• Design of Six-gap MRPC and its optimization

Proposed structure with six sub-gaps

Outer glass plates with conductive coat, connected to high voltage

Inner glass plates, electrically floating and transparent to fast signals

- We started with small dimension The two outer electrodes \rightarrow 7.5 cm \times 6.5 cm The intermediate electrodes \rightarrow 7 cm \times 6 cm Thickness \sim 400 μ m
- The detector was confined in a sealed enclosure through which the gas mixture was passed.

The first design

• 3 events were recorded!

• Frequent sparking damaged the detector.

• Switching to bigger dimension.

Outer electrodes 31 cm \times 31 cm, Intermediate ones 27 cm \times 27 cm.

- A sealed enclosure for gas flow.
- Problems: Alignment of the external trigger Ensuring a proper gas flow through the sub gaps.

The optimized design

Development of MRPC (6-gap) at TIFR.

- Conductive graphite coat on external electrodes: surface resistances (0.5-1) $M\Omega/\Box$
- Spacers: Diameter 4mm, Thickness 250 μ m [2-sided non conducting adhesive tapes (100 μ m) sticked on Mylar sheet (70 μ m)]

Fabrication: Design of Spacers and blockers

- The edges of the MRPCs are sealed using side spacers, and gas is flown through nozzles fitted at the four corners
- To ensure a proper gas flow through the sub-gaps, blockers are used

• The experimental set-up

(a) View along the strip

(b) View perpendicular to the strip

The Set up

9.5 m\

50 7 m

• The data acquisition system

NINO ASIC

- Its an ultra fast front end preamplifier-discriminator chip, initially designed for MRPCs in the ALICE TOF experiment
- Each chip has got 8 channels. Each channel is designed with an amplifier with <1ns peaking time, a discriminator with a minimum detection threshold of 10fC, and an output stage

Ref. Anghinolfi et al., NIM A 533(2004) 183-187

• Characterization

Characterization: Optimization of gas mixture

- A gas mixture with R134a(90%), C₄H₁₀(5%), SF₆(5%) was optimized for timing study with MRPCs in some experiments
- Higher SF₆ in the gas mixture quences the ionisation quickly, it helps us to operate the MRPC at higher voltages without a much shot up noise rate, and the time resolution improves
- Proportion of C_4H_{10} is kept at 4.94%.
- Proportions of SF₆ and R134a are varied

 $4\% SF_6$: Reasonable reduction in noise rate & chamber current, efficiency not deteriorated

Characterization with Applied Voltage

Gas composition: R134a(91.06%), $C_4H_{10}(4.94\%)$, $SF_6(4\%)$

HV: Reasonable noise rate and chamber current at 17.9 kV

MRPC as a part of trigger for single-gap RPC

	Trigger	<i>Eff</i> .(%)	Time res(ns)	$Count(\frac{Hz}{cm^2})$	I(nA)
1	P1, P2	85	1.52	1.5	305
11	P1, P2, MRPC	86.9	0.9	2.85	312
	P1, P2, MRPC	87.1	0.87	1.93	320

• Timing study

Time walk correction

Fitted to $\exp(-a0/x + a1) + a2$ Anusparsh preamplifier used to obtain both analog and digital output for this work

Correcting the timing distributions for time walk

Also includes electronic jitter [15 – 25 ps]

- 6-gap MRPC design has been optimized and the MRPCs are now in operation
- MRPC characteristics e.g. efficiency, noise rate and leakage current are studied at different operating voltages
- The gas mixture of R134a, C_4H_{10} , SF_6 has been optimized
- $\bullet\,$ Time resolution $\sim\,60\,$ ps

- To test the detector stack for various applications. The use of it as a part of the external trigger for single gap RPCs show promising result.
- TOF study with MRPCs.
- Upgradation to double stack configuration.
- Fabrication of larger MRPCS (100 cm \times 100 cm).

 Prof N.K. Mondal, Prof V.M. Datar, Prof G. Majumder, R.R. Shinde, P. Verma, S. R. Joshi, Mandar Saraf, Darshana Gonji, Santosh Chavan, Vishal Asgolkar

Thank You!