Workshop on High Energy Physics and Phenomenology WHEPP13 December 12-21, 2013 <u>Blue Lily Beach Resort</u> Puri, Odisha, India

Neutrino – Theory Status

Outline

- Neutrino mass operators and observables
- Neutrino and New Physics
- Neutrino and Higgs
- Neutrino and DM/BAU
- Neutrino and LHC

Neutrino mass operators & observables

Neutrino mass operators

- SM allows simple extensions for neutrino mass operators: $L \approx H_d \ (\approx \epsilon H_u^{\dagger})$
- Dirac operator renormalizable, $U(1)_{L}$ conserving.

$$\mathcal{L}_D = y_{ij}^D L_i H_u N_j \implies m_{ij}^D = y_{ij}^D v_H / \sqrt{2}$$

• Majorana operator – effective, $U(1)_L$ violating.

$$\mathcal{L}_M = \frac{y_{ij}^M}{M_X} (L_i H_u) (L_j H_u) / (L_i L_j) (H_u H_u) \qquad \text{Weinberg 1979}$$

$$\Rightarrow \ m_{ij}^M = y_{ij}^M \frac{v_H^2}{M_X}$$

• No reason to forbid them \rightarrow observed!

Neutrino parameters

Three masses, three angles, I+2 phases:

$$\begin{split} |\nu_{e}\rangle &= U_{e1}|\nu_{1}\rangle + U_{e2}|\nu_{2}\rangle + U_{e3}|\nu_{3}\rangle \\ |\nu_{\mu}\rangle &= U_{\mu1}|\nu_{1}\rangle + U_{\mu2}|\nu_{2}\rangle + U_{\mu3}|\nu_{3}\rangle \\ |\nu_{\tau}\rangle &= U_{\tau1}|\nu_{1}\rangle + U_{\tau2}|\nu_{2}\rangle + U_{\tau3}|\nu_{3}\rangle \\ m_{1} \qquad m_{2} \qquad m_{3} \\ U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\theta_{23}} & s_{\theta_{23}} \\ 0 & -s_{\theta_{23}} & c_{\theta_{23}} \end{pmatrix} \begin{pmatrix} c_{\theta_{13}} & 0 & s_{\theta_{13}}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{\theta_{13}}e^{-i\delta} & 0 & c_{\theta_{13}} \end{pmatrix} \begin{pmatrix} c_{\theta_{12}} & s_{\theta_{12}} & 0 \\ -s_{\theta_{12}} & c_{\theta_{12}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_{2}} & 0 \\ 0 & 0 & e^{i\phi_{3}} \end{pmatrix} \\ atmoshperic \qquad reactor \qquad solar \qquad Majorana \\ \Delta m_{atm}^{2} = |m_{3}^{2} - m_{1}^{2}| \qquad \Delta m_{sol}^{2} = m_{2} - m_{1}^{2} \end{split}$$

• Two Δm^2 + three angles measured precisely by oscillation experiments.

Measurements: present & future

Parameter	best-fit $(\pm 1\sigma)$	3σ	⁻ Talks by Cheubey & Agarwala		
$\overline{\Delta m^2_{\odot} \ [10^{-5} \ {\rm eV}^2]}$	$7.58_{-0.26}^{+0.22}$	6.99 - 8.18	2002		
$ \Delta m_A^2 [10^{-3} \text{ eV} ^2]$	$2.35_{-0.09}^{+0.12}$	2.06 - 2.67	1998		
$\sin^2 \theta_{12}$	$0.306 \ (0.312)^{+0.018}_{-0.015}$	$0.259\ (0.265)-0.359\ (0.364)$			
$\sin^2 \theta_{23}$	$0.42_{-0.03}^{+0.08}$	0.34 - 0.64			
$\sin^2 \theta_{13}$ [140]	$0.021 \ (0.025)^{+0.007}_{-0.008}$	$0.001 \ (0.005) - 0.044 \ (0.050)$	2012		
$\sin^2 \theta_{13}$ [142]	0.0251 ± 0.0034	0.015 - 0.036	_		

- Mass hierarchy: $m_3 > m_1$ or $m_1 > m_3$?
- CP violation?
- Majorana m_{ee}?
- Sum[m_i] from cosmology?

Neutrino & New Physics

UV theory of neutrino mass operators

From Fermi to EBH.

$$\begin{array}{c}
\nu_{e} & e^{-} \\
\langle H \rangle & \langle H \rangle$$

From Weinberg to ...

Dirac seesaw: y^D ~ v/M_X ~ 10⁻¹³ Dick, et.al., 9907462 EJC, Roy, 0803.1720

Majorana seesaw: Arbitrary Yukawa with M_X =keV-10¹⁵ GeV

Three Majorana Seesaws

Type I/II in a gauge model
• LR:
$$W_L \begin{pmatrix} \nu \\ l \end{pmatrix} \Delta_L \quad \Delta_R \begin{pmatrix} N \\ l^c \end{pmatrix} W_R$$

 $SU(2)_R$ breaking v_R giving heavy masses to N & W_R
• $U(1)': c_1 U(1)_{\chi} + c_2 U(1)_{\psi} + c_3 U(1)_Y$
 $E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$
 $27 \rightarrow 10 + \overline{5} + 1 + (5 + \overline{5}) + 1$
 $U(1)'$ breaking v' giving heavy masses to N & Z'
 $\mathcal{L}_{\nu} = y_{\nu} HLN + \frac{1}{2} y_N SNN + h.c.$
 $m_{\nu} = y_{\nu} \frac{v_H^2}{M_N} y_{\nu}^T$

