Euclidean Geometry, Analysis and Physics

Nitin Nitsure

School of Mathematics, Tata Institute of Fundamental Research, Mumbai nitsure@math.tifr.res.in

Pythagoras

- Natural numbers. Rational numbers p/q. Real numbers.
- Ancients did not know real numbers. Dedekind 1860.
 Completeness. Set theory.
- Pythagoras (550 BC): $\sqrt{2}$ is irrational. Means, there is no such number!
- Right triangle theorem.
- Orisis!

Euclid

- Euclid Elements (300 BC): Definitions. Axioms. Theorems.
 Proofs.
- No real numbers, so no distances and lengths.
- Fundamental role of congruence.
- Direct meaning of congruence via 'motion'.
- Practical measurement of length is indeed via motion!

Group of symmetries

- The set of motions is a group E(2).
- Composite. Associativity, identity, inverse.
- Not commutative.
- In all situations, symmetries form a group.
- In return the properties of group sheds light on the structure.
- Galois 1830.
- Felix Klein 1870: Erlangen program.
- Emmy Noether 1915 : Invariants, conservation laws.

Coordinates

- Descartes, Fermat, 1600.
- How cartesian coordinate frames are laid.
- How the group E(2) looks in coordinate terms.
- Semidirect product $\mathbb{R}^2 \rtimes O(2)$.
- How to compare coordinates.
- Euclidean geometry: study of properties of \mathbb{R}^2 and of structures on it, which are invariant under E(2) (look the same in terms of all cartesian coordinate frames).
- Relation with Pythagorean metric $ds^2 = dx^2 + dy^2$.
- The metric gives rise to the affine structure.

Orientation, spin structure

- Left handed, right handed in \mathbb{R}^n . Orientation.
- Group $SE(n) = \mathbb{R}^n \times SO(n)$.
- Spin structure on \mathbb{R}^n for $n \ge 2$. Physical meaning. Elie Cartan 1913. Dirac 1928.
- Group $\mathbb{R}^n \times Spin(n)$.
- $Spin(2) = S^1$. $Spin(3) = S^3 = SU(2)$.

Euclidean geometry

- What structures to study on \mathbb{R}^n ? Subsets. Mountains on a plane. Functions. Effect of E(n).
- The oriented Euclidean line \mathbb{R}^1 . Time. Sound.
- Pure notes. Effect of translation: just the phase changes.
 Eigenvectors.
- Fourier 1820. Sound analyzed into pure notes. Fourier transform

$$\widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int e^{-i\omega t} f(t) dt$$

Re-constitution using pure notes: inverse Fourier transform

$$\widehat{f}(t) = \frac{1}{\sqrt{2\pi}} \int e^{i\omega t} \widehat{f}(\omega) d\omega$$

• Decomposition of $L^2(\mathbb{R}^1)$ under translations: Spectral decomposition for id/dx. Momentum in QM.

Decomposition of $L^2(\mathbb{R}^2)$ under SE(2)

- Plane waves $e^{ip \cdot x}$. Magnitude $||p||^2 = p_x^2 + p_y^2$ invariant under SE(2).
- Invariant operator of multiplication by $||p||^2$ in dual space ('momentum space').
- Laplacian

$$\Delta = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$$

This operator is SE(2)-invariant. $L^2(\mathbb{R}^2)$ decomposes as the continuous spectral decomposition of Δ .

• Representation of $\mathbb{R}^2 \times S^1$ on $L^2(S^1)$ by

$$((a,z)\cdot f)(w)=e^{-i\langle p,w^{-1}a\rangle}\,f(z^{-1}w)$$

• The above for different positive values of ||p||, together with the characters $\chi_n(a, z) = z^n$ are exactly all the different irreducible unitary representation of SE(2). (Frobenius \sim 1900. Dirac, Majorana, Wigner: 1928-1937. Mackey machine ~1950: generalization.)

