Explore QCD Phase Diagram in High-Energy Nuclear Collisions at RHIC

Nu Xu

Nuclear Science Division Lawrence Berkeley National Laboratory, Berkeley, 94720 CA, USA

- (1) Introduction
- (2) Recent results from RHIC
- (3) Future programs
- (4) Summary

Basics on Quantum Chromodynamics

Phase Diagram: Water

Phase diagram: A map shows that, at given degrees of freedom, how matter organize itself under external conditions.

BERKELEY LAB

Lattice QCD Predictions

- Left: Large increase in energy density at T_c ~ 170 MeV. Not reach the non-interacting S.B. limit.
- Right: Heavy quark potentials are melted at high temperature.

Explore the QCD landscape and the structure of the matter with partonic degrees of freedom.

The QCD Phase Diagram and High-Energy Nuclear Collisions

QCD Phase Diagram 1983

QCD Phase Diagram 2009

nucl-th: 0907.4489, NPA830,709(09) L. McLerran

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (BNL), Upton, NY

RHIC: Polarized Hadron Collider

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- "Billions" of spin reversals during a fill

Large Detectors at RHIC

PHENIX

STAR Large acceptance Full azimuthal coverage

PHENIX

Small acceptance Good particle identification for leptons e, μ

Bird's View of PHENIX

.....

High-energy Nuclear Collisions

- (1) Initial condition in high-energy nuclear collisions Color Glass Condensation
- (2) Cold-QCD-matter, small-x, high-parton density
 - parton structures in nucleon / nucleus

Physics Goals at RHIC

RHIC

Au+Au, Cu+Cu, d+Au, p+p collisions at 200 – 5 GeV

Polarized p+p collisions at 200 & 500 GeV

p+p, d+Au pp2pp

- Identify and study the property of matter (EOS) with partonic degrees of freedom.
- Explore the QCD phase diagram.
- Study the origin of spin in *p*.
- Investigate the physics at small-*x*, gluon-rich region.

STAR Physics Focus

Polarized *p+p* program

- Study proton intrinsic properties

Forward program

- Study low-x properties, search for **CGC**
- Study elastic (inelastic) processes (pp2pp)
- Investigate gluonic exchanges

1) At 200 GeV top energy

- Study medium properties, EoS
- pQCD in hot and dense medium
- 2) RHIC beam energy scan
 - Search for the QCD critical point
 - Chiral symmetry restoration

Energy Loss in A+A Collisions

Hadron Suppression at RHIC

recerci

Suppression and Correlations

In central Au+Au collisions: hadrons are suppressed and back-to-back 'jets' are disappeared. Different from p+p and d+Au collisions.

Energy density at RHIC: $\mathcal{E} > 5 \text{ GeV/fm}^3 \sim 30 \mathcal{E}_0$ Parton energy loss:Bjorken1982("Jet quenching")Gyulassy & Wang1992

. . .

Pressure, Flow, ...

 $\begin{array}{ll} \sigma-\mbox{ entropy; } & p-\mbox{ pressure; } U-\mbox{ internal energy; } & V-\mbox{ volume} \\ & \tau=\mbox{ k}_{B}\mbox{T}, \mbox{ thermal energy per dof } \end{array}$

In high-energy nuclear collisions, *interaction* among *constituents* and *density distribution* will lead to:

pressure gradient \Leftrightarrow collective flow

- ⇔ number of degrees of freedom (dof)
- ⇔ Equation of State (EOS)

⇔ No thermalization is needed – pressure gradient only depends on the *density gradient and interactions*.

⇒ Space-time-momentum correlations!

VS

microscopic view

macroscopic view

scattering rate $V_{ab} \sim$ $\int \frac{d^3 p_a}{(2\pi)^3} \frac{d^3 p_b}{(2\pi)^3} f_a(p_a) f_b(p_b) \sigma_{ab}(s) \left| \vec{v}_a - \vec{v}_b \right|$

expansion rate $\partial_{\mu} u^{\mu}$ dilution rate $\partial_{\tau} S$

A macroscopic treatment requires that the scattering rate is larger than macroscopic rates

Anisotropy Parameter v₂

Initial/final conditions, EoS, degrees of freedom

v_2 at Low p_T Region

- Minimum bias data!
- At low p_T, model result fits mass hierarchy well *Collective motion at RHIC*
- More work needed to fix the details in the model calculations.

