The origin of the Higgs in the Standard Model

Need to break electroweak symmetry
scalar field interacting with gauge fields

Gauge couplings $\quad g, g^{\prime}$

The origin of the Higgs in the Standard Model

Standard Model: most economical SSB

New degrees of freedom: $4=3+1$

$$
\begin{aligned}
& 3 W_{L}^{ \pm}, Z_{L} \\
& M_{W}=\frac{g}{2} v \quad M_{Z}=\frac{\sqrt{g^{2}+g^{\prime 2}}}{2} v \quad M_{A}=0 \\
& 1 \text { Higgs scalar } h
\end{aligned}
$$

Unitarity

$W W \rightarrow W W$

$$
\mathcal{M}_{\text {gauge }} \sim \frac{s}{M_{W}^{2}}
$$

$s \gg M_{W}^{2}$

Dominant contribution from $\quad W_{L}^{ \pm}, Z_{L}$

Unitarity

Cancellation of linear growing

$$
\mathcal{M}_{\text {gauge }}+\mathcal{M}_{\text {higgs }}
$$

(for a light scalar)

LHC searches
 (and previously LEP and Tevatron)

Fundamental scalar ?
 (at electroweak scale)

SM-like scalar ...

- Different Sectors of the New Boson Couplings tested: $\mathrm{P}_{\mathrm{SM}}>12 \%$ All compatible with SM Higgs expectations

... and nothing else

ATLAS Summary

SUSY searches

(similar for other BSM)

Effective Lagrangian approach

- BSM at high scale would modify $\mathrm{h}(\mathrm{I} 26$) properties
$\wedge \gg M_{W}$
- Integrate heavy dof obtain d=6 operators formed with SM fields

High-enery scale
(suppresses effects)

Describe quasi-SM Higgs
 i.e. SM field with (slightly) modified couplings

Effective Higgs Lagrangians

Eduard Massó
Universitat Autònoma Barcelona

In collaboration with
Joan Elias-Miró, José Ramón Espinosa and Alex Pomarol and S. Gupta and F. Riva work in progress
hep-ph I302.566I and I308.I879

Outline

- Basis of $d=6$ operators
- Constraints on Wilson coeffs.
- Renormalization
- Conclusions

Operator basis

How many independent $\mathrm{d}=6$ operators ?
(after using EOM, partial int., identities to eliminate redundancies)

Buchmuller \& Wyler 86
Grzadkowski, Iskrzynski, Misiak, RosiekIO

Operator basis

How many independent $\mathrm{d}=6$ operators ?
(after using EOM, partial int., identities to eliminate redundancies)

Buchmuller \& Wyler 86
Grzadkowski, Iskrzynski, Misiak, RosiekIO

59 (one family)

59 ways to modify the SM !! (many more for 3 families)

Bosonic

$$
\begin{aligned}
& \mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \\
& \mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)^{2} \\
& \mathcal{O}_{6}=\lambda|H|^{6} \\
& \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\
& \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \\
& \overline{\mathcal{O}}_{2 W}=-\frac{1}{2}\left(\bar{D}^{\bar{\mu}} W_{\mu \nu}^{\bar{a}}\right)^{2} \\
& \mathcal{O}_{2 B}=-\frac{1}{2}\left(\partial^{\mu} B_{\mu \nu}\right)^{2} \\
& \mathcal{O}_{2 G}=-\frac{1}{2}\left(D^{\mu} G_{\mu \nu}^{A}\right)^{2} \\
& \mathcal{O}_{B B}=g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{O}_{G G}=g_{s}^{2}|H|^{2} G_{\mu \nu}^{A} G^{A \mu \nu} \\
& \mathcal{O}_{H W}=i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a} \\
& \mathcal{O}_{H B}=i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \\
& \overline{\mathcal{O}}_{3 W}=\frac{1}{3!} g \epsilon_{a b c} \bar{W}_{\mu}^{a \bar{\nu}} \bar{W}_{\nu \rho}^{\bar{b}} \bar{W}^{c} \overline{\rho \mu} \\
& \mathcal{O}_{3 G}=\frac{1}{3!} g_{s} f_{A B C} G_{\mu}^{A \nu} G_{\nu \rho}^{B} G^{C \rho \mu}
\end{aligned}
$$

