IBM Parallel Environment

mailto:pidsouza@in.ibm.com

Parallel Operating Environment (POE)

= Software for developing and executing the parallel applications
across multiple operating system images, called nodes. The node
from which POE is launched is called home node.

" Transparently manages the allocation of remote nodes where the
parallel application actually runs (With the help of Hostfile).

“ Handles the various requests and communication between the
home node and the remote nodes via the underlying network.

* Eases the transition from serial to parallel programming by
hiding the differences, and allowing you to continue using
standard Linux tools and techniques.

“ The processor node is a physical entity or operating system
image that is defined to the network. It can be a standalone
machine, or a processor node within a cluster, or an SMP node.
From POE's point of view, a node is a single copy of the operating
system.

Before You Start POE

" Access - You must have the same user ID and group ID on
the home node and each remote node on which you will be
running the parallel application. (Does not allow running
application as root).

* User authorization - You must have remote execution
authority on all the nodes in the system that you will use for
parallel execution. Either one of the following must be done:

< Jetc/hosts.equiv file: Authorize both the home node
machine and the user name (or machine names) in this file on
each remote node.

< ~/.rhosts file: Create this file in the home directory of the
user ID for each node that you want to use, containing either
the explicit IP address of the home node, or the home node
name.

< Test if you can login between nodes without password.

Before You Start POE

* Hostlist File: Helps POE to know over which nodes to run the
program. Default location is current working directory, but
can be pointed via MP_HOSTFILE environment variable or “-
hfile” command line option. Default name is host.list.

For running 4 tasks, a sample hostfile:

$cat host.list

nodeA.ibm.com
nodeB.ibm.com
nodeC.ibm.com
nodeD.ibm.com

Total entries >= Total Tasks
" Set environment variable “LANG” as “en_US”".

“ Set NLSPATH environment variable as “/opt/ibmhpc/ppe.poe/%L/
%N” (assuming base dir as “/opt/ibomhpc/ppe.poe)

Running POE

The poe command enables you to load and execute programs on remote
nodes. The syntax is:

poe [program] [options]

When you invoke poe:
" It allocates processor nodes for each task.
" Initializes the local environment.

" It then loads the program and reproduces the local shell environment
on each processor node.

" POE also passes the user program arguments to each remote node.

Running POE - Some Examples

$ poe hostname -procs 4
nodeB.ibm.com
nodeC.ibm.com
nodeA.ibm.com
nodeD.ibm.com

$ poe hostname -procs 4 -labelio yes
1: nodeB.ibm.com
2: nodeC.ibm.com
0: nodeA.ibm.com
3: nodeD.ibm.com

$ poe hostname -procs 4 -labelio yes -stdoutmode ordered
0: nodeA.ibm.com
1: nodeB.ibm.com
2: nodeC.ibm.com
3: nodeD.ibm.com

POE Options

Control number of tasks -procs MP_PROCS
: : -hfile or <host file
Specify host file _hostfile names MP_HOSTFILE
Label I/O with task numbers -labelio yes/no MP_LABLEIO
Specify the level of messages -ilevel or 1-6
needed from POE -infolevel M INreEvEL

Request diagnostic messages
be logged to a file in /tmp on -pmdlog No value MP_MDLOG
each node used

Specify output data display -stdoutmode ordered MP_STDOUTMODE

Note: POE options temporarily overwrite the corresponding ENV variables

Invoking the MPI Compiler

To compile the MPI programs, invoke the -

appropriate compiler script:

mpxIf

$ mpcc -o hello_world _c hello_world.c

mpxI|fo90
$ mpfort -o hello_world_f hello_world.f
¥k main === End of Compilation 1 === mpxIf95
1501-510 Compilation successful for file
hello_world.f. mpcc
POE scripts mpcc, mpCC, and mpfort link the
parallel libraries that allow programs to run in mpCC

parallel.

Quick Reference Page — Cheat Sheet
Compile and Execute an MPI program

$ mpcc mpi.c -0 mpi

< create host.list file similar to the following >
$cat host.list

r3enll.pbm.ihost.com
r3enll.pbm.ihost.com
r3onll.pbm.ihost.com
r3enll.pbm.ihost.com

$ set up access permission in /etc/hosts.equiv or .rhosts

$ poe mpi -procs 4 -hostfile host.list

Or
$ export MP_PROCS=4; MP HOSTFILE=host.list; poe mpi

$ poekill mpi.exe

Factors Affecting MPI Performance

Some Important Environment Variables

Buffer for early

0 - 64,000,000 arrivals
0-262144 O ouS protoco
lyes,no} %Seen?c])cri/hgr:er?ode
yes,no 1 sage striping
(us,io} I(\:A(;r&r(r)\gnication

Number of Tasks (processors)

“MP_PROCS=MP_NODES* MP_TASKS PER_NODE
MP_PROCS : Total number of processes
MP_NODES : Number of nodes to use
MP_TASKS PER_NODE : number of proc. per node

“Any two variables can be specified

MP_TASKS PER_NODE is (usually) the number of processors per node

Message Passing Library

“MP_EUILIB={us,ip}

us: user space
Much faster: 5 microseconds latency, 2000 Mbyte/s
bandwidth

ip: useable with ethernet
Much slower: 50 microsecond latency

“US mode is usually default

MP_EUILIB

User Space: US mode Internet Protocol: IP mode

.
e

Other MPI Tuning

For Non-threaded Application
and those who do not use the
nonstandard MPE_Ixxx non-
blocking collectives, MPI-IO.

