
Compiler and Performance Optimizations

Pidad D'Souza (pidsouza@in.ibm.com)
IBM, Systems & Technology Group

mailto:pidsouza@in.ibm.com

Using the Compiler

 Compiler Invocations
 Program Checking Options
 Program Behavior Options
 Floating Point Control
 Optimization Levels
 Target Machines
 Compile Code for SMP

Controlling Language Level: Fortran

 Compiler invocations for standard compliant compilations
 xlf or f77: Fortran 77
 xlf90: Fortran 90
 xlf95: Fortran 95
 xlf2003: Fortran 2003

 Finer control through -qlanglvl, -qxlf77 and -qxlf90 options
 Slight tweaks to I/O behavior
 Intrinsic function behavior
 -qlanglvl can be used for additional diagnostics

MPI and Threaded Code

 Threaded code:
 append _r to the corresponding invocation for sequential code: for

instance, xlf90_r
 add -qsmp=omp for OpenMP code; you may need to add -qnosave for

Fortran77 OpenMP code.

 Pure MPI code:
 Prepend mp to the corresponding sequential invocation: for instance,
mpxlf90.

 Threaded MPI code:
 Append _r to the corresponding invocation for pure MPI code: for

instance, mpxlf90_r;
 add -qsmp=omp for OpenMP code; you may need to add -qnosave for

Fortran77 OpenMP code.

Note: mpxlf90 and mpxlf90_r are exactly the same now

Controlling Language Level: C/C++

 Compiler invocations for standard compliant compilations
 cc: “traditional” K&R C
 xlc or c89: ANSI89 standard C
 xlC: ANSI98 standard C++
 c99: ANSI99 standard C
 gxlc: “gcc-like” command line
 gxlC: “g++-like” command line

 Finer control through -qlanglvl
 strict conformance checking
 lots of C++ language variations
 gcc compatibility control

MPI and Threaded Code

 Threaded code:
 append _r to the corresponding invocation for sequential code: for

instance, c89_r
 add -qsmp=omp for OpenMP code

 Pure MPI code:
 mpcc, mpCC

 Threaded MPI code:
 mpcc_r , mpCC_r
 add -qsmp=omp for OpenMP code

Note: mpcc and mpcc_r are exactly the same now

Mixed Language Programming

 Use Fortran compiler invocations to link object files that are generated with both the
Fortran and C compilers

 Use C++ compiler invocations to link object files that are generated with both the
C++ and C compilers

 To link object files generated with all three compilers, use the C++ compiler and
explicitly list the Fortran libraries.
 Use –v to figure out what libraries to list explicitly

mpxlf -v -o mpi_hello_f mpi_hello_f.o

xlf_r -F:mpxlf_r -v -o mpi_hello_f mpi_hello_f.o
-I/usr/lpp/ppe.poe/include/thread -I/opt/rsct/lapi/include
-llapi_r
exec: export(export,XL_CONFIG=/etc/xlf.cfg.53:mpxlf_r,NULL)
exec: /bin/ld(ld,-b32,/lib/crt0.o,-bpT:0x10000000,-
bpD:0x20000000,-binitfini:poe_remote_main,-bh:4,-
o,mpi_hello_f,mpi_hello_f.o,-llapi_r,
-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,-
L/lib/threads,-lmpi_r, -lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-
lxlomp_ser,-lpthreads,-lm,-lc,NULL)

Using GNU Compilers

 Start with latest version of GNU
 -mcpu=power7 -mtune=power7

 Produce code to exploit power7 hardware
 Optimization tuned for power7

 -maltivec -mvsx
 Recognize vector types and formating extensions of C
 Use vector scalar data types

Checking Program Correctness

 -qcheck
 In Fortran, does bounds checking on array references, array sections

and character substrings
 In C/C++, checks for NULL pointers, for divide by zero and for array

indices out of bounds
 -qextchk, -btypchk

 Generates type hash codes so that the AIX linker can check type
 consistency across files (also done by -qipa)

 -qinitauto
 Generates extra code to initialize stack storage
 Can be done bytewise or wordwise

Program Behavior Options (-qstrict)

 -q[no]strict
 Default is -qstrict with -qnoopt and -O2, -qnostrict with -O3,
-O4, -O5

 -qnostrict allows the compiler to reorder floating point calculations
and potentially excepting instructions

 Use -qstrict when your computation legitimately involves NaN, INF
or denormalized values

 Use -qstrict when exact compatibility is required with another IEEE
compliant system

 Note that -qstrict disables many potent optimizations so use it only
when necessary and consider applying it at a file or even function level
to limit the negative impact

Floating Point Trapping (-qflttrap)