\author{

- Adopt SILH basis
}

Giudice Grojean
Pomarol Rattazzi 07

Fermionic

(one family)

$\mathcal{O}_{y_{u}}=y_{u}\|H\|^{2} \bar{Q} \bar{Q}_{L} \tilde{H} u_{R}$	$\mathcal{O}_{y_{d}}=y_{d}\|H\|^{2} \bar{Q}_{L} H d_{R}$	$\mathcal{O}_{y_{e}}=y_{e}\|H\|^{2} \bar{L}_{L} H e_{R}$
$\mathcal{O}_{R}^{u}=\left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)$	$\mathcal{O}_{R}^{d}=\left(i H^{\dagger} D_{\mu} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{R}^{e}=\left(i H^{\dagger}{ }_{D_{\mu}} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$
$\mathcal{O}_{L}^{q}=\left(i H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)$		$\mathcal{O}_{L}^{l}=\left(i H^{+}{\stackrel{\leftrightarrow}{D_{\mu}}}^{\prime} H\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)$
$\mathcal{O}_{L}^{(3) q}=\left(i H^{\dagger} \sigma^{a}{\left.\stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right)}^{\text {a }}\right.$		$\mathcal{O}_{L}^{(3) t}=\left(i H^{\dagger} \sigma^{a}{ }_{D_{\mu}} H\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)$
$\mathcal{O}_{L R}^{u}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)$	$\mathcal{O}_{L R}^{d}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{L R}^{e}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$
$\mathcal{O}_{L R}^{(8) u}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} T^{A} u_{R}\right)$	$\mathcal{O}_{L R}^{(8) d}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} T^{A} d_{R}\right)$	
$\mathcal{O}_{R R}^{u}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)$	$\mathcal{O}_{R R}^{d}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	$\mathcal{O}_{R R}^{e}=\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$
$\mathcal{O}_{L L}^{q}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)$		$\mathcal{O}_{L L}^{l}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)$
$\mathcal{O}_{L L}^{(8) q}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)$		
$\mathcal{O}_{L L}^{q^{-}}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)$		
$\mathcal{O}_{L L}^{(3) q t}=\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)$		
$\mathcal{O}_{L R}^{q e}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$		
$\mathcal{O}_{L R}^{l u}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)$	$\mathcal{O}_{L R}^{L d}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	
$\mathcal{O}_{R R}^{u d}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$		
$\mathcal{O}_{R R}^{(8) u d}=\left(\bar{u}_{R} \gamma^{\mu} T^{A} u_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} T^{A} d_{R}\right)$		
$\mathcal{O}_{R R}^{u e}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$	$\mathcal{O}_{R R}^{\text {de }}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$	
$\mathcal{O}^{u d}=y_{u}^{\dagger} y_{d}\left(i \widetilde{H}^{\dagger}{\stackrel{\leftrightarrow}{D_{\mu}}}^{H}\right)\left(\bar{u}_{R} \gamma^{\mu} d_{R}\right)$		
$\mathcal{O}_{y_{u} y_{d}=y_{u} y_{d}\left(\bar{Q}_{L}^{\text {r }} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} d_{R}\right)}$		
$\mathcal{O}_{y_{u} y_{d}}^{(8)}=y_{u} y_{d}\left(\bar{Q}_{L}^{r} T^{A} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} T^{A} d_{R}\right)$		
$\mathcal{O}_{y_{u} y_{e}}=y_{u} y_{e}\left(\bar{Q}_{L}^{r} u_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} e_{R}\right)$		
$\mathcal{O}_{y_{u} y_{e}}^{\prime}=y_{u} y_{e}\left(\bar{Q}_{L}^{\alpha \alpha} e_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} u_{R}^{\alpha}\right)$		
$\mathcal{O}_{y_{e} y_{d}}=y_{c} y_{d}^{\dagger}\left(\bar{L}_{L} e_{R}\right)\left(\bar{d}_{R} Q_{L}\right)$		
$\mathcal{O}_{D B}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \widetilde{H} g^{\prime} B_{\mu \nu}$	$\mathcal{O}_{D B}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} H g^{\prime} B_{\mu \nu}$	$\mathcal{O}_{D B}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} H g^{\prime} B_{\mu \nu}$
$\mathcal{O}_{D W}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \sigma^{a} \widetilde{H} g W_{\mu \nu}^{a}$	$\mathcal{O}_{D W}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} \sigma^{a} \mathrm{HgW}^{a}{ }^{a}$	$\mathcal{O}_{D W}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} \sigma^{a} H g W_{\mu \nu}^{a}$
$\mathcal{O}_{D G}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} T^{A} u_{R} \widetilde{H} g_{s} G_{\mu \nu}^{A}$	$\mathcal{O}_{D G}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} T^{A} d_{R} H g_{s} G_{\mu \nu}^{A}$	