WHEPP13 2013-12-15 Puri EJChun@KIAS

U(1)' models

Erler, et.al., 1103.2659

Q'	q	\bar{u}	e^+	\bar{d}	l	$\bar{\nu}$	\overline{D}	L	D	\overline{L}	S		
$2Q_R$	0	-1	+1	+1	0	-1	0	-1	0	1	0		
$2 Q_{d}$	0	+1	-1	0	+1	0	-1	0	0	-1	1	$SH_{u}H_{d}$	
$2Q_I$	0	0	0	-1	-1	+1	1	1	0	0	-1		
$2\sqrt{3}Q_{L_1}$	+1	0	+2	0	-1	+2	0	-1	-2	-1	2	if $Q'(S) \neq Q'(S)$	0
$2\sqrt{3}Q_{R_1}$	0	-1	+1	-1	-2	+1	2	1	0	1	-2		
$2\sqrt{3}Q_{p}$	0	-1	+1	+2	+1	-2	-1	-2	0	1	1		
$2\sqrt{3}Q_{t}$	0	+2	-2	-1	+1	+1	-1	1	0	-2	1		
$2\sqrt{6}Q_{B-L}$	+1	-1	+3	-1	-3	+3	2	0	-2	0	0		
$2\sqrt{6}Q_{ALR}$	+1	-1	+3	+2	0	0	-1	-3	-2	0	3		
$2\sqrt{6}Q_{\not\!\!\!L}$	+1	+2	0	-1	0	+3	-1	0	-2	-3	3		
$2\sqrt{6}Q_{\psi}$	+1	+1	+1	+1	+1	+1	-2	-2	-2	-2	4		
$2\sqrt{10}Q_{\chi}$	-1	-1	-1	+3	+3	-5	-2	-2	2	2	0		
$2\sqrt{10}Q_N$	+1	+1	+1	+2	+2	0	-3	-3	-2	-2	5		
$2\sqrt{15}Q_{\eta}$	+2	+2	+2	-1	-1	+5	-1	-1	-4	-4	5		
$2\sqrt{15}Q_Y$	+1	-4	+6	+2	-3	0	2	-3	-2	3	0		
$4\sqrt{15}Q_S$	-1	-1	-1	+8	+8	-10	-7	-7	2	2	5		

Type II Seesaw

SM + a triplet boson (Y=I):

$$\Delta = \begin{pmatrix} \Delta^+ / \sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+ / \sqrt{2} \end{pmatrix}$$
$$\mathcal{L}_{\Delta} = f_{\alpha\beta} L_{\alpha}^T C i \tau_2 \Delta L_{\beta} + \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta \Phi + h.c. \Rightarrow v_{\Delta} = \mu \frac{v_{\Phi}^2}{M_{\Delta}^2}$$

Triplet VEV generates neutrino mass matrix:

$$m^{\nu}_{\alpha\beta} = f_{\alpha\beta}v_{\Delta} \implies f_{\alpha\beta}\frac{v_{\Delta}}{v_{\Phi}} \sim 10^{-12}$$

A peculiar signature of SS2L resonance from the doubly charged boson if f ~> v_Δ/v_Φ : Δ⁺⁺ → l^{f_{αβ}} l⁺_β

 \rightarrow Determine the neutrino mass hierarchy at colliders! EJC, Lee, Park, 0304069 Type II Yukawa after θ_{13}

- Neutrino oscillation data (assuming vanishing CP) phases) determines the coupling $f = M^{\nu}/v_{\lambda}$: NH $M^{\nu} = \begin{pmatrix} 0.00403 & 0.00816 & 0.00259 \\ 0.00816 & 0.0264 & 0.0215 \\ 0.00259 & 0.0215 & 0.0286 \end{pmatrix} \begin{pmatrix} 0.0479 & -0.00557 & -0.00573 \\ -0.00557 & 0.0239 & -0.0240 \\ -0.00573 & -0.0240 & 0.02693 \end{pmatrix}$
- Br(Δ^{++}) for di-lepton channels (100% for $v_A < 10^{-4}$ GeV):

Br (%)	ee	$e\mu$	e au	$\mu\mu$	μau	au au
NH	0.62	5.11	0.51	26.8	35.6	31.4
IH1	47.1	1.27	1.35	11.7	23.7	14.9

Q) Revisit the CP phase effect?

< 0.025

Correlations of LFV procedures in type II.

LFV after θ_{13}

$$Br(\mu \to e\gamma) = \frac{27\alpha}{256\pi G_F^2 M_{H^{\pm\pm}}^4} \frac{|(m_\nu m_\nu^{\dagger})_{e\mu}|^2}{v_{\Delta}^4} Br(\mu \to e\bar{\nu}\nu)$$
$$Br(\mu \to 3e) = \frac{1}{16G_F^2 M_{H^{\pm\pm}}^4} \frac{|(m_\nu)_{\mu e}|^2 |(m_\nu)_{ee}|^2}{v_{\Delta}^4} Br(\mu \to e\bar{\nu}\nu)$$

Type III Seesaw

► SM + fermion triplets with Y=0:

 $\mathcal{L}_{\text{III}} = y_{\nu} L H_u \Sigma + \frac{1}{2} M \Sigma \Sigma \qquad \Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$

Additional Dirac & Majorana masses for leptons:

 $\mathcal{L}_{\text{mass}} = m_D (l^- \Sigma^+ + \nu \Sigma^0) + M \Sigma^+ \Sigma^- + \frac{1}{2} M \Sigma^0 \Sigma^0$

• Neutrino mass matrix by Seesaw ($m_D \leq M$):

$$M_{\nu} = m_D \frac{1}{M} m_D^T$$

- $I-\Sigma^{-}/\nu-\Sigma^{0}$ mixing
 - \rightarrow L- Σ gauge vertices \propto g $m_{\rm D}/M\,\sim\,10^{-6}$

 $W^{\pm}l^{\mp}\Sigma^{0}\,,\ W^{\pm}\nu\Sigma^{\mp}\,,\ Zl^{\pm}\Sigma^{\mp}\,,\ Z\nu\Sigma^{0}$

Neutrino & Higgs

WHEPP13 2013-12-15 Puri EJChun@KIAS

Natural Higgs mass?

 I25 GeV Higgs at LHC questions the usual argument for NP through the hierarchy problem:

$$\delta m_h^2 = (-1)^F \frac{\lambda}{8\pi^2} \int^{\Lambda} \frac{d^4 p}{p^2 - m^2} \\ = \frac{3}{8\pi^2 v^2} (4m_t^2 - 2m_W^2 - m_Z^2 - m_h^2) \Lambda^2 \\ = m_h^2 \left(\frac{\Lambda}{500 \,\text{GeV}}\right)^2$$

- Λ can be a physical mass scale of a UV theory, *i.e.*, $\Lambda = M_X$.
- Naturalness with Higgs coupling to seesaw particles.

S/B Weighted Data
 S+B Fit

140

m_{yy} (GeV

3kg Fit Component

fb

Low-scale seesaw natural?

