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Strongly Coupled Systems

Many physical systems are described by field theories
where the coupling constant flows (either in the IR or in the
UV) to a fixed point where the correlation length (in units of
the cutoff) diverges and the theory is scale invariant.
These are "critical points".

These are also conformally invariant usually (Polyakov,
Zamolodchikov) though not always (Polchinski, Cardy).

If the fixed point coupling constant is zero (as in QCD at
high energies) then one can use perturbation theory to
probe phenomena in the vicinity of the fixed point.
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Strongly Coupled Systems

If the fixed point coupling is O(1) then one cannot use
perturbation theory.
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Examples

In classical statistical mechanics as you vary temperature
one may encounter this critical point where there is a
second order phase transition. One is dealing with thermal
fluctuations.

But even at zero temperature one may encounter a phase
transitions as you vary a coupling constant - due to
quantum fluctuations. For instances the phases of 3+1
Yang-Mills theory - confining/Higgs - have been studied
(starting with ’tHooft etc) in the parameter g and θQCD.
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Examples

This is the "quantum" critical point - of the condensed
matter physicist.

Mathematically these are not very different from what we
are used to: Equilibrium Classical Statistical mechanics of
a d + 1 dimensional system and quantum mecahnics of a
d dimensional system are described by the same field
theory - one has merely to Wick rotate the time coordinate
and make it a space coordinate. T ↔ ~.

∫

Dφe
i
~

R

∞

−∞
dt

R

d3xL(φ) ↔
∫

Dφe
−1
kBT

R

∞

∞
dt

R

d3xL(φ)
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Examples

One can also take a d dimensional real time quantum field
theory, Wick rotate and compactify time over a length β~

and study equilibrium quantum statistical mechanics of the
same d dimensional system.

∫

Dφe
i
~

R

∞

−∞
dt

R

d3xL(φ) ↔
∫

Dφe−
R β

0 dt
R

d3xL(φ)
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Examples

When we have both thermal and quantum fluctuations and
need to study transport and real time phenomena at finite
temperature - then we are doing real time field theory at
finite temperature.

For eg. people have studied QCD at high temperature
using perturbation theory - when the coupling is small. But
if the coupling is not small, eg if we are in the vicinity of a
quantum critical point, where gc ≈ 1 then we need other
methods.
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AdS/CFT

The AdS/CFT correpondence can be used fruitfully for
these kind of problems.

The correspondence is ( in words):
"String theory in a background that is asymptotically AdS is
dual to a conformal field theory (CFT) on the boundary of
AdS"

A concrete and most studied example:
"Type IIB superstrings in AdS5 × S5 is dual to N = 4
supersymmetric (SU(N) Yang-Mills theory on the boundary
viz.R4 (Actually R × S3)."
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AdS/CFT

More mathematically: ((x , r) are bulk coordinates and
r = ∞ is the boundary, with boundary coordinates being x)

Z [φB] =

∫

φ(x,∞)=φB(x)
Dφi(x , r)e

iSString [φi(x,r)]

=

∫

DA(x)eiS[A(x)]+i
R

x φiB(x)O i (x)

A are boundary fields and Oi are operators of the
boundary theory that are "dual" to the bulk field φi .

In the case of AdS5 × S5 : The bulk dilaton is dual to
TrF 2 + .... of the boundary theory. Also g2

YM = gs and

λ′tHooft = g2
YMN = R4

(α′)2 .
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AdS/CFT-Finite Temperature

So large λ means large R. But this is precisly where
gravity is agood approximation to string theory. N → ∞,
gs → 0 with λ large is the best combinations: Tree level
(classical) gravity in the bulk is equivalent all orders in λ
(but leading in 1

N ) Yang-Mills!

How do you put the system at finite temperature? Introduce
a black hole in the bulk. The Hawking temperature of the
black hole is the temperature of the boundary theory.

This can also be used simply to break supersymmetry and
get a non supersymmetric zero temperature theory.
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Examples: Spectrum

Glueball masses (Witten): Solve the dilaton wave equation
with vanishing slope boundary condition at the horizon and
look for normalizable solutions. This is an eigenvalue
problem and gives glueball masses in (non
supersymmetric) QCD! Can be compared with a (coarse)
lattice calculation.
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Real Time Quantities

Modify boundary condition: Normalizable and has ingoing
boundary conditions at the black hole horizon. Eigenvalues
are complex. The imaginary part of the pole of the gluon
propagator. Gives the "Lyapunov exponent" for classical
Yang-Mills. Responsble for thermalization processes.
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Real-Time Quantities

Instead of eigenvalue problems, one can allow more
general solutions and extract Green’s functions
G(x1, x2) = 〈O(x1)O(x2)〉 by calculating ∂2Z

∂φB(x1)∂φB(x2) .

