

IBM High Performance Computing Toolkit

Pidad D'Souza (pidsouza@in.ibm.com) IBM, India Software Labs

Top 500 : Application areas (November 2011)

Systems

Performance

Source : http://www.top500.org/charts/list/34/apparea

IBM HPC Toolkit – Integrated Picture and dimensions

IBM HPC Toolkit

An integrated framework to assist application performance tuning

The Performance Pie

Performance Dimensions

CPU Performance

MPI Performance

Threading Performance

I/O Performance

IBM HPC Toolkit – usability and features

IBM HPC Toolkit Components

Using the IBM HPC Toolkit

HPM, OpenMP, MPI, MIO

One or more performance metrics can be chosen for a desired region of code

111101101000010101

Binary Instrumentation or Profile Library calls

Running the instrumented binary produces profiling results Eclipse Plug-In, PeekPerf, Xprof

Rendering runtime state within a visualization of the workflow control flow

CPU Performance – HPM module

Utilizes Performance Counters – (special purpose registers built into the processor to store the counts of hardware-related activities)

Facilitates low-level performance analysis and tuning

Updated at each cycle and low overhead

HPM: Hardware Counters Examples

- Cycles
- Instructions
- Floating point instructions
- Integer instructions
- Load/stores
- Cache misses
- TLB misses
- Branch taken / not taken
- Branch mispredictions

- Useful derived metrics
 - ✓ IPC instructions per cycle
 ✓ Float point rate (Mflop/s)
 ✓ Computation intensity
 ✓ Instructions per load/store
 - ✓ Instructions per load/store
 - ✓ Load/stores per cache miss
 - ✓ Cache hit rate
 - ✓Loads per load miss
 - ✓ Stores per store miss
 - ✓Loads per TLB miss
 - ✓ Branches mispredicted %

CPU Performance

libhpm v3.2.1 (IHPCT v2.2.0) summary

Total amount of time in user mode : 6.732208 seconds Total amount of time in system mode : 5.174914 seconds Maximum resident set size : 12184 Kbytes Average shared memory use in text segment : 17712 Kbytes*sec Average unshared memory use in data segment : 61598 Kbytes*sec Number of page faults without I/O activity : 13829 Number of page faults with I/O activity : 0

Number of times process was swapped out: 0Number of times file system performed INPUT: 0Number of times file system performed OUTPUT: 0Number of IPC messages sent: 0Number of IPC messages received: 0Number of signals delivered: 0Number of voluntary context switches: 233Number of involuntary context switches: 684

Instrumented section: 7 - Label: find_my_seed process: 274706, thread: 1 file: is.c, lines: 412 <--> 441 Context is process context. No parent for instrumented section.

Inclusive timings and counter values:

Execution time (wall clock time) : 0.000290516763925552 seconds

Inif					- 6	-							1	hpm	viz						-		l
-						File															14	- Metric Option	ė
Ov		File			H		- 1				1		19/19/2019	1		1.01	- and a D	. 1			- 7	Count	1
		swim	omp			swim_om	p					SWI	m_omp	1 0	alc1.t	calc2.1	calcs.				- 1.	- Succes	1
			_ete	-		Label	E	ExcSec	IncSec	Count			* V	OLD(N1,N2)	POLD(N1,N2),				1	ExcSec	
PI\		Label		Exc	Se	.00p 300	4	.572	4.572	2398			2 C	U(N1	,N2), C	V(N1,N2	2),				1	IncSec	1
		Loop	300	4.57	2	.oop 200	4	.203	4.203	2400			* Z(N1,N	2), H(N	1,N2), P	SI(N1,N	2)				PM_FPU_FDIV	1
PN		Loop	200	4.20	G L	.00p 100	3	.071	3.071	2400		10	COMM	ON /	CONS/		DX DV		HA ITM	AY MPR		PM EPU EMA	
		Loop	100	3.07		Calc3	1	.838	6.813	2398			1	NP	1.EL.PI	TPLDL	DJ.PCF	A,ALI	105,010	53,m H	1		
ΡN		Calco		1.83	8 0	Calc2	1	.013	5.632	2400			integer	ierr								PM_FPUU_FIN	
DN		MPLC	'alat a	tart 1.00	a	MPI Calci	start 1	.003	1.003	2400			integer	omp_	get_thr	ead_nur	n					PM_FPU1_FIN	1
PI		WIFT C			S IV	MPI Calca	start 0	.528	0.528	2400												PM_CYC	1
PI\									Metri	c Brosw	ser: Loo	p 30	0									PM EPU STE	1
	Close	Metric	Option	s / Preci	sion /																	DIA INCT CHADI	1
PN	Node	√ Thr	ead (Count Ex	-cSec	IncSec	1 time	Lise rate	(M) IS	MIPS	HW EP/C	ve Ir	str/IS	d Flips	. InC	Milin/s I	WElins M	/flin/s	FMA %	Comp Int		PM_INST_CMPL	1
	11000	0	3	239B	4.539	4,539	3.923	86.425	590.056	3 281.855	0	116	2.245	589.8	026	129,947	589.86 1	29.947	80.012	bonp in.	1	PM_LSU_LDF	1
		0	0	2398	4.572	4.572	4.378	95.763	608.414	1263.277	0	107	1.978	608.23	84 0.211	133.037	608.234 1	33.037	B0.011		1 -	U time	1
1.1fi		0	2	2398	4.549	4.549	4.366	95.979	590.019	9 255.241	0	104	1.968	589.83	88 0.205	129.663	589.838 1	29.663	B0.011		1 ,	Use rate	1
Οü		0	1	2398	4.547	4.547	4.308	94.759	590.024	4 259.19	0	105	1.997	589.83	021	129.728	589.837 1	29.728	B0.012		1	4010	
MI		1	2	2398 2398	4.534	4.534	4.398	90.999	590.044	253.123	0	115	2 195	589.85 589.80	17 0 259	130.088 :	089.800 I 599.907 1	30.088	B0.012		11	(M) L5	1
		1	ò	2398	1.517	7 1.517	3.766	82.828	608.43	1308.065	0	121	2.302	608.24	110,286	133.762	608.244 1	33.762	B0.011		1	MIPS	1
Ins		1	3	2398	4.523	4.523	3.537	78.198	589.962	2 317.346	0	128	2.433	589.78	0.312	130.4	589.781	130.4	80.011		1 -	HW FP/Cyc	1
AL		2	0	239B	4.538	4.538	3.777	83.218	608.448	3 312.01	0	124	2.327	608.26	32 0.288	134.029	608.262 1	34.029	B0.012		1 -	Instr/LS	1
AI		2	2	2398	4.522	4.522	4.313	95.364	590.000	257.962	0	105	1.977	589.8	0.208	130.431	589.86 1	30.431	B0.011		1	M Eliza	1
ΔIz		2	1	239B	4.52	4.52	4.307	96.222	589.943	3 255.814	0	104	1.96	589.76	37 0 205	130.466	589,767 1	30.466	B0.01		1	IM FIIPS	1
Αlí		3	3	2398	4.487	4.487	4.193	93.453	571.551	259.827	0	105	2.04	571.37	74 0.214	127.352	571.374 1	27.352	B0.011		1 "	lpC	1
Alc		3	1	2398	4.502	4.502	4.365	96.953	589.937	7254.196	0	104	1.94	589.76	30.202	131.003	589.763 1	31.003	B0.01		1 -	Mflip/s	1
		3	2	2398	4.483	4.483	4.139	92.33	571.556	3 263.864	0	106	2.07	571.3	0.22	127.445	571.38 1	27.445	B0.011		1.	WElips	1
FN		3	0	2398	4.508	4.506	3.927	87.154	590.04	12:0.852	0	116	2.221	589.85	025/	130.901 3	289.856 1	30.901	80.013		١.	10/00-2-	l
0/			_												_						. 1	while	1
%					1							30	JU CON	TINU	E and an	0000 00	t thrand	pupel			1	FMA %	1
		1			L		_		_	_			cail 1_11	omitst	00(30+	omp_ge	L'III Gau	nam			-1-	Comp Int.	
		<u></u>	_	_	_		_		·		111			****							-		f
SCARSA												_									_		