"Tree" vs "Loop"

Artz Einhorn Wudka 95

In weakly renormalizable coupled theories High-energy origin of effective opers.

$$
J_{f}^{\mu} J_{f \mu}
$$

$\mathcal{O}_{\text {loop }}$

Current x Current

In general, we keep this separation:

- ops Current x Current (call them Tree)
- other ops (call them Loop)

Is Well-defined classification
It Proves convenient for many purposes
Expected with different sizes in many favorite theories (SUSY, 2 H model, etc)

Blue or Red

TREE

TREE

I have choosen a basis

Physics is independent of basis, but there may be some more convenient than others (In general it depends on the objective)

Cleanest connection observable-operator
Keep tree-loop separated
Is Avoid (or at least control) blind directions i.e. directions not bounded by a set of exps.

I Capture in few opers impact of BSM models (SUSY, 2H, ...)
\pm Show some BSM symmetries

Modifications to Higgs couplings

- restrict to CP-even modifications

Modifications to Higgs couplings

$$
\begin{aligned}
\mathcal{L}_{h}= & g_{h f f} h\left(\bar{f}_{L} f_{R}+\text { h.c. }\right)+g_{h V V} h V^{\mu} V_{\mu} \\
& +g_{h Z f_{L} f_{L}} h Z_{\mu} \bar{f}_{L} \gamma^{\mu} f_{L}+g_{h Z f_{R} f_{R}} h Z_{\mu} \bar{f}_{R} \gamma^{\mu} f_{R} \\
& +g_{h W f_{L} f_{L}^{\prime}} h W_{\mu} \bar{f}_{L} \gamma^{\mu} f_{L}^{\prime}+g_{h h h} h^{3} \\
& +g_{\partial h W W}\left(W^{+\mu} W_{\mu \nu}^{-} \partial^{\nu} h+\text { h.c. }\right)+g_{\partial h Z Z} Z^{\mu} Z_{\mu \nu} \partial^{\nu} h \\
& +g_{h Z Z}^{\prime} h Z^{\mu \nu} Z_{\mu \nu}+g_{h A A} h A^{\mu \nu} A_{\mu \nu}+g_{\partial h A Z} Z^{\mu} A_{\mu \nu} \partial^{\nu} h \\
& +g_{h A Z} h A^{\mu \nu} Z_{\mu \nu}+g_{h G G} h G^{A \mu \nu} G_{\mu \nu}^{A}
\end{aligned}
$$

Departures from SM are generated by Wilson coeff. of $d=6$ operators

How many? Which ones? Are they already constrained?

