# VHE Gamma Ray Astronomy with the



J Knapp, U of Leeds, UK Ooty, Dec 2010



- The non-thermal universe
- Detecting VHE γ rays
- Science Case
- CTA

with many thanks to J Hinton, W Hofmann, R White for informations and slides



radío (10<sup>-6</sup> eV)



Infrared  $(10^{-2} eV)$ 



visible (ev)



X-ray (kev)



gamma rays (Gev)

















## Source Numbers



Year





# y rays and cosmic Ray background



## The Early Days



#### February 21, 1953 NATURE

#### Light Pulses from the Night Sky associated with Cosmic Rays

IN 1948, Blackett<sup>1</sup> suggested that a contribution approximately  $10^{-4}$  of the mean light of the night-sky might be expected from Čerenkov radiation<sup>2</sup> produced in the atmosphere by the cosmic radiation. The purpose of this communication is to report the results of some preliminary experiments we have made using a photomultiplier, which revealed the

#### .....

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.









### 1989: Detection of the Crab Nebula

50 sígnal ín 50 h, wíth 159 píxel camera and Híllas ímage analysís.

# 10 m Whipple Telescope



HESS, Namíbía detects Crab ín 30 seconds 1% Crab ín 25 h

4 x 12m telescopes 5° FOV, 0.16° 960 píxels



VERITAS





MAGIC



### TACTIC

### Current IACTS

### HESS /



### CANGAROO-III/



# Gamma Ray Sources

a supernova remnant shell

# From particles to radiation



VHE gamma rays

# From particles to radiation



# Tev Astronomy Highlights

| Mícroquasars:           | <u>Science</u> 309 (2005) 746      |
|-------------------------|------------------------------------|
|                         | <u>Science</u> 312 (2006) 1771     |
| Pulsars:                | <u>Science</u> 322 (2008) 1221     |
| Supernova remnants:     | Nature 432 (2004) 75               |
| Galactic Centre:        | Nature 439 (2006) 695              |
| Galactíc Survey:        | <u>Science</u> 307 (2005) 1839     |
| Starbursts:             | Nature 462 (2009) 770              |
|                         | <u>Science</u> 326 (2009) 1080     |
| Active Galactic Nuclei: | <u>Science</u> 314 (2006) 1424     |
|                         | <u>Science</u> 325 (2009) 444      |
| EBL:                    | Nature 440 (2006) 1018             |
|                         | <u>Science</u> 320 (2008) 752      |
| Dark Matter:            | Phys Rev Letters 96 (2006) 221102  |
| Lorentz Invariance:     | Phys Rev Letters 101 (2008) 170402 |
| Cosmíc Ray Electrons:   | Phys Rev Letters (2009)            |
|                         |                                    |

Results from HESS, MAGIC and VERITAS

### How to do even better?

A future observatory needs:

for E > TeV:

bigger collection area (i.e. large array of telescopes, wider FOV)

for E < TeV:

better background rejection (i.e. large array of telescopes, wider FOV for multiple shower images)





... an advanced facility for ground-based gamma-ray astronomy

# Scientific Objectives:

Cosmic energetic particles Origin of the galactic cosmic rays Also UHECR signatures Role of ultra-relativistic particles in in clusters of galaxies, AGN, Starbursts... The physics of (relativistic) jets and shocks

### Fundamental Physics

Dark Matter annihilation / decay Lorentz Invariance violation

Cosmology cosmíc FIR-UV radiation, cosmíc magnetism





SNRS



## Wish list for CTA:

- Higher sensitivity at Tev energies (x 10) more sources, details in extended sources

- Lower threshold (some 10 GeV) pulsars, dístant AGN, source mechanísms
- Higher energy reach (Pev and beyond) cutoff region of Galactic accelerators
- Wider field of view extended sources, surveys
- Improved angular resolution structure of extended sources
- Hígher detection rates transient phenomena