ТГ

11

Profiles MPI calls using the PMPI interface

Start / stop timer PMPI equivalent function

MPI Function	#Calls	Message Size	#Bytes	Walltime	MPI Function	#Calls	Message Size	#Bytes	Walltime
MPI_Comm_size	1 (1)	0 4	0	1E-07	MPI_Irecv	2 (1)	0 4	3	4.7E-06
MPI_Comm_rank	1 (1)	0 4	0	1E-07	MPI_Irecv	2 (2)	5 16	12	1.4E-06
MPI_Isend	2 (1)	0 4	3	0.000006	MPI_Irecv	2 (3)	17 64	48	1.5E-06
MPI_lsend	2 (2)	5 16	12	1.4E-06	MPI_Irecv	2 (4)	65 256	192	2.4E-06
MPI_Isend	2 (3)	17 64	48	1.3E-06	MPI_Irecv	2 (5)	257 1K	768	2.6E-06
MPI Isend	2 (4)	65 256	192	1.3E-06	MPI_Irecv	2 (6)	1K 4K	3072	3.4E-06
- MPI Isend	2 (5)	257 1K	768	1.3E-06	MPI_Irecv	2 (7)	4K 16K	12288	7.1E-06
MPI Isend	2 (6)	1K 4K	3072	1.3E-06	MPI_Irecv	2 (8)	16K 64K	49152	2.23E-05
MPI Isend	2 (7)	4K 16K	12288	1.3E-06	MPI_Irecv	2 (9)	64K 256K	196608	9.98E-05
MPL loond	2 (1)		40152	1.3E.06	MPI_Irecv	2 (A)	256K 1M	786432	0.00039
MFI_Iselia	2 (0)		49152	1.32-06	MPI_Irecv	1 (B)	1M 4M	1048576	0.000517
MPI_Isend	2 (9)	64K 256K	196608	1.7E-06	MPI Waitall	21 (1)	0 4	0	1.98E-05
MPI_Isend	2 (A)	256K 1M	786432	1.7E-06		=. (.)	• ·		7.07.00
MPI_Isend	1 (B)	1M 4M	1048576	9E-07	MPI_Barrier	5 (1)	04	0	7.8E-06

IBM

1/0

MPI

MPI Profiling

MPI Routine	#calls	avg. bytes	time(sec)
MPI_Comm_size	3	0.0	0.000
MPI_Comm_rank	12994	0.0	0.016
MPI_Send	19575	11166.9	13.490
MPI_Isend	910791	5804.2	9.216
MPI_Recv	138173	2767.9	73.835
MPI_Irecv	784936	15891.6	2.407
MPI_Sendrecv	894809	352.0	88.705
MPI_Wait	1537375	0.0	288.049
MPI_Waitall	44042	0.0	25.312
MPI_Bcast	464	41936.8	3.272
MPI_Barrier	1312	0.0	34.206
MPI_Gather	68	16399.1	2.680
MPI_Scatter	6	17237.3	0.532

Call MPI_Send	MPI_Send	MPI_Send
		PMPI_Send
Call MPI_Bcast	-	MPI_Bcast
User Program	Profiling Library	MPI Library

total communication time	=	770.424 seconds.
total elapsed time	=	1168.662 seconds.
user cpu time	=	1160.960 seconds.
system time	=	0.620 seconds.
maximum memory size	=	68364 KBytes.

To check load balance : grep "total comm" mpi_profile.*

MPI Trace

Captures timestamped data for MPI calls

Provides a colour-coded trace of execution

Provides source traceback

Useful in identifying load-balancing issues

i/ô CPU MPI Threads

OpenMP profiling

Uses the POMP OpenMP Monitoring Interface

Groups of events identified for profiling:

OpenMP constructs and directives/pragmas OpenMP API calls User functions and regions

Generates profile describing overheads and time spent by each thread in:

Parallel regions OpenMP loops inside a parallel region User defined functions

Profile data is presented in the form of an XML file => can be visualized with visualization utilities

POMP Init(); *** * * * { POMP handle t pomp hd1 = 0; int32 pomp tid = omp get thread num(); *** POMP Parallel enter (&pomp hd1, pomp tid, -1, 1, *** "49*type=pregion*file=demo.c*slines=4,4*elines=8,8**") * * * *** int32 pomp tid = omp get thread num(); *** POMP Parallel begin (pomp hd1, pomp tid); POMP Parallel end(pomp hd1, pomp tid); *** POMP Parallel exit(pomp hd1, pomp_tid); * * * *** *** POMP Finalize();