Seesaw particle contribution to Higgs mass:

 $\delta m_h^2 \lesssim m_h^2 \times \Delta$ Farina, Pappadopulo, Strumia, 1303.7244 ► Type I: $\delta m^2 = \frac{4\lambda_N^2}{(4\pi)^2} M^2 (\ln \frac{M^2}{\bar{\mu}^2} - 1) \qquad \bar{\mu} \sim M_{\rm Pl}$ $M \lesssim m_h \left(\Delta \frac{16\pi^2 m_h}{(m_\nu)} \right)^{1/3} \approx 0.7 \ 10^7 \, \text{GeV} \times \sqrt[3]{\Delta}$ • Type II: $\delta m^2 = -M^2 \frac{6g_2^4 + 3g_Y^4}{(4\pi)^4} (\frac{3}{2} \ln^2 \frac{M^2}{\bar{\mu}^2} + 2\ln \frac{M^2}{\bar{\mu}^2} + \frac{7}{2})$ $M \lesssim 200 \,\mathrm{GeV} \times \sqrt{\Delta}$ • Type III: $\delta m^2 = \frac{g_2^4}{(4\pi)^4} M^2 (36 \ln \frac{M^2}{\bar{\mu}^2} - 6)$ $M \lesssim 0.94 \,\text{TeV} \times \sqrt{\Delta}$

WHEPP13 2013-12-15 Puri EJChun@KIAS

Higgs instability

Higgs quartic turns to negative due to large y_t:

Degrassi, et.al., 1307.3536

Higgs instability in type II

Higgs potential of type II – coupling of doublet and triplet:

$$V(H, \Delta) = m^2 H^{\dagger} H + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 [\operatorname{Tr}(\Delta^{\dagger} \Delta)]^2 + 2\lambda_3 \operatorname{Det}(\Delta^{\dagger} \Delta) + \lambda_4 (H^{\dagger} H) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 (H^{\dagger} \tau_i H) \operatorname{Tr}(\Delta^{\dagger} \tau_i \Delta) + \frac{1}{\sqrt{2}} \mu H^T i \tau_2 \Delta H + h.c.$$

Vacuum stability condition:

•
$$\lambda_1 > 0$$
, Arhrib, et.al., 1105.1925
• $\lambda_2 > 0$,
• $\lambda_2 + \frac{1}{2}\lambda_3 > 0$
• $\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1\lambda_2} > 0$,
• $\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1(\lambda_2 + \frac{1}{2}\lambda_3)} > 0$.

• Perturbativity: $|\lambda_i| \leq \sqrt{4\pi}$.

Higgs instability in type II

► I-loop RGE in type II:

Chao, Zhang, 0611323 Schmidt, 07053841

$$\begin{split} 16\pi^2 \frac{d\lambda_1}{dt} &= 24\lambda_1^2 + \lambda_1(-9g_2^2 - 3g'^2 + 12y_t^2) + \frac{3}{4}g_2^4 + \frac{3}{8}(g'^2 + g_2^2)^2 \\ &- \frac{6y_t^4 + 3\lambda_4^2 + 2\lambda_5^2}{4t} \\ = \lambda_2(-12g'^2 - 24g_2^2) + 6g'^4 + 9g_2^4 + 12g'^2g_2^2 + 28\lambda_2^2 \\ &+ \frac{8\lambda_2\lambda_3 + 4\lambda_3^2 + 2\lambda_4^2 + 2\lambda_5^2}{4t} \\ 16\pi^2 \frac{d\lambda_3}{dt} &= \lambda_3(-12g'^2 - 24g_2^2) + 6g_2^4 - 24g'^2g_2^2 + 6\lambda_3^2 \\ &+ 24\lambda_2\lambda_3 - 4\lambda_5^2 \\ 16\pi^2 \frac{d\lambda_4}{dt} &= \lambda_4(-\frac{15}{2}g'^2 - \frac{33}{2}g_2^2) + \frac{9}{5}g'^4 + 6g_2^4 + \lambda_4(12\lambda_1 \\ &+ \frac{16\lambda_2 + 4\lambda_3 + 4\lambda_4 + 6y_t^2) + 8\lambda_5^2}{4t} \\ 16\pi^2 \frac{d\lambda_5}{dt} &= \lambda_4(-\frac{15}{2}g'^2 - \frac{33}{2}g_2^2) + 6g'^2g_2^2 + \lambda_5(4\lambda_1 + 4\lambda_2 \\ &- 4\lambda_3 + 8\lambda_4 + 6y_t^2), \end{split}$$

Higgs stability & perturvativity in type II

EJC, Lee, Sharma, 1209.1303

WHEPP13 2013-12-15 Puri EJChun@KIAS

22

Neutrino & DM/BAU

WHEPP13 2013-12-15 Puri EJChun@KIAS

Neutrino as DM

The standard weak interaction can generate a right amount of CDM for a 10 GeV neutrino – WIMP.

Leptogenesis I

Type I/III seesaw :

$$\mathcal{L} = yLH_2N + \frac{1}{2}MNN \qquad M_{ij}^{\nu} = y_{ik}y_{jk}\frac{\langle H_2\rangle^2}{M_k}$$

L asymmetry from N decay: CP phase in Y_{v} .

$$\epsilon_{1} = \frac{\Gamma(N_{1} \rightarrow LH_{2}) - \Gamma(N_{1} \rightarrow \bar{L}\bar{H}_{2})}{\Gamma(N_{1} \rightarrow LH_{2}) + \Gamma(N_{1} \rightarrow \bar{L}\bar{H}_{2})} = \frac{3}{8\pi} \frac{\sum_{i} \operatorname{Im}\left([(yy^{\dagger})_{1i}]^{2}\right) M_{1}}{(yy^{\dagger})_{11}} M_{i}}$$
$$\epsilon_{1} \leq \frac{M_{1}m_{\nu_{3}}}{\langle H_{2} \rangle^{2}} \simeq 2 \times 10^{-7} \left(\frac{M_{1}}{10^{9} \text{ GeV}}\right) \left(\frac{m_{\nu_{3}}}{0.05 \text{ eV}}\right) \text{ Davidson-Ibarra}$$

L asymmetry converted to B asymmetry by Γ_{sp}

$$Y_B \equiv c_{sp} \frac{n_L - n_{\bar{L}}}{s} = c_{sp} \frac{n_N^{eq}}{s} \epsilon \eta \approx 0.1 \frac{1}{g_*} \epsilon_1 \eta \sim 10^{-10}$$

$$g_* \sim 100, \eta < 1, \epsilon > 10^7 \qquad M > 10^9 \text{ GeV} \quad \text{nl}$$

b) $m_{\nu}, \epsilon \propto y^2$

Leptogenesis II

Type II seesaw : $\mathcal{L} = f_{ij}L_iL_j\Delta + \mu HH\Delta + h.c.$ $M_{ij}^{\nu} = f_{ij}v_{\Delta} = f_{ij}\mu \frac{v_H^2}{M_{\Delta}^2}$

L asymmetry from $\Delta_{1,2}$ decay: CPV from mixing:

Ma-Sarkar

$$\delta_{i} \simeq \frac{Im \left[\mu_{1} \mu_{2}^{*} \sum_{k,l} f_{1kl} f_{2kl}^{*} \right]}{8\pi^{2} (M_{1}^{2} - M_{2}^{2})} \left[\frac{M_{i}}{\Gamma_{i}} \right]$$

 $\Gamma \sim f^2 + \mu^2/M^2$

Davidson-Ibarra bound persists.