Collectivity, Deconfinement at RHIC

φ -meson Flow: Partonic Flow

"φ-mesons (and other hadrons) are produced via coalescence of seemingly thermalized quarks in central Au+Au collisions. This observation implies *hot and dense matter with partonic collectivity* has been formed at RHIC"

STAR: Phys. Rev. Lett. 99, 112301(2007)

Partonic Collectivity at RHIC

Slope Parameter Systematics

Systematic study, understand the centrality dependence of the EoS parameters

* Thermalization assumed

200 GeV Au+Au collisions at RHIC, strongly interacting matter formed:

Jet energy loss: R_{AA} Strong collectivity: v_0 , v_1 , v_2 Hadronization via coalescence: n_q -scaling

Questions:

Has the thermalization reached at RHIC?

When (at which energy) does this transition happen?

How does the QCD phase diagram look like?

Search for Local Parity Violation

in High Energy Nuclear Collisions

The separation between the same-charge and oppositecharge correlations.

Strong external EM field
De-confinement and Chiral symmetry restoration

$$\left(\cos\left(\phi_{\alpha}+\phi_{\beta}-2\Psi_{RP}\right)\right)$$

Parity even observable Voloshin, PR <u>C62</u>, 044901(00).

STAR; arXiv: 0909.1739 (PRL); 0909.1717 (PRC).

Search for Local Parity Violation

in High Energy Nuclear Collisions

Animation by Derek Leinweber

Chiral Magnetic Effect:

Kharzeev, PL <u>B633</u> 260 (2006). Kharzeev, Zhitnitsky, NP <u>A797</u> 67(07). Kharzeev, McLerran, Warringa, NP <u>A803</u> 227(08). Fukushima, Kharzeev, Warringa, PR <u>D78</u>, 074033(08).

Topological transitions have never been observed *directly* (e.g. at the level of quarks in DIS). An observation of the *spontaneous strong* parity violation would be a clear proof for the existence of such physics.

First Observation of ${}_{\overline{\Lambda}}{}^{3}\overline{H} \rightarrow {}^{3}\overline{H}e + \overline{\pi}^{-}$

The QCD Critical Point

RHIC (200) & LHC: Determine the temperature T_{ini} , T_{C}

BES: Explore the QCD phase diagram T_E and the location *phase boundary*

- LGT prediction on the transition temperature ${\rm T}_{\rm C}$ is robust.

- LGT calculation, universality, and models hinted the existence of the critical point on the QCD phase diagram* at finite baryon chemical potential.

- Experimental evidence for either the critical point or 1st order transition is important for our knowledge of the QCD phase diagram*.

* Thermalization has been assumed

http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf

Au+Au Collisions at 9.2 GeV AMPT (V2.1)

Observable*: Quark Scaling in v₂

Observables: χ_q , χ_s

.....

Quark Masses

- 1) Higgs mass: electro-weak symmetry breaking. (current quark mass)
- 2) QCD mass: Chiral symmetry breaking. (constituent quark mass)
- New mass scale compared to the excitation of the system.
- Important tool for studying properties of the hot/dense medium at RHIC.
- Test pQCD predictions at RHIC.

STAR Detectors

rrrrr

The di-Lepton Program at STAR TOF + TPC + HFT

 ✓ Direct radiation from the Hot/Dense Medium

✓ Chiral symmetryRestoration

 ⇒ A robust dilepton physics program extending STAR scientific reach

HFT: removing irreducible correlated charm background!

Direct Radiation

Timeline of QCD and Heavy Ion Facilities

Explore QCD Phase Diagram in High-Energy Nuclear Collisions at RHIC

Summary

- 1) At top energy, 200 GeV Au+Au collisions at RHIC, strongly interacting matter formed
- 2) Future i: heavy quark measurements:
 - heavy quark collectivity, light quark thermalization
- 3) Future ii: Beam energy scan:
 - search for critical point and phase boundary

4) RHIC has a strong and interesting physics program till 2020

The QCD Phase Diagram