OpenMP profiling

ijō CPU MPi Threads

K	p	ee	k	pe	rf	

<u>File</u> Tools

main.f						4	main.f 1	runhyd3.f		
abel	Count	Excl. Time	Incl. Time	%Total Overhead	%Imbalance	A	8.	msg_mxzbdy, m	sg_mxxbdy, m	sg_mxybdy)
-pregion_324	1	54.4638	128.508	4.1e-05	6.3e-05	12	enuir			
_loop_1125	10	13.3219	13.3219	0.005431	88.4638	21				
-loop_852	10	12.854	12.854	0.005178	52.5563	17	ctomn do	echadula(static)		
-loop_549	10	12.3907	12.3907	0.005676	98.8048	21	do in-	1 nebunk		
-loop_1685	10	12.3036	12.3036	0.005682	62.1319	16	uo ip-	-r,nenunk		
-loop_1408	10	11.8975	11.8975	0.005578	96.0548	19				
-loop_1934	10	10.1843	10.1843	0.006926	41.4999	13				
-loop_790	1	0.522151	0.522151	0.013839	37.576	0.4	if ((it	hread on 1) and (ir	a a icommanoi	nt(1_4)) and
loop_1668	1	0.485633	0.485633	0.00896	36.8549	0.4	8	(irec1br.eq.0) on	d (iflad e	a (1)) then
-loop_1623	1	0.039318	0.039318	0.596515	2.79627	0.0	ire	(necron.eq.0) .an	u. (mag.e	q.o)) men
-loop_1379	1	0.031769	0.031769	0.198128	13.846	0.0	110	0101 - 1		
-func_rdparam_174	1	0.01605	0.01605	0	0	0	cal	hdrue1br/dddo r	17 NY NU 5	
-loop_855	1	0.013306	0.013306	0.224878	342.237	0.0	2.	men 2m men 2	n men vm me	a vo mea um mea un
-func_main_155	1	0.000771	128.525	0	0	0	2	msg_zm, msg_z msg_mnzhdu_m	ea maxhdu m	g_op, mog_ym, mog_yp, ea mnuhdu
-func_deltat_550	1	2.2e-05	2.2e-05	0	0	0	8	msg_mrzbdy, m	sa mochdy m	og_mrybdy)
-func_layout_296	1	6e-06	6e-06	0	0	0	cal	hdry201s(dddo	nz nx nv 5	g_maybay)
-func_changedir_18	41	3e-06	3e-06	0	0	0	8	msa zm msa z	n msa xm ms	a xa msa vm msa va
Martin B	1					11.1	~	mog_em; mog_e		b mnybdy.
Metric Broswser	: loop_11.	25								mxybdy)
Close Metric Opt	tions / F	Precision 7								
Task 🔽 thread	Time in	n Master T	T: Thread Time	CT: Computation Ti	me %Imbalanc	e TO ·	= TT - CT	%TO (Barrier)	%TO (RTL)	_xp, msg_ym, msg_yp,
0 0	13.321	9 1	3.3219	13.3211	0	0.00	0723	0.000275	0.005156	1_mnybdy,
0 1	0	1	5.8615	15.861	19.0664	0.00	0504	0.000108	0.003679	(_mxybdy)
0 2	0	2	1.0295	21.029	57.8616	0.00	0514	0.000103	0.003753	
0 3	0	2.	4.4342	24.4338	83.4208	0.00	0416	4e-06	0.003119	
0 4	0	2	4.1806	24.1802	81.5175	0.00	0423	0	0.003173	
0 5	0	2	5.0957	25.0952	88.3864	0.00	047	1.4e-05	0.00351	((2,4)).and.
0 6	0	2	5.1062	25.1055	88.4638	0.00	062	0.000157	0.004495	U)) then
0 7	0	2	3.9859	23.9854	80.0548	0.00	0556	0.000112	0.004063	
]										_xp, msg_ym, msg_yp,
							&	msg_mnzbdy, m	sg_mnxbdy, m	sg_mnybdy,
							&	msg_mxzbdy, m	sg_mxxbdy, m	sg_mxybdy)
							cal	l bdrv3o1r/dddo, r	nz. nx. nv. 5.	

