

synechococcus

http://mcb.harvard.edu/Faculty/Berg.html

Low Reynolds number swimming

inertial

$$\partial_{t} \left(nu_{\gamma} \right) + \partial_{\alpha} \left(nu_{\gamma} u_{\alpha} \right) = \frac{\text{viscous}}{-\partial_{\alpha} p + \nu \partial_{\beta}} \left(\partial_{\alpha} u_{\beta} + \partial_{\beta} u_{\alpha} + \frac{1}{3} \partial_{\gamma} u_{\gamma} \delta_{\alpha\beta} \right)$$

Re ~ inertial terms / viscous terms ~ length x velocity / viscosity ~ 10^{-6}

Navier-Stokes equations \rightarrow Stokes equations which are time reversible

Need a non-reciprocal cycle for swimming (Purcell, Shapere, Wilczek)

Micron scale swimmers

Dreyfus et al, Nature 2005

Low Reynolds number swimming

three sphere swimmer Najafi and Golestanian, 2004

Snake swimmer

A generalised three sphere swimmer

Radial and tangential motion

forward motion

turning motion

Swimming with friends at low Reynolds number

1. Low Re swimming

2. The three-sphere swimmer and its flow field not a generic swimmer

3. Swimmer-swimmer interactions the importance of relative phase

4. Swimmer-swimmer scattering consequence of time reversal invariance

5. Dumbbell swimmers

6. Many swimmers

Oseen tensor hydrodynamics

$$v_{i} = H_{ij}F_{j}$$

$$H_{ii} = \frac{1}{6\pi\eta R}, \qquad i = j$$

$$H_{ij} = \frac{1}{8\pi\eta r} \Big(\delta_{ij} + \hat{r}_{i}\hat{r}_{j} \Big), \qquad i \neq j$$

Shape change :

$$\mathbf{v}_2 - \mathbf{v}_1 = \mathbf{W}$$
$$\mathbf{v}_1 - \mathbf{v}_3 = \mathbf{0}$$

Enforce: no external forces or torques

$$\sum_{i} \mathbf{F}_{i} = \mathbf{0} \qquad \sum_{i} \mathbf{F}_{i} \times \mathbf{r}_{i} = \mathbf{0}$$
Oseen tensor (Stokes flow)
$$\mathbf{v}_{i} = \sum_{j=1}^{N} \mathbf{H}_{ij} \mathbf{F}_{j}$$

 \mathcal{E} length of swimming stroke

Displacement in a swimming stroke

$$\frac{7}{12}R\left(\frac{\varepsilon}{D}\right)^2$$

1. Time-averaged flow field – large r

dipole

+

quadrupole

 $\frac{1}{r}$

<u>Time-averaged flow field – large r</u>

 $\left(\frac{1}{r}\right)^3$

dipole +

 $\left(\frac{1}{r}\right)^2$

quadrupole

T-duality

1. Time-averaged flow field – large r

3-sphere, extensions different

 $\left(\frac{1}{r}\right)^2$

 $\frac{1}{r}$

3-sphere, extensions same (self T-dual)

 $\left(\frac{1}{r}\right)^3$

2. Two Golestanian swimmers in phase

Two Golestanian swimmers

л out of phase

$\pi/2$ out of phase

Two Golestanian swimmers

л out of phase

 $\pi/2$ out of phase

Relative phase matters – cannot treat a swimmer as a passive scalar

Non self T-dual swimmers

Swimming with friends at low Reynolds number

1. Low Re swimming

2. The three-sphere swimmer and its flow field not a generic swimmer

3. Swimmer-swimmer interactions the importance of relative phase

4. Swimmer-swimmer scattering consequence of time reversal invariance

5. Dumbbell swimmers

6. Many swimmers

Swimmer-swimmer scattering

Hydrodynamic scattering

Oseen tensor method breaks down

EXCHANGE trajectories

Both swimmers TURN in same direction

impact parameter

ie swimmers are duals under time reversal

If A,B are mutually T-dual swimmers the final state after scattering is the same as the initial state before scattering

Swimmers that are not T-dual

phase locking: two collinear swimmers

phase difference between the swimmers

extensile

time

Phase locking: two dimensions

phase locking: three co-linear swimmers

relative phase

time

Phase locking: three co-linear pumps

Dumbbell swimmers

number of dipoles

displacement after a long time

		1			1			_	I	1		1	I	I	-
	:	:	:	:	:	:	:	••	:	••	:	••	1	••	:
ī	:	:	1	:	:	1	:	•	••	1	••	:	••	1	••
	:	:	:	:	:	:	:	••	:	••	:	••	1	••	: -
	:	:	1	:	1	1	:		••	1	••	:	••	1	••
•	:	:	:	:	:	:	:	••	:		:	••	:	••	:
	:	:	:	:	:	:	:	:	••	:	••	:	••	:	••
Ī	:	:	:	:	:	:	:	••	:	••	:	••	:	••	:
	1 ,	1 ,	1 .	1	1	1 ,	1 -	•		1 .		. •		9 .	

Ray Goldstein <u>http://www.dampt.cam.ac.uk/user/gold/movies.html</u>

Many dumbbell swimmers

4. Many Golestanian swimmers

Comparing apolar and polar swimmers

Comparing apolar and polar swimmers

Comparing apolar and polar swimmers

Many snake swimmers

What next?

1. Matching simulations and the continuum theories

2. What is the continuum theory for self T-dual swimmers?

- 3. Noise
- 4. When does the zero Re approximation fail?
- 5. Real swimmers: which results are generic?
- 6. Shear flow, obstacles, swimmer rheology

1. Two swimmer hydrodynamic interactions beautiful and complex

2. Relative swimmer phase is important

3. Scattering parameters are preserved if the swimmers are mutually T-dual

With many thanks to Gareth Alexander, Chris Pooley, Vic Putz

Non self T-dual swimmers

Scattering: swimmers that are not T-dual

Random Phase

In Phase

Random Phase

Ray Goldstein <u>http://www.dampt.cam.ac.uk/user/gold/movies.html</u>