Fermions: In the case of fermions this computation
reduces to ψ−

ψ+
where the chiralities are defined w.r.t γr -

Dirac gamma matrix in the radial direction of AdS.
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Real-Time Quantities

The best known example is the calculation of ηs :

〈TxyTxy〉 ≈ −iηω

gives: η = π
8 N2T 3 and using s = π2

2 N2T 3 we get ηs = 1
4π
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Non-Fermi Liquids

Fermi Liquid Theory is expected to break down in many
situations involving "strongly correlated electrons".

Fermi liquid is essentially a fermi gas when interactions of
the electrons with each other are included.

What are the low energy excitations?
Start with a filled fermi sphere and imagine adding one
more fermion in a momentum eigenstate. One can imagine
doing this with a Fermi gas first, and then quickly
increasing the strength of the interaction parameter. The
particle becomes a quasi particle with the same
momentum.
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Non-Fermi Liquids

But it is not an energy eigenstate and can decay. Due to
phase space limitations the life time increases as 1

(k−kF )2 .
So near kF these are legitimate excitations. Thus one
expects a quasi particle pole in the propagator with a width
given by the above expectation.

When the Green function does not have these properties it
is a non-Fermi liquid.
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Non-Fermi Liquid

Recently field theories in 2+1 dimensions were studied
using AdS/CFT by H.Liu,McGreevy,Vegh. This is dual to a
Reissner-Nordstrom (i.e.charged) black-hole in AdS4. The
presence of the gauge field component A0 at the boundary
provides a tunable chemical potential in the boundary
theory and also breaks the Lorentz and conformal
invariance.
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Non-Fermi Liquid

They found a sharp Fermi surface )with a quasiparticle
peak) with a dispersion of the form ω = (k − kF )z with
z ≈ 2. A Landau Fermi liquid should have z = 1.

They found a particle-hole asymmetry i.e. the peak looks
different for k > kF and k < kF which again is not expected
in a Fermi liquid.

For k < µ√
6

they find Green fns have a periodicity in logω -
suggestive of underlying discrete scale invariance.

Also at ω = 0, ImG vanishes for k > µ√
6
.
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Non-Fermi Liquids: Luttinger Liquid

In 1+1 dimensions fermions can be bosonized. These are
collective excitations. Physically if an electron moves in
one dimension it has to push all the electrons in front and
make them move - they can’t be "pushed aside" as in
higher dimensions. So it is always "collective" motion. The
boson can then be thought of as a longitudinal phonon
(which is there in both solids and iquids).
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Luttinger Liquid

Mathematically this shows up in the equivalence of the
Thirring model with the Sine Gordon model. Equivalently:

ψL ≈ eiφL ψR ≈ e−iφR

ψ̄γµ∂µψ ≈ (∂µφ)2 = (∂tφ)2 − v2(∂xφ)2

v is the velocity of the excitation. This has a Lorentz
invariant form with v being the velocity of "light".

B. Sathiapalan BTZ black-hole and Luttinger Liquids



Introduction
1+1 dimensions: Luttinger Liquids

BTZ black hole
Boundary Theory

Summary

Luttinger Liquid

Mass term: ψ†
LψR ≈ e−i(φL+φR)

Currents: ψ̄γµψ ≈ ǫµν∂µφ So a four Fermi -Thirring
Interaction: (ψ̄γµψ)2 ≈ (∂µφ)2 - just renormalizes the
kinetic term and hence also the dimension of the operator
eiφL.

Its correlation changes from 1
kL

to kαL for some α. Thus the
quasi particle pole is lost in the presence of interactions -
non-Fermi liquid.

Non Lorentz invariant ρ2 ("charge-charge") energy term
adds (∂xφ)2. This changes the velocity of the excitation.
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Luttinger Liquids

Bosonization thus solves one strongly coupled problem-
massless Thirring model. But one can have mass
perturbations or other releveant perturbations when scale
invariance is broken. Then the theory goes into a massive
phase - studied first by Kosterlitz -Thouless.

Since it is 1+1 dimensional theory there are many
analytical approaches.
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AdS3

One can apply AdS3/CFT to these problems.

SEinsteinMaxwell =
1

16πG

∫

d3x
√−g

(

R +
2
l2

− 4πGFµνFµν

)

+i(Ψ̄ΓMDMΨ − mΨ̄Ψ)
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Example: The equations for a Fermion in pure AdS3 are
(z = 1/r ):

z∂zψ+ = iz(ω − k)ψ−

z∂zψ− = iz(ω + k)ψ+

with solutions ψ+ = ei
√
ω2−k2z and ψ− =

√

ω+k
ω−kψ+. For

fermions the ratio ψ−

ψ+
gives the Green’s function and this is

√

ω+k
ω−k . This is the Green function of a dimension one

chiral operator in 1+1 CFT.
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BTZ Black-hole

The (charged, non rotating) BTZ black hole has an
asymptotic AdS3 structure. The metric is

ds2 = −r2f (r)dt2 +
dr2

r2f (r)
+ r2dθ2

where, f (r) = 1
l2 − 8GM

r2 − 8πGQ2

r2 ln( r
l ) and Ftr = Q

r .