IBM

1/0

11121

Modular I/O

Application level optimization for I/O

Facilitates *analysis* and *tuning* of the I/O at the application level

When an application exhibits the I/O pattern of sequential reading of large files, MIO

Detects the behavior

Provides source code traceback

IBM HPC Toolkit – Work flow

Visualization

Man Window	-08
Elle Manual Automatic Windows Iool	
OATA COLLECTION WINDOW	SOURCE CODE WINDOW
HPM MPI OPENMP MEMORY MO	swim_omp.f calc1.f calc2.f calc3.f report_threads.f
mmm mmm Children Mmm Application Structure ■ Mmm Children ■ Model ALLS ■ Children ■ The structure ■ Model ALLS ■ Children ■ The structure The structure <t< th=""><th>Instructure Control Contreter Control Control</th></t<>	Instructure Control Contreter Control Control
Label Count WallClock(Ind) WallClock(excl)	170 if(MASTER.eq.taskid)then 171 WRITE(6,S50) NCYCLE,PTIME
#reakin_cmp21 3 0.055 0.055 → thailow 3 0.055 0.055 → calct_122 3 0.022 0.022 → calct_228 3 0.025 0.025 → calct_228 3 0.025 0.025 → calct_2180 1 0.006 0.006 → http_61 0.055 0.055 → neport_threads_571 0.002 0.002	172 endit 173 It[MASTER.eqtask/l]then 174 WRITE(0.909) IPCHECK, IUCHECK, IVCHECK 175 endit 176 904 177 * POrteds - E12.4/, 178 * Udmeks - E12.4/, 179 * Volteds - E12.4/, 190 * Volteds - E12.4/, 191 370
PeekPerf	192 C TEST FOR END OF PUN 193 IP(InCVCLE GE: TMAXX) THEN 194 f2 = nt() 195 t[taskid=q0]print*;Wall clock time=;T2:T1 196 C 197 CALL: Mut_Infinitud[taskid]

- O X

PeekPerf

Contro the HF

Main Window

Standa execu

PeekPerf Trace Viewer ₽₽

Task 0

Task 2 Task 3 Task 4

Task 6

Task 8

Task 10

Task 12 Task 13 Task 14 Task 15

.Q.

	Elle Manual Automatic Windows Lool	
al contra of		
or centre or	HPM MPI OPENMP MEMORY MIO	swim_omp.f calc1.f calc2.f calc3.f report_threads.f
PC Toolkit alone itable	Application Structure	153 UCHECK = 0.0 154 VCHECK = 0.0 155 156 DO 3500 JCHECK = js.je 157 DO 3500 ICHECK = 1, MINMIN 158 PCHECK = PCHECK + ABS(PNEW(ICHECK,JCHECK)) 159 UCHECK = UCHECK + ABS(UNEW(ICHECK,JCHECK)) 160 VCHECK = VCHECK + ABS(VNEW(ICHECK,JCHECK)) 161 3500 CONTINUE 162 cALL mpl_reduce(pcheck,tpcheck,1,MPI_DOUBLE_PRECISION, 163 1 164 cALL mpl_reduce(ucheck,tucheck,1,MPI_DOUBLE_PRECISION, 165 1 165 1 166 cALL mpl_reduce(vcheck,twcheck,1,MPI_DOUBLE_PRECISION, 166 cALL
••• ••• ••• ••• ••• •••	Identifier Identifier <th>167 Impl_SUM,0,MPl_COMM_WORLD,eff) 168 C *** 169 C *** 169 C *** 170 if(MASTER.eq.taskid)then 171 WRITE(6,350) NCYCLE,PTIME 172 endif 173 if(MASTER.eq.taskid)then 174 WRITE(6,366) tPCHECK, tUCHECK, tVCHECK 175 endif 176 366 177 * Pcheck = ',E12.4./, 178 * Ucheck = ',E12.4./, 179 * Vcheck = ',E12.4./, 180 181 181 370 CONTINUE 182 C TEST FOR END OF RUN 183 IF(NCYCLE.GE.ITMAX) THEN 184 t2 = rtc() 185 if(taskid.eq.0)print*,'Wall clock time=',T2-T1 186 C 187 CALL MPI_FINALIZE(lerr)</th>	167 Impl_SUM,0,MPl_COMM_WORLD,eff) 168 C *** 169 C *** 169 C *** 170 if(MASTER.eq.taskid)then 171 WRITE(6,350) NCYCLE,PTIME 172 endif 173 if(MASTER.eq.taskid)then 174 WRITE(6,366) tPCHECK, tUCHECK, tVCHECK 175 endif 176 366 177 * Pcheck = ',E12.4./, 178 * Ucheck = ',E12.4./, 179 * Vcheck = ',E12.4./, 180 181 181 370 CONTINUE 182 C TEST FOR END OF RUN 183 IF(NCYCLE.GE.ITMAX) THEN 184 t2 = rtc() 185 if(taskid.eq.0)print*,'Wall clock time=',T2-T1 186 C 187 CALL MPI_FINALIZE(lerr)