# Very Good reviews for CTA: ASPER

### **ASTROPARTICLE PHYSICS**

the European strategy

### ASTRONET:

### ESFRI:

European Strategy Forum on Research Infrastructures ESFRI

> EUROPEAN ROADMAP FOR RESEARCH INFRASTRUCTURES

The ASTRONET Infrastructure Roadmap: A Strategic Plan for European Astron



## The ASTRONET Infrastructure Roadmap:

ASTRONET

A Strategic Plan for European Astronomy





Single telescope



Single telescope



Single telescope

o o sweet spot o o



Single telescope

| o<br>sweet<br>spot | 0 | 0 | 0 |  |
|--------------------|---|---|---|--|
| 0                  | 0 | 0 | 0 |  |
|                    |   |   |   |  |
| 0                  | 0 | 0 | 0 |  |
|                    |   |   |   |  |
| 0                  | 0 | 0 | 0 |  |
|                    |   |   |   |  |



| ←300 m — |
|----------|
|----------|

Síngle telescope

| o<br>sweet<br>spot | 0 |   | 0 |   | 0 |  |
|--------------------|---|---|---|---|---|--|
| 0                  | 0 |   | 0 |   | 0 |  |
|                    |   | 0 |   | 0 |   |  |
| 0                  | 0 |   | 0 |   | 0 |  |
|                    |   | 0 |   | 0 |   |  |
| 0                  | 0 |   | 0 |   | 0 |  |



## Core array: mCrab sensitivity ín 0.1–10 TeV range

Not to scale !



Low-energy section energy threshold of some 10 GeV (a) bigger dishes or

Not to scale !



Low-energy section energy threshold of some 10 GeV (a) bigger dishes or (b) dense packing / high-QE sensors







### High-energy section 10 km² area at multí-TeV energíes









Not to scale !

# The Cherenkov Telescope Array

### • A factor 10 more sensitive than current instruments

- Plus much wider energy coverage, substantially better angular and energy resolution & wider field of view
- A ~ € 150M International Project
  - Design 2008-2011, Prototyping 2011-13, Construction 2013-18
  - Baselíne: 50-100 Cherenkov telescopes



# The Cherenkov Telescope Array

### • A factor 10 more sensitive than current instruments

- Plus much wider energy coverage, substantially better angular and energy resolution & wider field of view
- A ~ € 150M International Project
  - Design 2008-2011, Prototyping 2011-13, Construction 2013-18
  - Baseline: 50-100 Cherenkov telescopes

### € 5.2M EU funding



# What is the best instrument for this money? Science /€

Optimise performance (within budget), (parameters: telescope size, type, pixel size, Fov, array layout) design for mass production, long-term operation and low maintenance i.e. cheap, reliable, modular...

# A real observatory with $\approx 100$ telescopes.

Low-energy section energy threshold of 20-30 Gev ~24m telescopes

Medíum Energíes: mCrab sensítívíty 0.1–10 TeV 12m telescopes (+9m SC optíon) (South Only)

High-energy section 10 km² area at multí-Tev energíes ~5m telescopes

# A real observatory with $\approx 100$ telescopes.

Low-energy section energy threshold of 20-30 GeV ~24m telescopes

£25M

Medíum Energíes: mCrab sensítívíty 0.1–10 TeV 12m telesco

£35M

High-energy section 10 km² area at multí-Tev en

£20M

(South Only)

# CTA observation modes

very deep field deep field

deep field

monitoring

survey mode



### One observatory with two sites - operated by one consortium

Mainly

science

extragalactic

Galactic and

extragalactic

science

Selection of sites by 2012 10 km² (S) flat area 1.5-4.0 km altitude, minimum cloud cover, easiest access, ...