Efficiency

Efficiency η and K factor:

$$K \equiv \frac{\Gamma_D}{H(T=M)}$$

 $K \sim 1 \rightarrow \eta \sim \! 1 \,$: out-of-equilibrium decay.

 $K << 1 \rightarrow \eta <<1$ (weak wash-out regime) : weak neutrino Yukawa interaction; inefficient thermalization of N.

Gauge interaction reduces the efficiency.

TeV Leptogenesis

- Difficult to realize a low scale leptogenesis through CP asymmetry from neutrino Yukawas in type I (with U(I)'), II, III seesaw (K>>I due to tiny H^{-T^2}/M_{P} , and large gauge interaction).
- A common exercise: add new states unrelated neutrino mass generation in type I.
 Fong, et.al., 1305.6312

$$-\mathcal{L}_{\tilde{\psi}} = \eta_{mi} \bar{\psi}_{Lm} N_i \,\tilde{\psi} + \sum_{\psi' \,\psi''} y_{mn} \bar{\psi}'_{Lm} \psi''_{Rn} \,\tilde{\psi} + \text{h.c.}$$

Radiative seesaw and inert doublet DM

- Inert doublet for neutrinos: $y_{\nu}LH'N$. Ma, 0605180
- One-loop neutrino mass with $\lambda_5(H^{\dagger}H')^2$.
- DM=H'_R lighter than H'_I: correct thermal density + direct detection bound.
- Leptogenesis for $M_1 > 10^7$ GeV.

- No Higgs hierarchy problem.
- Seesaw/DM/BAU from sterile neutrinos.
- ▶ BAU from GeV N_{2,3} through CP violating oscillations of sterile neutrinos (Y_L = -Y_{Ls} ~ 10⁻¹⁰) at T > T_{sph} if △M /M ~ $10^{-4\sim-6}$. $\hat{H} = V(t) + U \frac{\hat{M}^2}{2k(t)} U^{\dagger}$ Akhmedov, Rubakov, Smirnov, 9810255
- $\begin{array}{ll} $$ keV N_1 DM production through MSW conversion in thermal \\ $$ plasma if Y_L > 8 \times 10^{-6} at T ~ 100 MeV. \\ \end{array}$

$$V_x = \frac{\delta m^2}{2E} \sin 2\theta, \quad V_y = 0, \quad V_z = -\frac{\delta m^2}{2E} \cos 2\theta + V_\alpha^L + V_\alpha^T$$
$$V_\alpha^L \approx 0.35 G_F T^3 \Big[L_0 + 2L_{\nu_\alpha} + \sum_{\beta \neq \alpha} L_{\nu_\beta} \Big]$$
$$Q) \text{ Consistent } \mathsf{M}_\nu \& 0\nu 2\beta ?$$

Asymmetric Dark Matter

- $\Omega_{\rm DM}/\Omega_{\rm B}$ = 5 : coincidence?
- Postulate the same origin for matter-antimatter asymmetry & dark matter population.

 $\Omega_{\rm DM}/\Omega_{\rm B} = m_{\rm DM} Y_{\rm DM}/m_{\rm B} Y_{\rm B}$

i) $Y_{DM} \sim Y_B$, $m_{DM} \sim 5 \text{ GeV}$ for COGENT/DAMA ii) $Y_{DM} \sim 0.05Y_B$, $m_{DM} \sim 100 \text{ GeV}$ for usual WIMP

Scenarios

Techni-Baryon Asymmetry

- Consider a GUT group containing both the baryon sector and the techni-baryon sector.
- Asymmetries in both sectors can be assumed to arise from a heavy GUT particle decay: $Y_{\rm B} = Y_{\rm TB}$.

$$\rho_{\rm B} = Y_{\rm B} \, \mathsf{m}_{\rm B}, \ \rho_{\rm TB} = Y_{\rm TB} \, \mathsf{m}_{\rm TB} = \rho_{\rm DM}$$
$$\Omega_{\rm DM} / \Omega_{\rm B} = \mathsf{m}_{\rm TB} / \mathsf{m}_{\rm B} = \mathsf{5} \text{ if } \Lambda_{\rm TB} / \Lambda_{\rm B} = \mathsf{5}$$

Nussinov, PLB, 1985

Equilibration of B-L & DM

- Assume an initial B-L (or DM) asymmetry
- Add an interaction which equilibrate the dark matter asymmetry and the initial B-L asymmetry
- A conserved quanturm number: B-L+DM/2
 e.g., L H ←→ X X

Kaplan, et.al., 0911.4117

Equilibration interaction $W = \frac{1}{M}LH_uXX + m_XXX^c$

Interaction rate > Expansion rate $\Gamma \sim \frac{T^3}{8\pi M^2} > H \sim \frac{3T^2}{M_P}$

Chemical equilibrium relation $X = -\frac{11}{79}(B - L), B = 0.3(B - L)$ $\frac{\Omega_{DM}}{\Omega_B} = \frac{m_X X}{m_B B} \Rightarrow m_X = 12 \text{GeV}$

Equilibration of B-L & DM

 ▶ Require the suppression of the symmetric component. →
 Annihilation rate much lager than the standard value for the thermal freeze-out relic density.

Assume a "strong" interaction: $W = \lambda_X SXX^c + \lambda_H SH_u H_d + \lambda_S S^3$ $X\bar{X} \leftrightarrow H_u H_d$ $\Omega_{X+\bar{X}}h^2 \approx 0.1 \frac{3 \times 10^{-9} \text{GeV}^{-2}}{\langle \sigma_A v \rangle}$

Type I seesaw & EWDM asymmetry

- A simple model relating the origins of tiny neutrino masses, the baryon asymmetry and the DM density.
- Realize asymmetric EWDM with sub-TeV mass.
- Naturally suppressed symmetric density. $\Omega_{\text{SDM}}h^2 \sim 0.1 \left(\frac{2\text{TeV}}{m_{DM}}\right)^2$
- Copious production at the LHC.
- Clean singals of disappearing charged tracks & stable charged tracks.