PeekPerf

Xprofiler

CPU time profiling data

pron: on.profile Total CPU Manage: SEST.ME necounds (nonmary of 1 gross, out profile files they States: showing 35 out of 125 modes and 38 out of 138 arcs

Visualization of profiled data

Profile description : Flat Profile Call Graph Profile Function Index Function Call Summary Library Statistics

Xprofiler

	-		[Disasser	mbler Code for .cal	lc3 [3]
	<u>F</u> ile					Help
	address	no. ticks per instr.	instruction	assemb	ler code	source code
	10002E18 10002E1C 10002E20	81 64 187	FCC4287C CCF70008 C90C0008	fnms lfdu lfd	6, 4, 1, 5 7, 0x8(23) 8, 0x8(12)	POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-
	10002E24 10002E28	53 89	C9750008 FD63582A	lfd fa	11, 0×8(21) 11, 3, 11	UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-
	10002E2C 10002E30 10002E34	63 4	FD28387C DD5B0008 C9540008	fnms stfdu 1fd	9,8,1,7 10,0×8(27) 10,0×8(20)	POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)- U(I,J) = UNEW(I,J) YOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-
	10002E38 10002E3C	113 27	FCCA302A C8760008	fa 1fd	6, 10, 6 3, 0×8(22)	POLD(I,J) = P(I,J) + ALPHA*(PNEW(I,J) - U(I,J) + ALPHA*(PNEW(I,J)) = ALPHA*(
∑Source Code for mtdsqmm.c Eile ∐tility	110012620	×7		fma stfdu fa	12, 0, 11, 2 5, 0x8(25) 3, 3, 9	UOLD(I,J) = U(I,J) + ALPHA*(UNEW(I,J) - V(I,J) = VNEW(I,J) POLD(I,J) = P(I,J) + ALPHA*(PNEW(I,J) -
no. ticks line per line source code		*/	0008	lfdu fma	10, 0x8(26)	UOLD(I, J) = U(I, J) + ALPHA*(UNEH(I, J) - VOLD(I, J) = V(I, J) + ALPHA*(VNEH(I, J) - VOLD(I, J) + ALPHA*(VNEH(I, J) - VOLD(I, J) + ALPHA*(VNEH(I, J) - VOLD(I, J) + ALPHA*(VNEH(I, J) +
203 /* use 2x-unrolling 204 /*	of the outer t 1; i+=2)	но loops */ */	2008	lfd stfdu	2,0x8(27) 7,0x8(12)	UOLD(I,J) = U(I,J) + ALPHA*(UNEW(I,J) - P(I,J) = PNEW(I,J)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*js-1; j+=2) *j]; *j+1]; 1)*n+j]; 1)*n+(j+1)];		40FA 0008 0008	fma lfd stfdu	8, 0, 3, 8 4, 0×8(25) 6, 0×8(20)	POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)- VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-
$\frac{1}{223} t21 = t21 + a[(i+1)]$	*n+k]*bt	[j*n+k];	507C	fnms	3, 2, 1, 10	UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 + a[(i+1)¢n+ t11; = t12;] = t21; j+1)] = t22;	k]*bt[(j+1)*n+k];	ions	support	ted)	
$\begin{array}{ccccccc} 225 & \mbox{for } (j=j; \ j \in j0 + \ j \in j$	js; j++) +j]; 1)*n+j]; k <k0+ks; k++)<br="">11 a =[ia=+b]ab</k0+ks;>	4[:e_ab];		So	urce code w	indow
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 + a[(i+1)*n+ t11;] = t21;	k]*bt[j*n+k];		wit tic	th time profi ks=0.01 sec	le (in
 K] Search Engine: (regular expressions supported)						