Enhanced MPI collectives
performance with 64-bit
addresses

yes, no

-q32
-q64

Generating Light Weight Core Files

“ In large scale parallel processing a core file is generally very huge, which
takes available disk space. In being written out, theses core files can take
up an unacceptable amount of CPU time and network bandwidth.

= Standardized Lightweight Corefile Format (LCF) from Parallel Tools
Consortium (a collaborative body of parallel-programming researchers,
developers, and users from governmental, industrial, and academic
sectors)

* export MP_COREFILE_FORMAT=my light corefile_name
OR
poe program -corefile format my light corefile_name

= Lightweight core file only contains necessary thread stack traces.

“ Change the default corefile directory name by MP_COREDIR env.

“ Don’t Forget to run a binary created with “-g” option to MPI compiler.

Use of Multiple Program Multiple Data (MPMD)

“Each task in MPI session can be a unique program:
export MP_ PGMMODEL=<mpmd/spmd>

export MP_CMDFILE=cmdfile

cmdfile Host File Execution command:
a.out nodel $ MP_PGMMODEL=mpmd
b.out node2 $ MP_CMDFILE=cmdfile
c.out node3 $ poe -procs 3

MDMP - Sample Program

$ cat a.c

#include<stdio.h>

#include<mpi.h>

int main(int argc, char **argv) {
MPI_Init(&argc,&argv);

printf("HI, My exe name = %s\n",argv[0]);
MPI_Finalize();

return O;

}

$ cat b.c

#include<stdio.h>

#include<mpi.h>

int main(int argc, char **argv) {
MPI_Init(&argc,&argv);

printf("HI, My exe name = %s\n",argv[0]);
MPI_Finalize();

return 0;

}

MDMP - Sample

= ¢ cat cmdfilename
a.out
b.out

* Compiling:
$ mpcc a.c -0 a.out
$ mpcc b.c -0 b.out

“ Running:

$ poe -pgmmodel mpmd -cmdfile cmdfilename
0:HI, My exe name = a.out

1:HI, My exe name = b.out

Environment, Statistics and Information

yes, no Echo environment Variables
yes, no Low level statistics
Information
{0,1,2,3,4,5,6} Warnings
Errors

MPI Environment Variables - MP PRINTENV

0:Task O- 1:Library: 32bit(ip) ppe_rorl MPCI_MSG: MPI/MPCI library
was compiled on Tue Jan 19 08:16:10 2010

0:Task 0- 1:Hostname: z25c4s3.ppd.pok.ibm.com

0:Task 0- 1:Job ID (MP_PARTITION): 1264719621

0:Task 0- 1:Number of Tasks (MP_PROCS): 2

0:Task 0- 1:Number of Nodes (MP_NODES): NOT SET

0:Task 0- 1:Number of Tasks per Node (MP_TASKS PER_NODE): NOT
SET

0:Task O- 1:Library Specifier (MP_EUILIB): ip

0:Task 0- 1:Adapter Name: ib

0:Task 0- 1:IP Address: ::ffff:9.114.247.110

0:Task 0- 1:Window ID: NA

0:Task 0O- 1:Device Name (MP_EUIDEVICE): not_spe

0:Task 0O- 1:Window Instances (MP_INSTANCES * # of networks): 1
0:Task 0- 1:Striping Setup: Striping off

O0:Task 0O- 1:Protocols in Use (MP_MSG_API): mpi

0:Task 0- 1:Effective Libpath (LIBPATH):
/u/vivekkum/debug:/usr/lpp/ppe.poe/lib

0:Task 0- 1:Current Directory: /u/vivekkum/mpi/mpi_wrkshp/cc
0:Task 0O- 1:64 Bit Mode: NO

0:Task 0O- 1:Threaded Library: YES

	Slide 1
	Parallel Operating Environment (POE)
	Before You Start POE
	Slide 4
	Slide 6
	Running POE – Some Examples
	POE Options
	Invoking the MPI Compiler
	Quick Reference Page – Cheat Sheet Compile and Execute an MPI program
	Factors Affecting MPI Performance
	Some Important Environment Variables
	Number of Tasks (processors)
	Message Passing Library
	MP_EUILIB
	Other MPI Tuning
	Generating Light Weight Core Files
	Use of Multiple Program Multiple Data (MPMD)
	MDMP – Sample Program
	MDMP - Sample
	Environment, Statistics and Information
	MPI Environment Variables – MP_PRINTENV