- One family
- Only CP-even ops.

| 8 Relevant Higgs operators

Bosonic

$$
\begin{aligned}
\mathcal{O}_{T} & =\frac{1}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D} \mu H\right)^{2} \\
\mathcal{O}_{H} & =\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \\
\mathcal{O}_{6} & =\lambda|H|^{6} \\
\mathcal{O}_{W} & =\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\
\mathcal{O}_{B} & =\frac{i g^{\prime}}{2}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \\
\mathcal{O}_{G G} & =g_{s}^{2}|H|^{2} G_{\mu \nu}^{A} G^{A \mu \nu} \\
\mathcal{O}_{B B} & =g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
\mathcal{O}_{H W} & =i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a} \\
\mathcal{O}_{H B} & =i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}
\end{aligned}
$$

I 8 Relevant Higgs operators

Fermionic

$$
\begin{aligned}
\mathcal{O}_{y_{u}} & =y_{u}|H|^{2} \bar{Q}_{L} \widetilde{H} u_{R} \\
\mathcal{O}_{y_{d}} & =y_{d}|H|^{2} \bar{Q}_{L} H d_{R} \\
\mathcal{O}_{y_{e}} & =y_{e}|H|^{2} \bar{L}_{L} H e_{R} \\
\mathcal{O}_{R}^{u} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\
\mathcal{O}_{R}^{d} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\
\mathcal{O}_{R}^{e} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\
\mathcal{O}_{L}^{q} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right) \\
\mathcal{O}_{L}^{(3) q} & =\left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right) \\
\mathcal{O}_{L L}^{(3) l} & =\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)
\end{aligned}
$$

- Can assume 3 families, impose Minimal Flavour Violation MFV

Constraints from pre-Higgs era:

$8+2$

Z-peak M_W
EW low energy meas.
LEP2 Triple-gauge-boson vertex (LHC will do better than LEP2)

$$
S, T, M_{W}, Z \rightarrow \bar{f} f
$$

$$
g_{Z}^{1}, \kappa_{\gamma}
$$

- No dominance of tree ops assumed

Constraints from pre-Higgs era: 8 + 2

$$
\begin{aligned}
\mathcal{O}_{T} & =\frac{1}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D} \mu H\right)^{2} \\
\mathcal{O}_{H} & =\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \\
\mathcal{O}_{6} & =\lambda|H|^{6} \\
\mathcal{O}_{W} & =\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\
\mathcal{O}_{B} & =\frac{i g^{\prime}}{2}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \\
\mathcal{O}_{G G} & =g_{s}^{2}|H|^{2} G_{\mu \nu}^{A} G^{A \mu \nu} \\
\mathcal{O}_{B B} & =g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
\mathcal{O}_{H W} & =i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a} \\
\mathcal{O}_{H B} & =i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{y_{u}} & =y_{u}|H|^{2} \bar{Q}_{L} \widetilde{H} u_{R} \\
\mathcal{O}_{y_{d}} & =y_{d}|H|^{2} \bar{Q}_{L} H d_{R} \\
\mathcal{O}_{y_{e}} & =y_{e}|H|^{2} \bar{L}_{L} H e_{R} \\
\mathcal{O}_{R}^{u} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\
\mathcal{O}_{R}^{d} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\
\mathcal{O}_{R}^{e} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\
\mathcal{O}_{L}^{q} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu} H} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right) \\
\mathcal{O}_{L}^{(3) q} & =\left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right) \\
\mathcal{O}_{L L}^{(3) l} & =\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)
\end{aligned}
$$