An, et.al., 0911.4463 EJC, 1009.0983 Falkowski, et.al., 1101.4936 Haba, et.al., 1101.5679 EJC, 1102.3455
A simple Model

Introduce a vector-like SU(2)_L multiplet: EJC, 1102.3455

$$\Sigma, \Sigma^c \text{ with } Y = 0 \text{ and } T = 1, 2, 3, \cdots$$
$$W = y_i N_i L H_u + \frac{1}{2} h_i N_i \Sigma \Sigma + m_{\Sigma} \Sigma \Sigma^c + \frac{1}{2} M_i N_i N_i$$

- "Extended B-L" broken by M:
- Asymmetries from N decay:

superfields $L N \Sigma \Sigma^{c} M$

B-L -1 1 $-\frac{1}{2}$ $\frac{1}{2}$ -2

L/DM efficiency ratio

Mass spectra of DM multiplets (T=1)

Fermion: $(\Sigma^{\pm}\Sigma^{0})$ Scalar: $(\tilde{\Sigma}_{1,2}^{\pm}, \tilde{\Sigma}_{1,2}^{0})$

LHC Signatures

• Effective interaction below M:

$$\mathcal{L}_{eff} = \xi \nu \Sigma^{\pm} \tilde{\Sigma}^{\mp} \iff W_{eff} = \frac{yh}{2M} L H_u \Sigma \Sigma$$
$$\xi = \frac{yh \langle H_u^0 \rangle}{2M} \sim \frac{m_\nu}{\langle H_u^0 \rangle} \sim 10^{-12} \text{ for } m_\nu = 0.1 \text{eV}$$

• Two kinds of long-lived charged particle tracks:

$$\begin{split} \tilde{\Sigma}^{\pm} &\to \nu \Sigma^{\pm} & \Sigma^{\pm} \to \pi^{\pm} \Sigma^{0} \\ \Gamma_{\tilde{\Sigma}^{\pm}} &= \frac{\xi^{2}}{8\pi} m_{\tilde{\Sigma}^{\pm}} & \Gamma_{\Sigma^{\pm}} = \frac{T(T+1)}{\pi} G_{F}^{2} V_{ud}^{2} \Delta m^{3} f_{\pi}^{3} \sqrt{1 - \frac{m_{\pi^{\pm}}^{2}}{\Delta m^{2}}} \\ \tau_{\tilde{\Sigma}^{\pm}} &\sim 10^{-2} \text{sec} & \tau_{\tilde{\Sigma}^{\pm}} \approx 106 \text{cm} \end{split}$$

Stable charged track Disappearing charged tracks

•Multiply charged tracks for T=3,2: $\tilde{\Sigma}^{\pm\pm\pm}, \ \tilde{\Sigma}^{\pm\pm}$ $\Sigma^{\pm\pm\pm} \xrightarrow{35cm} \pi^{\pm} \Sigma^{\pm\pm} \xrightarrow{18cm} \pi^{\pm} \Sigma^{\pm}$

Neutrino & LHC

WHEPP13 2013-12-15 Puri EJChun@KIAS

LR & U(1)' at LHC

Typical signatures: SS2L+jj probing Majorana nature of N.

Keung, Senjanovic, 1983

 $q\bar{q} \to Z' \to NN$ $\to l^{\pm}l^{\pm}W^{\mp}W^{\mp}$ \bigwedge $\theta_{\nu N} \sim \sqrt{\frac{m_{\nu}}{M_N}}$

U(I)'

LR

LHC+0 $\nu 2\beta$ search of LR model

Bhupal Dev, et.al., 1305.0056 Type II dominance

Z' search

WHEPP13 2013-12-15 Puri EJChun@KIAS

Multi-lepton signals in type II

- ▶ 4I (2xSS2L) from H⁺⁺ H⁻⁻ pair production.
- > 3I from H^{++} H^{-} associated production if $\Delta M \sim 0$.
- CMS looks for 4l or 3l events.
- ATLAS looks for SS2L resonances.

CMS search

CMS, 1207.2666

Benchmark point	Combined 95% CL limit [GeV]	95% CL limit
		for pair production only [GeV]
$\mathcal{B}(\Phi^{++} \to e^+ e^+) = 100\%$	444	382
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \mu^+) = 100\%$	453	391
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \tau^+) = 100\%$	373	293
$\mathcal{B}(\Phi^{++} \to \mu^+ \mu^+) = 100\%$	459	395
$\mathcal{B}(\Phi^{++} \to \mu^+ \tau^+) = 100\%$	375	300
$\mathcal{B}(\Phi^{++} \to \tau^+ \tau^+) = 100\%$	204	169
BP1	383	333
BP2	408	359
BP3	403	355
BP4	400	353

WHEPP13 2013-12-15 Puri EJChun@KIAS

ATLAS search

ATLAS, 1210.5070

 $NH: BR(\mu\mu) \approx 27\%$

IH : $BR(ee) \approx 47\%$

				× *	L / L	-
	$e^{\pm}e^{\pm}$		$\mu^{\pm}\mu^{\pm}$		$ e^{\pm}\mu^{\pm}$	
	exp.	obs.	exp.	obs.	exp.	obs.
100%	407	409	401	398	392	375
33%	318	317	317	290	279	276
22%	274	258	282	282	250	253
11%	228	212	234	216	206	190

BR $(H_L^{\pm\pm} \to \ell^{\pm} \ell'^{\pm}) \parallel 95\%$ CL lower limit on $m(H_L^{\pm\pm})$ [GeV]

$H^{++} \rightarrow W^+ W^+$ search

► $H^{++} \rightarrow I^+ I^+ + X$ from ATLAS SS2L data:

Kanemura, Yagyu, Yokoya, 1305.2383

Q) LEP limit from multi-jet final states?

WHEPP13 2013-12-15 Puri EJChun@KIAS

D

Type III Seesaw

► SM + fermion triplets with Y=0:

 $\mathcal{L}_{\text{III}} = y_{\nu} L H_u \Sigma + \frac{1}{2} M \Sigma \Sigma \qquad \Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$

Additional Dirac & Majorana masses for leptons:

 $\mathcal{L}_{\text{mass}} = m_D (l^- \Sigma^+ + \nu \Sigma^0) + M \Sigma^+ \Sigma^- + \frac{1}{2} M \Sigma^0 \Sigma^0$

• Neutrino mass matrix by Seesaw ($m_D \leq M$):

$$M_{\nu} = m_D \frac{1}{M} m_D^T$$

- $I-\Sigma^{-}/\nu-\Sigma^{0}$ mixing
 - \rightarrow L- Σ gauge vertices \propto g $m_{\rm D}/M\,\sim\,10^{-6}$

 $W^{\pm}l^{\mp}\Sigma^{0}\,,\ W^{\pm}\nu\Sigma^{\mp}\,,\ Zl^{\pm}\Sigma^{\mp}\,,\ Z\nu\Sigma^{0}$