 Enables software checking of IEEE floating point exceptions
 Usually more efficient than hardware checking since checks can be

executed less frequently
 Specified as -qflttrap=imprecise | enable

 -qflttrap=imprecise: check for error conditions at procedure
entry/exit, otherwise check after any potentially excepting instruction

 -qflttrap=enable: enables generation of checking code, also
enables exceptions in hardware

 -qflttrap=overflow:underflow:zerodivide:inexact: check
given conditions

 In the event of an error, SIGTRAP is raised
 As a convenience the -qsigtrap option will install a default handler

which dumps a stack trace at the point of error (Fortran only)

Optimization Levels

Optimization Level –O2 (same as –O)

 Comprehensive low-level optimization
 Global assignment of user variables to registers
 Strength reduction and effective usage of addressing modes
 Elimination of unused or redundant code
 Movement of invariant code out of loops
 Scheduling of instructions for the target machine
 Some loop unrolling and pipelining

 Partial support for debugging
 Externals and parameter registers visible at procedure boundaries
 Snapshot pragma/directive creates additional program points for storage

visibility
 -qkeepparm option forces parameters to memory on entry so that they

can be visible in a stack trace

Optimization Level –O3

 More extensive optimization
 Deeper inner loop unrolling
 Loop nest optimizations such as unroll-and-jam and interchange (-qhot

subset)
 Better loop scheduling
 Additional optimizations allowed by -qnostrict
 Widened optimization scope (typically whole procedure)
 No implicit memory usage limits (-qmaxmem=-1)

 Some precision tradeoffs
 Reordering of floating point computations
 Reordering or elimination of possible exceptions (e.g., divide by zero,

overflow)
 -qoptdebug

 Improves the ability of debuggers to work with optimized code

Tips for getting the most out of –O2 and –O3

 If possible, test and debug your code without optimization before using -O2
 Ensure that your code is standard-compliant. Optimizers are the ultimate

conformance test!
 In Fortran code, ensure that subroutine parameters comply with aliasing

rules
 In C code, ensure that pointer use follows type restrictions (generic pointers

should be char* or void*)
 Ensure all shared variables and pointers to same are marked volatile
 Compile as much of your code as possible with -O2
 If you encounter problems with -O2, consider using -qalias=noansi or
-qalias=nostd rather than turning off optimization

 Next, use -O3 on as much code as possible
 If you encounter problems or performance degradations, consider using –
qstrict, -qcompact, or -qnohot along with -O3 where necessary

 If you still have problems with -O3, switch to -O2 for a subset of
files/subroutines but consider using -qmaxmem=-1 and/or -qnostrict

High Order Transformations (-qhot)

 Supported for all languages
 Specified as -qhot[=[no]vector | arraypad[=n] | [no]simd]
 Optimized handling of F90 array language constructs (elimination of

temporaries, fusion of statements)
 High level transformation (e.g., interchange, fusion, unrolling) of

loop nests to optimize:
 memory locality (reduce cache/TLB misses)
 usage of hardware prefetch
 loop computation balance (typically ld/st vs. float)

 Optionally transforms loops to exploit MASS vector library (e.g.,
reciprocal, sqrt, trig) — may result in slightly different rounding

 Optionally introduces array padding under user control — potentially
unsafe if not applied uniformly

 Optionally transforms loops to exploit VMX unit with –qarch=pwr6
-qenablevmx

Tips for getting the most out of -qhot

 Try using -qhot along with -O2 or -O3 for all of your code. It is designed to
have neutral effect when no opportunities exist.

 If you encounter unacceptably long compile times (this can happen with
complex loop nests) or if your performance degrades with the use of
-qhot, try using -qhot=novector, or -qstrict or -qcompact along
with -qhot

 If necessary, deactivate -qhot selectively, allowing it to improve some of
your code.

 When –qarch=pwr6, the default with –qhot is to perform SIMD
vectorization.

 You can specify –qhot=nosimd to disable SIMD vectorization
 Two levels of –qhot supported via –qhot=level=x where x is 0 or 1.

Default is –qhot=level=1 when –qhot is specified.
 -qhot=level=0 is the default when –O3 is specified
 Read the transformation report generated using –qreport. If your hot

loops are not transformed as you expect, try using assertive directives such
as INDEPENDENT or CNCALL or prescriptive directives such as UNROLL or
PREFETCH.