HPCT – RemoteSystemsTempFiles/K17SF2P01.PPD.POK.IBM.COM/hor Eile Edit Navigate Search Project Instrumentation Tracing Run PA	ne/chiranji/benchmark/sppm14.7.09/main.f - Eclipse SDK 🛛 🔿 🤭 🥮 PI <u>W</u> indow <u>H</u> elp
] 📬 ▾ 🔛 🖄 ▮ 🌺 ▾ 🎭 ▾] 🙋 🌮 🕇 🕮 🖉 🖓 ♥ 🖗 ♥ 🚓 ▼	🖹 🗐 НРСТ
🗖 Open Binary 🕱 📑 Open Performance Data (.viz)	📄 runhyd3.f 👔 bdrys.f 📄 main.f 🕱 📄 sppm.f 🎽 🏲 🗖
Add Delete 🏹	
/home/chiranji/benchmark/sppm.14.7.09/run/sppm.aix	integer*4 MPI_VERSION,MPI_SUBVERSION parameter (MPI_VERSION=1,MPI_SUBVERSION=2)
	integer*4 MPI_SUCCESS,MPI_ERR_BUFFER,MPI_ERR_COL integer*4 MPI_ERR_TAG,MPI_ERR_COMM,MPI_ERR_RANK, integer*4 MPI_ERR_ROOT,MPI_ERR_GROUP,MPI_ERR_OP,
	integer*4 MPI_ERR_DIMS,MPI_ERR_ARG,MPI_ERR_UNKNC
Expand Collapse Select All Deselect All 🌣	integer*4 MPI_ERR_OTHER, MPI_ERR_INTERN, MPI_ERR_I
🔻 🗹 Function Body	integer*4 MPI_PENDING, MPI_ERR_PENDING, MPI_ERR_IN
▼ 🗹 runhyd3.f	integer*4 MPI_ERR_FILE,MPI_ERR_NOT_SAME,MPI_ERR_
⊡ calchydz	integer*4 MPI_ERR_UNSUPPORTED_DATAREP
☑ calchydy	integer*4 MPI_ERR_ONSOPPORIED_OPERATION
☑ calchydx)4.5
🗹 runhyd	🗖 Performanc 🗇 Performanc 🖉 Progress 🗖 MPI Trace Vi 🙁 🦳 🗖
▼ 🗹 c_io.c	Load Trace Push Left Push Right Zoom In H Zoom Out H
🔄 binwrite	
🗹 changedir	· · · · · · · · · · · · · · · · · · ·
🔄 binread	036MPI_Comm_sr.
🗹 mvnam_khw	S MPI_Send
🗹 imread	1 MPI_Rec∨
🗹 rsclose	7575
⊡ rsopen	
☑ brickwrite	3 1 3
▼ 🗹 bdrys.f	
🔽 zbdrys	Zoom : 1.00(4.01s)