LHC signatures

• Σ decay: $\Sigma^{\pm} \rightarrow l^{\pm}h, l^{\pm}Z, \nu W^{\pm}$

$$\Sigma^0 \to \nu h, \nu Z, l^{\pm} W^{\mp}$$

Franceschini, et.al. 0805.1613

- Σ production: $pp \rightarrow \Sigma^+ \Sigma^-, \ \Sigma^\pm \Sigma^0$
- Four lepton final states at ATLAS

 $pp \to \Sigma^{\pm}\Sigma^0 \to l^{\pm}Z(l\bar{l})l^{\pm}W^{\mp}(jj')$

Higgs production associated with charged leptons:

 $pp \to \Sigma^{\pm} \Sigma^0 \to l^{\pm} l^{\pm} h W^{\mp}$

Bandyopadhyay, Choi, EJC, Kang, 1112.3080

ATLAS search

WHEPP13 2013-12-15 Puri EJChun@KIAS

Conclusion

- Great achievements from oscillation observation during past 15 years.
- Further Quest for the nature of neutrino mass: Dirac/Majorana, absolute scale, hierarchy & CPV.
- Neutrino-DM/BAU connection: leptogenesis+ADM.
- Majorana mass models at TeV scale?
- LHC signatures of type I, II, III seesaws: SS2L, displacement, associated Higgs production.
- LHCI3/I4 continues to probe the neutrino signals.
- More for peculiar type II: SS2L resonance, SS4L, Higgs-todiphoton.

Neutrino & LHC – More on Type II

WHEPP13 2013-12-15 Puri EJChun@KIAS

D

- Same-sign tetra-leptons.
 Triplet-antitriplet oscillation
- Higgs boson Phenomenology.
 EWPD
 Perturbativity & vacuum stability
 Higgs-to-diphoton rate
- General study in $(v_{\Delta}, \Delta M)$.

EJC & Sharma, 1206.6278

EJC, Lee & Sharma, 1209.1303

EJC & Sharma, 1309.6888

Type II Seesaw

SM + a triplet boson (Y=I):

$$\Delta = \begin{pmatrix} \Delta^+ / \sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+ / \sqrt{2} \end{pmatrix}$$
$$\mathcal{L}_{\Delta} = f_{\alpha\beta} L_{\alpha}^T C i \tau_2 \Delta L_{\beta} + \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta \Phi + h.c. \Rightarrow v_{\Delta} = \mu \frac{v_{\Phi}^2}{M_{\Delta}^2}$$

Triplet VEV generates neutrino mass matrix:

$$m^{\nu}_{\alpha\beta} = f_{\alpha\beta}v_{\Delta} \implies f_{\alpha\beta}\frac{v_{\Delta}}{v_{\Phi}} \sim 10^{-12}$$

A peculiar signature of SS2L resonance from the doubly charged boson if f ~> v_Δ/v_Φ : Δ⁺⁺ → l^{f_{αβ}} l⁺_β

 \rightarrow Determine the neutrino mass hierarchy at colliders! EJC, Lee, Park, 0304069 Type II Yukawa after θ_{13}

- Neutrino oscillation data (assuming vanishing CP) phases) determines the coupling $f = M^{\nu}/v_{\lambda}$: NH $M^{\nu} = \begin{pmatrix} 0.00403 & 0.00816 & 0.00259 \\ 0.00816 & 0.0264 & 0.0215 \\ 0.00259 & 0.0215 & 0.0286 \end{pmatrix} \begin{pmatrix} 0.0479 & -0.00557 & -0.00573 \\ -0.00557 & 0.0239 & -0.0240 \\ -0.00573 & -0.0240 & 0.02693 \end{pmatrix}$
- Br(Δ^{++}) for di-lepton channels (100% for $v_A < 10^{-4}$ GeV):

Br (%)	ee	$e\mu$	e au	$\mu\mu$	μau	au au
NH	0.62	5.11	0.51	26.8	35.6	31.4
IH1	47.1	1.27	1.35	11.7	23.7	14.9

Q) Revisit the CP phase effect at LHC?

Correlations of LFV procedures in type II.

LFV after θ_{13}

$$\operatorname{Br}(\mu \to e\gamma) = \frac{27\alpha}{256\pi G_F^2 M_{H^{\pm\pm}}^4} \frac{|(m_\nu m_\nu^\dagger)_{e\mu}|^2}{v_\Delta^4} \operatorname{Br}(\mu \to e\bar{\nu}\nu)$$

$$\operatorname{Br}(\mu \to 3e) = \frac{1}{16G_F^2 M_{H^{\pm\pm}}^4} \frac{|(m_\nu)_{\mu e}|^2 |(m_\nu)_{ee}|^2}{v_\Delta^4} \operatorname{Br}(\mu \to e\bar{\nu}\nu)$$

$$\frac{m_{ee}m_{e\mu}^* < 0.025}{(mm^{\dagger})_{e\mu} < 1}$$

EJC, Lee, Park, 0304069

Type II scalar sector

Scalar potential of type II seesaw

$$V(\Phi, \Delta) = m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 [\operatorname{Tr}(\Delta^{\dagger} \Delta)]^2 + 2\lambda_3 \operatorname{Det}(\Delta^{\dagger} \Delta) + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 (\Phi^{\dagger} \tau_i \Phi) \operatorname{Tr}(\Delta^{\dagger} \tau_i \Delta) + \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta \Phi + h.c.$$

Five boson mass eigenstates

$$\begin{array}{c} \Delta^{++}, \Delta^{+}, \Delta^{0} \\ \Phi^{+}, \Phi^{0} \end{array} \qquad \Longrightarrow \qquad h^{0}, H^{0}, A^{0}, H^{+}, H^{++} \end{array}$$

Doublet-triplet mixing

- Doublet-triplet mixing controlled by $\xi = v_{\Delta}/v_{\Phi}$:
 - $\phi_I^0 = G^0 2\xi A^0 \qquad \phi^+ = G^+ + \sqrt{2}\xi H^+ \qquad \phi_R^0 = h^0 a\xi H^0$ $\Delta_I^0 = A^0 + 2\xi G^0 \qquad \Delta^+ = H^+ \sqrt{2}\xi G^+ \qquad \Delta_R^0 = H^0 + a\xi h^0$ $a = 2 + (4\lambda_1 \lambda_4 \lambda_5) v_{\Phi}^2 / (M_{H^0}^2 m_{h^0}^2)$
- We will work in the limit: $\xi << 0.01$.
- (note) ρ parameter constraint: $\rho = (1+2\xi^2)/(1+4\xi^2) \rightarrow \xi < 0.03$