# On Símulations ...

 $\gamma$  ray símulations are straight forward:

- energies are relatively low (i.e. sims are fast)
- $\gamma$  ray showers can be simulated well (QED)
- hadronic background can be measured (i.e. no urgent need for sims of p, He, ...)

handshake between CORSIKA and detector simulations already  $\sim 10^9$  showers simulated

# y rays and cosmic Ray background





# Examples of subarrays

(of same cost)



main trade-off: quantity vs quality of events

# Point Source Sensitivity





#### Threshold:

itegral Sensitivity (erg cm

S-1)

N

límíted by number of Ch. photons collected

- larger telescopes,
- dense packing of tels.
- better photo detectors

Medíum region: límíted by sígnal / BG

- better BG rejection,
- improved ang. resolution,

RESES

в

- better photon statistics

#### High energies: limited by statistics

- large array

IIIIII IIIIIIII

В

## Performance: angular and energy resolution



(fundamental límít: ~ 10")

# Angular Resolution



| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                | Perfor        | mance                   | •       |       |          |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|---------|-------|----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                 | Energy<br>TeV | Area<br>km <sup>2</sup> | Ang.Res | E.Res | FOV<br>° |
| 0.3       0.1       4       13       6-8         3       1       2       8       7-9         30       3       1.5       7       8-10 | 0.03          | 0.003                   | 12      | 30    | 4-5      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                 | 0.3           | 0.1                     | 4       | 13    | 6-8      |
| 30 3 15 7 8-10                                                                                                                       | 3             | I                       | 2       | 8     | 7-9      |
| 50 5 1.5 7 0-10                                                                                                                      | 30            | 3                       | Ι.5     | 7     | 8-10     |

### Improvement (relative to HESS):

| Díffuse continuum:                                   | ≈x5    |
|------------------------------------------------------|--------|
| Angular resolution for point sources:                | ≈x2    |
| Fov for surveys:                                     | ≈x2    |
| Energy resolution for lines:                         | ≈x1.5  |
| all-sky survey for point-like emission line sources: | ≈ x 30 |
| pointed observation of a 0.5° continuum source:      | ≈x5    |

## The Gamma Ray Horízon $\gamma + \gamma \longrightarrow e^+e^-$



# Science Potential

adapted from Horan & Weekes 2003



Current instruments are sensitive enough to reveal a rich panorama, but this is clearly only the tip of the iceberg
Broad and diverse program for CTA, combining guaranteed astrophysics with significant discovery potential





### HESS ~500 h



CTA expectation: 1000 sources





HESS I: ~1.5 M€/tel HESS II: ~11 M€/tel MAGIC: ~5 M€/tel This would exceed target cost by 1.5-2 x We need to be cheaper !!!

Instrument reliability to be increased by > 10x for high data quality and to limit operating costs

We believe we can build even better telescopes wider field of view, better resolution, improved photo sensors § electronics

Lacking tools to operate a user facility and to handle data Observation scheduling & system control Science data centre and data access tools









## CTA as an open observatory



## The Preparatory Phase

### Preparing for CTA

Organisation (Governance, Finance, Legal...)

Construction (Finalise Design/Implementation plans, Site selection/development) Operation (Observatory, Data, ...)

### Technical work

Science-based optimisation of the observatory, detailed design work, layout, hardware options, mechanical and electronic engineering

Monte-Carlo símulations, data analysis development, physics/astrophysics studies





### CTA Members: 25 Countries

>700 scientists and engineers from >100 insitutions



Argentína, Armenía, Austría, Brazíl, Bulgaría, Czech Republic, Croatía, Finnland, France, Germany, Greece, Indía, Italy, Ireland, Japan, Namíbía, Netherlands, Poland, Slovenía, Spaín, South Afríca, Sweden, Swítzerland, ИК, USA

# conclusions

CTA is the global next generation project ... a precise and sensitive probe of the extreme universe

It has a huge potential for extreme astronomy and fundamental physics with TeV photons





#### general ínfo: www.cta-observatory.org

arXív:1008.3703

120 pages

### Design Concepts for the Cherenkov Telescope Array CTA

An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

### The CTA Consortium

May 2010

