pierog, KIT - 35/31

Pt distribution CDF ap-p@1.8 TeV with Hydro

Pt distribution CDF ap-p@1.8 TeV without Hydro

Hydro in pp : Initial Conditions

Initial conditions from multiple interactions :

- Energy density comparable to AuAu@RHIC
- Size comparable to size of fluctuations in AuAu@RHIC

We propose (and we do) for pp :

 Hydrodynamical expansion + statistical decay based on EPOS flux tube initial conditions (event-by-event)

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

mean p_t

hydro+hadronic cascade

<p,> vs multiplicity ap-p@1.8 TeV : EPOS 2

- Using small flux tube size
 - Very good description of CDF data
 - No additional parameter
 - Hadron mass dependence