Triplet scalar spectrum

Mass gap among triplet components:

$$\begin{split} M_{H^{\pm\pm}}^2 &= M^2 + 2\frac{\lambda_4 - \lambda_5}{g^2}M_W^2 \\ M_{H^{\pm}}^2 &= M_{H^{\pm\pm}}^2 + 2\frac{\lambda_5}{g^2}M_W^2 \\ M_{H^0,A^0}^2 &= M_{H^{\pm}}^2 + 2\frac{\lambda_5}{g^2}M_W^2 . \end{split} \qquad \Delta M = M_{H^+} - M_{H^{++}} \\ \Delta M \approx \frac{\lambda_5}{g^2}\frac{M_W^2}{M} < M_W \end{split}$$

Two mass hierarchies:

$$M_{H^{++}} < M_{H^+} < M_{H^0/A^0}$$
 if $\lambda_5 > 0$
 $M_{H^{++}} > M_{H^+} > M_{H^0/A^0}$ if $\lambda_5 < 0$

Triplet decay channels

• Gauge decays for non-vanishing $\Delta M(\lambda_5)$:

 $H^0/A^0 \to H^{\pm}W^* \to H^{\pm\pm}W^*W^*$ $H^{++} \to H^{\pm}W^* \to H^0/A^0 W^*W^*$

 $\Delta M(\lambda_5)$

(*) $f\xi \sim 10^{-12}$

- Di-lepton (same-sign) decays through $f_{\alpha\beta}$: $H^{++} \rightarrow l^+_{\alpha} l^+_{\beta}; \ H^+ \rightarrow l^+_{\alpha} \nu_{\beta}; \ H^0/A^0 \rightarrow \nu_{\alpha} \nu_{\beta}$
- Di-quark/di-boson decays through ξ :

 $\begin{array}{ccc} H^{++} \to W^+W^+; \ H^+ \to t\bar{b}; & H^0/A^0 \to t\bar{t}, \ b\bar{b} & & \\ \to ZW, hW & \to ZZ, hh/Zh & & \\ \end{array} \xi \equiv \frac{v_\Delta}{v_\Phi} \end{array}$

> Triplet (lepton) number is conserved in the production: $pp \rightarrow \Delta \bar{\Delta}$

Triplet number breaking by doublet-triplet mixing:

It induces a tiny mass splitting between H^o & A^o: $\mathcal{L}_{A} = \frac{1}{\sqrt{2}} \mu \Phi^{T} i \tau_{2} \Delta^{\dagger} \Phi + h.c. \Rightarrow -\mu v_{\Phi} h^{0} H^{0}$ $v_{\Delta} = \frac{\mu v_{\Phi}^{2}}{\sqrt{2}M_{H^{0}}^{2}} \qquad \delta M_{HA} \approx 2M_{H^{0}} \frac{v_{\Delta}^{2}}{v_{0}^{2}} \frac{M_{H^{0}}^{2}}{M_{H^{0}}^{2} - m_{h^{0}}^{2}}$

Δ - $\overline{\Delta}$ Oscillation

WHEPP13 2013-12-15 Puri EJChun@KIAS

Δ - $\overline{\Delta}$ Oscillation

▶ Initial Δ = H⁰ + i A⁰ evolves as

$$\begin{split} |\Delta(t)\rangle &= g_{+}(t)|\Delta\rangle + g_{-}(t)|\overline{\Delta}\rangle \qquad [\Gamma = \Gamma_{H^{0}} = \Gamma_{A^{0}}] \\ g_{\pm}(t) &= \frac{1}{2}e^{-\Gamma t/2} \left(e^{iM_{H^{0}}t} \pm e^{iM_{A^{0}}t}\right) \end{split}$$

• Probabilities of \varDelta going to \varDelta or $\overline{\varDelta}$ are

$$\chi_{\pm} \equiv \frac{\int_0^\infty dt |g_{\pm}(t)|^2}{\int_0^\infty dt |g_{\pm}(t)|^2 + \int_0^\infty dt |g_{\pm}(t)|^2}$$

Same-Sign Tetra-Leptons

Lepton number violating processes:

 $\begin{array}{c} pp \rightarrow \Delta^0 \bar{\Delta}^0 \Rightarrow \Delta^0 \Delta^0 \rightarrow H^+ H^+ 2 W^- \rightarrow H^{++} H^{++} 4 W^- \\ \Delta^+ \bar{\Delta}^0 \Rightarrow \Delta^+ \Delta^0 \rightarrow H^{++} H^+ 2 W^- \rightarrow H^{++} H^{++} 3 W^- \end{array}$

Production cross-section:

$$\begin{split} \sigma\left(4\ell^{\pm} + 3W^{\mp^*}\right) &= \sigma\left(pp \to H^{\pm}H^0 + H^{\pm}A^0\right) \left[\frac{x_{HA}^2}{1 + x_{HA}^2}\right] \mathrm{BF}(H^0/A^0 \to H^{\pm}W^{\mp^*}) \\ &\times \left[\mathrm{BF}(H^{\pm} \to H^{\pm\pm}W^{\mp^*})\right]^2 \left[\mathrm{BF}(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm})\right]^2; \\ \sigma\left(4\ell^{\pm} + 4W^{\mp^*}\right) &= \sigma\left(pp \to H^0A^0\right) \left[\frac{2 + x_{HA}^2}{1 + x_{HA}^2}\frac{x_{HA}^2}{1 + x_{HA}^2}\right] \mathrm{BF}(H^0 \to H^{\pm}W^{\mp^*}) \mathrm{BF}(A^0 \to H^{\pm}W^{\mp^*}) \\ &\times \left[\mathrm{BF}(H^{\pm} \to H^{\pm\pm}W^{\mp^*})\right]^2 \left[\mathrm{BF}(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm})\right]^2. \end{split}$$

Same-Sign Tetra-Leptons

- Is this observable?
 - i) H⁺⁺ is the lightest and $f_{\alpha\beta} > \xi$.
 - ii) ΔM sufficiently large to allow $\Delta^0 \rightarrow H^+ W^- \rightarrow H^{++} 2W^-$. iii) Sizable oscillation parameter: x~1.

$$\delta M_{HA} \sim 2 \frac{v_{\Delta}^2}{v_{\Phi}^2} M_{H^0} \qquad \Gamma_{H^0/A^0} \sim \frac{G_F^2 \Delta M^5}{\pi^3}$$

 $v_{\Delta} \sim 10^{-4} \text{GeV}, \quad \Delta M \sim 2 \text{GeV} \quad \Rightarrow \delta M_{HA} \sim \Gamma_{H^0/A^0} \sim 10^{-11} \text{GeV}$