Galilean relativity

- Spacetime \mathbb{R}^4 . Events as points.
- Inertial observer. Inertial frame. Coordinate transformation. The Galilean group.
- Affine space structure. The constant 1-form dt. Constant Euclidean metric on the kernel of dt. Orientation.
- The Galilean group G as the group of affine transformations of \mathbb{R}^4 which preserves orientation, dt and $e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3$. $G = \mathbb{R}^4 \rtimes H \subset \mathbb{R}^4 \rtimes SL(4,\mathbb{R})$.
- Representation theory for G: apply Mackey machine and rep theory for SO(3) and SE(2).

Special relativity

- The Lorentz group came first. Minkowski metric came later!
- \mathbb{R}^4 with metric tensor $dt^2 (1/c^2)(dx^2 + dy^2 + dz^2)$. Tensor $(1/c^2)e_0 \otimes e_0 e_1 \otimes e_1 e_2 \otimes e_2 e_3 \otimes e_3$. Limit as $c \to \infty$ gives the two different tensors of Galileo. Affine structure is a consequence of the metric!
- Lorentz group (proper, orthochronous): $L \subset SL(4,\mathbb{R})$, preserves metric, orientation and time orientation, and fixes a chosen 'origin'.
- Poincare group (proper, orthochronous):
 P = ℝ⁴ ⋈ L ⊂ ℝ⁴ ⋈ SL(4, ℝ), preserves metric, orientation and time orientation.
- Sky. The group L as $PSL(2,\mathbb{C})$. Universal cover (spin group) is $SL(2,\mathbb{C})$. $\widehat{P} = \mathbb{R}^4 \rtimes SL(2,\mathbb{C})$ universal cover of P.
- In 2 + 1 dimension, $L_{2,1}$ is $PSL(2,\mathbb{R})$. Spin group (2-sheeted cover) is $SL(2,\mathbb{R})$.

The main question of physics

- The state of the world, w.r.t. an inertial coordinate frame.
- Question: What will the state be, after some time? Time evolution of the state.
- What is the state w.r.t. other inertial frames.
- Master question: how does the Poincare group P (or rather, \widehat{P}) act on the set (or 'space') of all states?
- Quantum mechanics: the state is represented by a non-zero vector (unique up to a scalar multiple) in a Hilbert space. Inner product in the Hilbert space is physically meaningful.
- Unitary representations of \widehat{P} . (Projective representations of $SL(2,\mathbb{C})$ necessarily lift to linear reps.)

Wigner's physical interpretation

- Any unitary representation of \widehat{P} decomposes into a 'sum' (direct integral) of irreducible unitary representations.
- Irreducibility must correspond to physical indecomposability. So, these must be the 'elementary' particles.
- Wigner (1940) applied Frobenius theory (Mackey machine) to the semi-direct product $\widehat{P}=\mathbb{R}^4\rtimes SL(2,\mathbb{C})$ to get its irreducible unitary representations in terms of those of $SU(2)\subset SL(2,\mathbb{C})$ and of $SL(2,\mathbb{R})\subset SL(2,\mathbb{C})$.
- Bargmann (1947) determined the irreducible unitary representations $SL(2,\mathbb{R})$. Harish Chandra.
- Description of the representations via 'fields' and 'field equations'.
- Mass and spin.
- Spin statistics theorem.

Gauge theories

- Physical properties apart from mass and spin (such as charge) need more structure.
- \widehat{P} -equivariant principal bundles on spacetime with other structure groups ('inner degrees of freedom').
- $U(1) \times SU(2) \times SU(3)$. Yang-Mills theories.
- The question of physics remains the same: what is the action of \widehat{P} on the state space.
- Challenge 1: Describe mathematically an interactive quantum field theory on Minkowskian \mathbb{R}^4 .
- Challenge 2: State the 'main question of physics' in a spacetime which is not Minkowski (as in general relativity), so there is no symmetry group \hat{P} , or even a time translation symmetry.