Constraints from pre-Higgs era: 8 + 2

$$
\begin{aligned}
& \mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)^{2} \\
& \mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \\
& \mathcal{O}_{6}=\lambda|H|^{6} \\
& \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\
& \mathcal{O}_{W}+\mathcal{O}_{B} \longleftarrow \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} I I\right) \partial^{\nu} B_{p \mu \nu} \\
& \mathcal{O}_{G G}=g_{s}^{2}|H|^{2} G_{\mu \nu}^{A} G^{A \mu \nu} \\
& \mathcal{O}_{B B}=g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{O}_{W W} \mathcal{O}_{H W}=\left(D^{\mu} H\right)_{\sigma}^{\dagger}\left(D^{\nu} H\right){ }_{\mu \nu}^{a} \\
& \mathcal{O}_{W W}=4\left(\mathcal{O}_{W}-\mathcal{O}_{B}\right)-4\left(\mathcal{O}_{H W}-\mathcal{O}_{H B}\right)+\mathcal{O}_{B B} \\
& \mathcal{O}_{y_{u}}=y_{u}|H|^{2} \bar{Q}_{L} \widetilde{H} u_{R} \\
& \mathcal{O}_{y_{d}}=y_{d}|H|^{2} \bar{Q}_{L} H d_{R} \\
& \mathcal{O}_{y_{e}}=y_{e}|H|^{2} \bar{L}_{L} H e_{R} \\
& \mathcal{O}_{R}^{u}=\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\
& \mathcal{O}_{R}^{d}=\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\
& \mathcal{O}_{R}^{e}=\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\
& \mathcal{O}_{L}^{q}=\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right) \\
& \mathcal{O}_{L}^{(3) q}=\left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right) \\
& \mathcal{O}_{L L}^{(3) l}=\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)
\end{aligned}
$$

Constraints from pre-Higgs era: 8 + 2

$$
\begin{aligned}
& \mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)^{2} \\
& \mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \\
& \mathcal{O}_{6}=\lambda|H|^{6} \\
& \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\
& \mathcal{O}_{W}+\mathcal{O}_{B} \longleftarrow \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger}{\stackrel{\leftrightarrow}{D^{\mu}}} I\right) \partial^{\nu} B_{H \nu} \\
& \mathcal{O}_{G G}=g_{s}^{2}|H|^{2} G_{\mu \nu}^{A} G^{A \mu \nu} \\
& \mathcal{O}_{B B}=g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{O}_{W W} \mathcal{O}_{H W}=\left(D^{\mu} H\right)_{\sigma}^{\dagger}\left(D^{\nu} I\right){ }_{\mu \nu}^{a}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{y_{u}} & =y_{u}|H|^{2} \bar{Q}_{L} \widetilde{H} u_{R} \\
\mathcal{O}_{y_{d}} & =y_{d}|H|^{2} \bar{Q}_{L} H d_{R} \\
\mathcal{O}_{y_{e}} & =y_{e}|H|^{2} \bar{L}_{L} H e_{R} \\
\mathcal{O}_{R}^{u} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\
\mathcal{O}_{R}^{d} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\
\mathcal{O}_{R}^{e} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\
\mathcal{O}_{L}^{q} & =\left(i H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right) \\
\mathcal{O}_{L}^{(3) q} & =\left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H\right)\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right) \\
\mathcal{O}_{L L}^{(3) l} & =\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right)
\end{aligned}
$$

Constraints from pre-Higgs era: 8 + 2

$><8$ at $10^{\wedge}-3$

Constraints from pre-Higgs era: 8 + 2

8 "only-Higgs-Physics" operators

$$
\begin{gathered}
\mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \quad \begin{aligned}
& \mathcal{O}_{y_{u}}=y_{u}|H|^{2} \bar{Q}_{L} \widetilde{H} u_{R} \\
& \mathcal{O}_{6}=\lambda|H|^{6} \mathcal{O}_{y_{d}}=y_{d}|H|^{2} \bar{Q}_{L} H d_{R} \\
& \mathcal{O}_{y_{e}}=y_{e}|H|^{2} \bar{L}_{L} H e_{R} \\
& \mathcal{O}_{G G}=g_{s}^{2}|H|^{2} G_{\mu \nu}^{A} G^{A \mu \nu} \\
& \mathcal{O}_{B B}=g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{O}_{W W}=g^{2}|H|^{2} W_{\mu \nu}^{a} W^{a \mu \nu}
\end{aligned} .
\end{gathered}
$$

- Operators have form $\quad|H|^{2} \mathcal{O}_{4} \rightarrow(v+h)^{2} \mathcal{O}_{4}$