Triplet decay channels

H^0	A^0	H^+	H^{++}
$\rightarrow t\bar{t}$	$\rightarrow t\bar{t}$	$\rightarrow t\bar{b}$	$\rightarrow \ell^+ \ell^+$
$\rightarrow b\bar{b}$	$\rightarrow b\bar{b}$	$\rightarrow \ell^+ \nu$	$\rightarrow W^{+*}W^{+*}$
$\rightarrow \nu \bar{\nu}$	$\rightarrow \nu \bar{\nu}$	$\rightarrow W^+Z$	
$\rightarrow ZZ$	$\rightarrow Zh^0$	$\rightarrow W^+ h^0$	
$\rightarrow h^0 h^0$	$\rightarrow H^{\pm}W^{\mp^*}$	$\rightarrow H^{++}W^{-*}$	
$\rightarrow H^{\pm}W^{\mp^*}$			

Maximizing the branching fraction

SS4L cross-section

SS4L production including the oscillation factor:

Event numbers

Final State	$\sigma/{\rm fb}~(8~{\rm TeV})$	$\sigma/{\rm fb}~(14~{\rm TeV})$
H^+H^0	0.761	2.931
H^+A^0	0.761	2.931
H^-H^0	0.275	1.209
$H^- A^0$	0.275	1.209
$H^0 A^0$	1.014	4.322

No background Lepton selection cuts only

		Pre-selection	Selection
$15 f b^{-1}$	$\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}$ (LHC8-NH)	4	3
	$\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}$ (LHC8-IH)	9	8
$100 f b^{-1}$	$\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}$ (LHC14-NH)	110	94
	$\ell^\pm\ell^\pm\ell^\pm\ell^\pm$ (LHC14-IH)	240	210

WHEPP13 2013-12-15 Puri EJChun@KIAS

Mass reconstruction

- I-loop process sensitive to New Physics.
- ▶ Its precision data to constrain H⁺⁺ & H⁺ contribution.

Triplet contribution to S,T & U:

Lavoura, Li, 9309262

$$S = -\frac{1}{3\pi} \ln \frac{m_{+1}^2}{m_{-1}^2} - \frac{2}{\pi} \sum_{T_3 = -1}^{+1} (T_3 - Qs_W^2)^2 \xi \left(\frac{m_{T_3}^2}{m_Z^2}, \frac{m_{T_3}^2}{m_Z^2}\right)$$
$$T = \frac{1}{16\pi c_W^2 s_W^2} \sum_{T_3 = -1}^{+1} (2 - T_3(T_3 - 1)) \eta \left(\frac{m_{T_3}^2}{m_Z^2}, \frac{m_{T_3 - 1}^2}{m_Z^2}\right)$$
$$U = \frac{1}{6\pi} \ln \frac{m_0^4}{m_{+1}^2 m_{-1}^2} + \frac{1}{\pi} \sum_{T_3 = -1}^{+1} \left[2(T_3 - Qs_W^2)^2 \xi \left(\frac{m_{T_3}^2}{m_Z^2}, \frac{m_{T_3}^2}{m_Z^2}\right) - (2 - T_3(T_3 - 1)) \xi \left(\frac{m_{T_3}^2}{m_W^2}, \frac{m_{T_3}^2}{m_W^2}\right)\right]$$
$$m_{+1,0,-1} = M_{H^{++},H^+,H^0}$$

• Tree-level contribution is neglected ($\mu \rightarrow 0$).

EWPD

Most recent STU fit:

Baak, et.al., 1209.2716

 $S_{\text{best fit}} = 0.03, \quad \sigma_S = 0.10$ $T_{\text{best fit}} = 0.05, \quad \sigma_T = 0.12$ $U_{\text{best fit}} = 0.03, \quad \sigma_U = 0.10$

 $\rho_{ST} = 0.89, \quad \rho_{SU} = -0.54, \quad \rho_{TU} = -0.83$

It strongly constrains the mass splitting.

$$\begin{pmatrix} \Delta S \\ \Delta T \\ \Delta U \end{pmatrix}^{T} \begin{pmatrix} \sigma_{S}\sigma_{S} & \sigma_{S}\sigma_{T}\rho_{ST} & \sigma_{S}\sigma_{U}\rho_{SU} \\ \sigma_{S}\sigma_{T}\rho_{ST} & \sigma_{T}\sigma_{T} & \sigma_{T}\sigma_{U}\rho_{TU} \\ \sigma_{U}\sigma_{S}\rho_{US} & \sigma_{U}\sigma_{T}\rho_{TU} & \sigma_{U}\sigma_{U} \end{pmatrix}^{-1} \begin{pmatrix} \Delta S \\ \Delta T \\ \Delta U \end{pmatrix}$$

$$< -2\ln(1 - CL)$$

WHEPP13 2013-12-15 Puri EJChun@KIAS

EWPD

 $\lambda_5 = (-0.1, 0.4), \quad (-0.2, 0.6), \quad (-0.35, 0.7)$ $M_{H^{++}} = 100, 150, \text{ and } 200 \text{ GeV},$

WHEPP13 2013-12-15 Puri EJChun@KIAS

Combined results for 10¹⁹ GeV

Melfo, et.al., 1108.4416 EJC & Sharma, 1309.6888

General v_{Δ} - Δ M study

WHEPP13 2013-12-15 Puri EJChun@KIAS

SS4L at LHC13

WHEPP13 2013-12-15 Puri EJChun@KIAS

UV theories of D>5 operators?

• 4-plet Model: $(\Phi^{+++}, \Phi^{++}, \Phi^{+}, \Phi^{0})$.

 $\Phi^{+++} \rightarrow I^+ I^+ W^+, W^+ W^+ W^+$

Babu, et.al., 0905.2710 Bambhaniya, et.al., 1305.2795

Q) SS5L study?

WHEPP13 2013-12-15 Puri EJChun@KIAS

Conclusion

- Great achievements from oscillation observation during past 15 years.
- Further Quest for the nature of neutrino mass: Dirac/Majorana, absolute scale, hierarchy & CPV.
- Neutrino-DM/BAU connection: leptogenesis+ADM.
- Majorana mass models at TeV scale?
- LHC signatures of type I, II, III seesaws: SS2L, displacement, associated Higgs production.
- LHCI3/I4 continues to probe the neutrino signals.
- More for peculiar type II: SS2L resonance, SS4L, Higgs-todiphoton.

Thank you

WHEPP13 2013-12-15 Puri EJChun@KIAS