Link-time Optimization (-qipa)

 Supported for all languages
 Can be specified on the compile step only or on both compile and

link steps ("whole program" mode)
 Whole program mode expands the scope of optimization to an

entire program unit (executable or shared object)
 Specified as -qipa[=level=n | inline= | fine tuning]

 level=0: Program partitioning and simple interprocedural optimization
 level=1: Inlining and global data mapping
 level=2: Global alias analysis, specialization, interprocedural data flow
 inline=: Precise user control of inlining
 fine tuning: Specify library code behavior, tune program partitioning,

read commands from a file

Tips for getting the most out of -qipa

 When specifying optimization options in a makefile, remember to
use the compiler driver (cc, xlf, etc.) to link and repeat all options
on the link step:
LD = xlf

OPT = -O3 -qipa

FFLAGS=...$(OPT)...

LDFLAGS=...$(OPT)...
 -qipa works when building executables or shared objects but

always compile main and exported functions with -qipa
 It is not necessary to compile everything with -qipa but try to apply

it to as much of your program as possible

Target Machines

 -qarch
 Specifies the target machine or machine family on which the generated

program is expected to run successfully
 -qarch=ppc targets any PowerPC (default with XLF V11.1)
 -qarch=pwr6 targets POWER6 specifically
 -qarch=auto targets the same type of machine as the compiling

machine
 -qtune

 Specifies the target machine on which the generated code should run
best

 Orthogonal to –qarch setting but some combinations not allowed
 -qtune=pwr6 tunes generated code for POWER6 machines
 -qtune=auto tunes generated code to run well on machines similar to

the compiling machine
 -qtune=balanced tunes generated code to run well on POWER5

and POWER6 (Default with XLF V11.1)

Getting the most out of target machine options

 -qarch=pwr7
 Utilize POWER7-specific instructions. Compiling with -qarch=pwr7
-qtune=pwr7 should yield optimal performance on the POWER7. Note
compiling with -qarch=pwr7 will generate an executable that will only run on
POWER7 or later processors.

 -qtune=pwr7
 Instructs the compiler to schedule instructions for POWER7 optimization. This

can be used with different –qarch options, but most commonly used with
-qarch=pwr7

 -qtune=balanced
 When used with -qarch=pwr6 (or pwr6x) this option will generate a binary that

runs on both POWER6 and POWER7 systems, but with scheduling
improvements that should improve POWER7 performance.

 -qfloat=norngchk
 This option produces faster software divide and square root sequences. It

eliminates control flow in the software div/sqrt sequence by not checking for
some boundary cases in input values. The optimization is used by default at -O3
unless -qstrict is also specified.

The –O4 and –O5 Options

 Optimization levels 4 and 5 automatically activate several other
optimization options as a package

 Optimization level 4 (-O4) includes:
 -O3
 -qhot
 -qipa
 -qarch=auto
 -qtune=auto
 -qcache=auto

 Optimization level 5 (-O5) includes everything from -O4 plus:
 -qipa=level=2

Compiling Code for SMP

 Use the reentrant compiler invocations ending in _r such as xlf90_r
or xlC_r

 The -qsmp option is used to activate parallel code generation and
optimization

 Specify -qsmp=omp to compile OpenMP code
 -qsmp=omp:noopt will disable most optimizations to allow for full

debugging of OpenMP programs
 Controls are also available to change default scheduling, allow nested

parallelism or safe recursive locking
 Enables -O2 –qhot, disablesables -qsmp=auto

 Specify -qsmp=auto to request automatic loop parallelization
 Disables -qsmp=omp
 Use -qsmp=omp:auto to mix automatic loop parallelization with OpenMP

OpenMP vs. Automatic Parallelization

 OpenMP is recommended for those who are able to expend the
effort of annotating their code for parallelism
 More flexible than automatic parallelization
 Portable

 Automatic parallelization is recommended as a means of doing
some parallelization without code changes

 Automatic parallelization along with -qreport can be helpful for
identifying parallel loop opportunities for an OpenMP programmer

 -qsmp=threshold=n to specify the amount of work required in a
loop before the compiler considers it for automatic parallelization

Auto-vectorization

 C;
 -qarch=pwr7 -qtune=pwr7 -O3 -qhot -qaltivec -qsimd=auto

 Fortran:
 -qarch=pwr7 -qtune=pwr7 -O3 -qhot -qsimd=auto

Compiler Flag Tuning Summary

 Choose the correct architecture and tuning flags
 -qarch=pwr7 -qtune=pwr7 (-qarch=auto -qtune=auto)
 -q64 (recommended for best parallel environment performance)

 Start with lower optimization levels and work your way up
 -O2 ... -O3 -qstrict ... -O3 ... -O3 -qhot ...
-O3 -qhot -qipa=level=2

 Profile with tprof at each optimization level
 Compare ticks on individual profile level
 Select the best compiler option for each subroutine and source file

 But keep an eye on overall runtime, too
 Make sure frequently called functions are properly inlined

 If they no longer show up in the profile, that’s good

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