Of these 8 ops: 5 tree +3 loop

8 "only-Higgs-Physics" operators

$$
\begin{aligned}
& V B F \mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}|H|^{2}\right)^{2} \\
& \begin{array}{l}
\frac{O_{y_{u}}=y_{u}|H|^{2} \bar{Q}_{L} H u_{R}}{} h t t \\
\frac{O_{y_{d}}=y_{d}|H|^{2} \bar{Q}_{L} H d_{R}}{} h b b \\
\sigma_{u_{e}}=y_{e}|H|^{2} \bar{L}_{L} H e_{R}
\end{array} h \tau \tau \\
& \begin{array}{r}
h G G<\begin{array}{l}
\mathcal{O}_{G G}=g_{s}^{2}|H|^{2} G_{\mu \nu}^{A} G^{A \mu D} \\
O_{B B}=g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu 队} \\
\mathcal{O}_{W W}=g^{2}|H|^{2} W_{\mu \nu}^{a} W^{a \mu \nu}
\end{array}
\end{array}
\end{aligned}
$$

- Operators have form

$$
|H|^{2} \mathcal{O}_{4} \rightarrow(v+h)^{2} \mathcal{O}_{4}
$$

Of these 8 ops: 5 tree +3 loop

8 "only-Higgs-Physics" coefficients

- LHC measurements already put strict bounds on some of the coeffs of operators

$$
h G G \quad h \gamma \gamma \quad h \gamma Z
$$

- The Higgs LHC measurements do not lead to further constraints on non-Higgs physics.

Renormalization

Anomalous dimensions of Wilson coefficients

$$
\begin{aligned}
& c_{i}(\wedge) \\
& \downarrow \\
& c_{i}\left(M_{H}\right) \\
& \Delta c_{i} \sim \gamma_{i j} \frac{c_{j}}{16 \pi^{2}} \log \Lambda / M_{H}
\end{aligned}
$$

Corrections will be important when more precise Higgs data will be available

We have calculated all anomalous dimensions with larger impact on Higgs physics.

Elias-Miro et al 1308.|879

Example: $\quad \Delta c_{i} \equiv c_{i}\left(M_{t}\right)-c_{i}(2 \mathrm{TeV})$

$$
\begin{aligned}
\Delta \widehat{T} & =\Delta c_{T} \xi=\left[-0.003 c_{H}+0.16\left(c_{L}-c_{R}\right)\right] \xi \\
\Delta \widehat{S} & =\Delta\left(c_{B}+c_{W}\right) \frac{M_{W}^{2}}{\Lambda^{2}}=\left[0.001 c_{H}-0.01 c_{R}-0.004 c_{L}-0.03 c_{L}^{(3)}\right] \xi \\
\Delta \frac{\delta g_{Z}^{b_{L}}}{g_{Z}^{b_{L}}} & =\frac{\Delta\left[c_{L}+c_{L}^{(3)}\right]}{1-(2 / 3) \sin ^{2} \theta_{W}} \xi \simeq \Delta\left[c_{L}+c_{L}^{(3)}\right] \xi \\
\uparrow & =\left[0.01 c_{R}-0.03 c_{L}+0.06 c_{L}^{(3)}-0.17 c_{L L}-0.0064 c_{L L}^{(8)}+0.08 c_{L R}\right] \xi
\end{aligned}
$$

Very
constrained

Could be large (top)

Anomalous dimensions calculated also in Jenkins et al I 308.2627 and I 310.4838

Tree -> loop mixing

$$
\begin{gathered}
\kappa_{l o o p}(\Lambda) \\
\kappa_{\text {loop }}\left(M_{H}\right) \\
\Delta \kappa_{\text {loop }} \sim \gamma \frac{c_{\text {tree }}}{16 \pi^{2}} \log \wedge / M_{H}
\end{gathered}
$$

$$
\kappa_{\text {loop }} \ll c_{\text {tree }}
$$

- Mixing from tree operator can be important

$$
h \rightarrow \gamma \gamma, \quad \gamma Z
$$

These decays described by loop ops.
Question:
Are there RGE contributions from tree ops. ?

$$
h \rightarrow \gamma \gamma, \quad \gamma Z
$$

These decays described by loop ops.
Question:
Are there RGE contributions from tree ops. ?