Binary instrumentation with the Eclipse Plug-in

HPCT O HPCT ile <u>E</u> dit <u>N</u> avigate Se <u>a</u> rch <u>P</u> roject Instrumentation Trac	- RemoteSystemsTempFiles/K17SF	2P01.PPD.POK.IBM.COM	/home/chiranji/testing-iter-	7/large_mpi.c - Eclipse SL
말 • 🗈] 양 • 일 •] 🔕 •] 😂 🖉 •] 양 • 🖗 • 🗢	•			
Open Binary 🗖 Open Performance Data (.viz) 🛛	🖓 🗖 💽 large_mpi.c 🛿			
Ac	id Delete ♡ /* Initialize	MPI */		
ome/chiranii/testing-iter-7/mpi profile 0 1.viz	MPI_Init(&argo	, &argv);		
	/* Find out th	is processor number *	1	
	MPI_Comm_rank(MPI_COMM_WORLD, &proc	:num);	
	/* Find out th MPT Comm size(e number of processor MPT COMM WORLD, & Dump	rs */	
	/* Compute num	ber of the processor	to the right */	
	right = procnu	m + 1;		
	if (right == n	umprocs)		
	right = 0,			
	/* Compute num	ber of the processor	to the left */	
	if (left == .1	- 1;		
	left = num	procs - 1;		
Expand Collapse Select All De	eselect All			
🗹 large_mpi.c				
7 🔲 main	Performance Data - Tr	ee View 83		
MPI_Init_19				
MPI_Comm_rank_22	data below is for rank 1			
MPI_Comm_size_24	aggregation for tasks: 1			
MPI_Send_39	Label	Count	WallClock	Transfered Bytes
MPI_Recv_43	SUMMARY			
MPI_Barrier_50	MPI_Recv	1000	3.997892	4000.000000
MPI_Finalize_55	MPI_Comm_rank	1	0.000003	0.000000
	MPI_Comm_size	1	0.000002	0.000000
	MPI_Barrier	1	0.001098	0.000000
	MPI_Send	1000	0.012439	4000.000000
	✓ large_mpi.c			
	✓ main(large_mpi.c)			
	MPI_Barrier_50	1	0.001098	0.000000
	MPI_Comm_size	_24 1	0.000002	0.000000
	MPI_Comm_rank	_22 1	0.000003	0.000000
	MPI_Recv_43	1000	3.997892	4000.000000
	MPI_Send_39	1000	0.012439	4000.000000

Performance Data - Tree View	w 🕄 🗖 Performa	ance Data - Table View 🖄 Progres	s 🗖 MPI Trace View	
aggregation for tasks: 0				
Label	Count	WallClock	Transfered Bytes	
マ main.f				
≂ layout(main.f)				
MPI_Comm_size_3129	1	0.000002	0.000000	
MPI_Comm_rank_3128	1	0.000005	0.000000	
マ main(main.f)				
MPI_Comm_size_450	1	0.000002	0.000000	
MPI_Comm_rank_449	1	0.000034	0.00000	
MPL Barrier_749	1	0.050146	0.000000	
MPT_Allreduce_2259	11	0.194295	264.000000	
∽ glblmax(main.f)				
MPI_Allreduce_1364	10	0.119984	80.00000	
▼ SUMMARY				
MPI_Isend	240	0.012629	9753600,000000	
MIDL W-1	400	22420		

	_	

26

Visualization of IBM HPCT in Eclipse Plug-in

IBM HPC Toolkit in a nutshell

Direction of Migration – Eclipse Parallel Tools Platform (PTP)

Eclipse PTP Framework

Programming models:

MPI/LAPI

LAPI / PNSD

Common Runtime

POE Runtime Other MPI runtime PGAS Languages: xIUPC

CAF (dependent on Fortran 2008*

HPC Toolkit

IBM Parallel Debugger

Scalable / Plugable Communication Infrastructure **HPCS** Toolkit

Parallel Tools
<u>Platform:</u>

Parallel Language Development Tools (PLDT)

Performance Tools Framework

Parallel Runtime

Parallel Monitoring

Parallel Debugger

Base Tools
Platform:

Language sensitive editor

CDT C/C++ Development Tools

Fortran Development Tools *

Launch and Managed Build System

Power Clusters: P5, P6, P7

28

x86 Clusters: Pow Intel/AMD B

Power Clusters: BlueGene

Hybrid Clusters: Accelerator

Summary

29

- The IBM HPC Toolkit provides an integrated framework for performance analysis
- Support iterative analysis and automation of the performance tuning process
- The standardized software layers make it easy to plug in new performance analysis tools
- Operates on the binary and yet provide reports in terms of source-level symbols
- Provides multiple layers that the user can exploit (from low-level instrumentations to high-level performance analysis) – for beginners to black-belts
- Full source code traceback capability
- Dynamically activate/deactivate data collection and change what information to collect

Thank You