Setting z = 1/r , and after some rescalings,
f (z) = 1 − z2 + Q2

2 z2ln(z) and the temperature of the black
hole is

T = − f ′(1)
4π =

(1−Q2

4 )

2π
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BTZ Black-hole

Equation and boundary condition for Fermion Green’s
function:

zf (z)∂zG(z) + G(z)2z(ω + µ ln(z) − n
√

f (z))

+z(ω + µ ln(z) + n
√

f (z)) = 0 (1)

The ingoing boundary condition at the horizon implies

G(1) = i (2)
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Figure: Conductivity
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Figure: Real and Imaginary part of Fermion Greens’ function for
various values of Q: .5 (Blue), 1 (Red), 1.9 (Green), with k = −5 and
µ = 1
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Gapless Phase

There are quasiparticle peaks. Not necessarily poles.

Can check that the scaling dimension in ω is what you
expect from the asymptotic analysis.

One important observation is that ImG 6= 0 as ω ≈ 0. So
we are still in the gapless (Luttinger Liquid) phase.

B. Sathiapalan BTZ black-hole and Luttinger Liquids



Introduction
1+1 dimensions: Luttinger Liquids

BTZ black hole
Boundary Theory

Summary

Gapless Phase

There are quasiparticle peaks. Not necessarily poles.

Can check that the scaling dimension in ω is what you
expect from the asymptotic analysis.

One important observation is that ImG 6= 0 as ω ≈ 0. So
we are still in the gapless (Luttinger Liquid) phase.

B. Sathiapalan BTZ black-hole and Luttinger Liquids



Introduction
1+1 dimensions: Luttinger Liquids

BTZ black hole
Boundary Theory

Summary

Gapless Phase

There are quasiparticle peaks. Not necessarily poles.

Can check that the scaling dimension in ω is what you
expect from the asymptotic analysis.

One important observation is that ImG 6= 0 as ω ≈ 0. So
we are still in the gapless (Luttinger Liquid) phase.

B. Sathiapalan BTZ black-hole and Luttinger Liquids



Introduction
1+1 dimensions: Luttinger Liquids

BTZ black hole
Boundary Theory

Summary

AdS2 Near Horizon Geometry

The (T = 0) small ω behaviour of the Green function can
be obtained exactly: The dominant contribution to this
comes from the near horizon region of the extremal
black-hole which is AdS2 (this is universal) and can be
solved exactly. (Faulkner et al)

Metric becomes:

ds2 =
1
z2 [−(f (z)2dt2 +

dz2

f (z)2 + dx2]

with f (z) ≈ 2(1 − z)2.

Do a scaling: 1 − z = ω
2ζ with z → 1, ω → 0 and ζ finite.
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Real-Time Quantities

Result of this analysis: ImG(ω = 0) = 0 for qQ < k√
2
.

ImG ≈ (ω)2νk . Beyond that ImG(ω = 0) 6= 0 and νk

becomes imaginary. So there is periodicity in ln ω!
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Figure: Log Periodicity of Real and Imaginary part of Fermion
Greens’ function w.r.t Log(ω) at zero temperature for µ = 4, k = .5
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Luttinger Liquid

Can one understand such (k-independent) non analyticity
in ω from the boundary 1+1 dimensional theory? In a
typical Luttinger liquid one expects (ω − k)α as the
singularity.

Assume velocities are not the same - since there is no
Lorentz Invariance this is possible. We will set vS = 0.

S =

∫

dxdt[iψ̄(γ0∂0 + γ1vF∂1)ψ +
1
2
(∂0φ∂

0φ− v2
S∂1φ∂

1φ)]

+g
∫

dxdt iψ̄ψcos βφ
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Consider the self energy correction with vS = 0:

ψψ

cosφ

Figure: 1 loop correction to ψ propagator
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The graph evaluates to

Σ(p) ≈
∫

dωdk
(2π)2

(ω + vF k)

(ω2 − v2
F k2)((p0 − ω)2)

β2
4π

−1

≈ [ln p0 − C − ψ(p0)]

(p0)
β2
4π

−3

.

As expected we get a p independent non analyticity. vS ≈ 0
is some non propagating localized object -"impurity".
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Summary

There is a class of problems in condensed matter physics
where AdS/CFT techniques can be applied.

The 1+1 theory considered here shows some interesting
non-Fermi liquid behaviour.

We have given a proposal for the modified Luttinger Liquid
behaviour at the boundary.

Any connection with experiments in wires or other one
dimensional systems needs to be explored.
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