Answer: NO

Easy problem to solve if one chooses a convenient basis and takes into account all elements of basis.
is Answer independent of basis

$$
\begin{aligned}
& \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\
& \mathcal{O}_{B B}=g^{\prime 2}|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \\
& \mathcal{O}_{W B}=g g^{\prime}\left(H^{\dagger} \sigma^{a} H\right) W_{\mu \nu}^{a} B^{\mu \nu} \\
& \mathcal{O}_{W W}=g^{2}|H|^{2} W_{\mu \nu}^{a} W^{a \mu \nu} \\
& \frac{d}{d \log \mu}\left(\begin{array}{c}
\kappa_{B B} \\
\kappa_{W W} \\
\kappa_{W B} \\
c_{W} \\
c_{B}
\end{array}\right)=\left(\begin{array}{cc}
\Gamma & 0_{3 \times 2} \\
0_{2 \times 3} & X
\end{array}\right)\left(\begin{array}{c}
\kappa_{B B} \\
\kappa_{W W} \\
\kappa_{W B} \\
c_{W} \\
c_{B}
\end{array}\right) \\
& \text { Elias-Miro et al } \\
& \text { |302.566| }
\end{aligned}
$$

Rest of tree-loop mixing also vanishes

"Tree -> Loop" mixing In general

- $59=39$ (tree) +20 (loop)

All tree->loop anomalous dimensions vanish, except for only 3 tree operators

"Tree -> Loop" mixing In general

- $59=39$ (tree) +20 (loop)

All tree->loop anomalous dimensions vanish, except for only 3 tree operators

Physics:
Scalar leptoquarks and heavy double charged higgs induce $4 f$ that:

see, for example, Akeroyd et al 0610344 Benbrik et al I009.3886

Conclusions

- d=6 operators used to analyze Higgs and EW data
- Convenient to separate tree and loop operators
- Found hierarchy of constraints on Wilson coeffs
- 8Wilson coeffs describe Higgs physics at LHC
- Relevant anomalous dimensions calculated

Additional

$$
\begin{gathered}
c_{B} \mathcal{O}_{B} \leftrightarrow c_{B} \frac{g^{\prime 2}}{g_{*}^{2}}\left[-\frac{1}{2} \mathcal{O}_{T}+\frac{1}{2} \sum_{f}\left(Y_{L}^{f} \mathcal{O}_{L}^{f}+Y_{R}^{f} \mathcal{O}_{R}^{f}\right)\right], \\
c_{W} \mathcal{O}_{W} \leftrightarrow c_{W} \frac{g^{2}}{g_{*}^{2}}\left[-\frac{3}{2} \mathcal{O}_{H}+2 \mathcal{O}_{6}+\frac{1}{2}\left(\mathcal{O}_{y_{u}}+\mathcal{O}_{y_{d}}+\mathcal{O}_{y_{e}}\right)+\frac{1}{4} \sum_{f} \mathcal{O}_{L}^{(3) f}\right], \\
\mathcal{O}_{B}=\mathcal{O}_{H B}+\frac{1}{4} \mathcal{O}_{B B}+\frac{1}{4} \mathcal{O}_{W B}, \\
\mathcal{O}_{W}=\mathcal{O}_{H W}+\frac{1}{4} \mathcal{O}_{W W}+\frac{1}{4} \mathcal{O}_{W B} .
\end{gathered}
$$

$$
\begin{aligned}
& \delta \mathcal{L}_{3 V} \\
&= i g \cos \theta_{W}\left[\delta g_{1}^{Z} Z^{\mu}\left(W^{-\nu} W_{\mu \nu}^{+}-W^{+\nu} W_{\mu \nu}^{-}\right)\right. \\
&\left.+\delta \kappa_{Z} Z^{\mu \nu} W_{\mu}^{-} W_{\nu}^{+}\right] \\
&+i g \sin \theta_{W}\left[\delta \kappa_{\gamma} A^{\mu \nu} W_{\mu}^{-} W_{\nu}^{+}\right]
\end{aligned}
$$

