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COLLOIDAL WORLD
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GRANULAR WORLD
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Shear: a dominant driving
force in the athermal world










Shear-Jamming

The governing principle is that force chains emerge to support the imposed
external stress. Question is whether they are rigid in the sense that they can
support additional shear stress, even small.

Cates et al: Phys Rev. Lett 81, 1841 (1998)

|D Force Network 2D Force Network

“Spectator Particles”



gidity of amorphous solids

Fundamental Principle underlying Condensed Matter Physics: rigidity is associated
with broken symmetry

Amorphous solids: Broken translational symmetry. No obvious order parameter but
patterns of particles not destroyed by small thermal fluctuations Overlap of
configurations is a commonly used measure.

Traditionally: energy or entropy gain leads to solidification
Dry grains: no cohesive interactions and no thermal fluctuations.

Broken translational symmetry in position space is a
necessary but not a sufficient condition for rigidity

Rigidity also requires broken translational symmetry
in a space of forces



Shear-Jamming Experiments

(Quasistatic Forward + Cyclic Shear)
Max Bi, Jie Zhang, BC & Bob Behringer Nature (2011)
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Tour of Shear Jamming Experiments
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Tour of Discontinuous Shear Thickening
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Network of frictional contacts evolves
with shear rate: similar to force chain
evolution in grains
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Emergence of Rigidity: Story of Constraints

Local force & torque balance
satisfied for every grain

Friction law on each contact

Positivity of all forces

Imposed stresses determine sum of stresses over all

grains




ePresent a representation that captures the essential
physics: “force” space

oIn this representation there is a qualitative difference
between frictionless and frictional grains

eObjective: Construct a rigorous theory of rigidity in
athermal systems

e Results for shear-jammed experimental states: shear-
induced broken symmetry in “force” space



Imposing the conditions through gauge potentials (2D)
Ball & Blumenfeld (2002), Henkes, Bi, & BC (2007---), DeGuili (2011--)
® Vector fields enforce force balance constraint

® Additional scalar field enforces torque balance
®There is a relation between the two

The vector fields:

We refer to them as heights:
like a vector height field
familiar in the context of
groundstates of some frustrated
magnets

Here the fields are continuous



Imposing the conditions through gauge potentials (2D)
Ball & Blumenfeld (2002), Henkes, Bi, & BC (2007---), DeGuili (201 1--)
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Gauge potentials: irrelevant additive constant. Any set of these fields satisfy force and torque
balance. There are constraints relating the two potentials, which depend on real-space geometry.



ONLY FORCE BALANCE

particle n

Force Tilings (Maxwell-Cremona Tiles)

for systems where all normal forces are
repulsive, we have a single sheet




heights

SHEAR- THICKENING

Strain rate = 0.3

negative positive
forces forces

loop position




Ensemble of tilings at a given external stress: Statistical
properties, correlations, order parameters. Devise a
Monte Carlo Metropolis scheme, for example.

Height difference across
the boundaries:
determined by
boundary stresses

Position of vertices:
height vectors starting
from some arbitrary
origin

Force space: height vectors play the role of position vectors
(of grains, atoms...)



Torque Balance Friction law on each contact

% Do these introduce correlations ?
% Example: Polygons have to be convex
for frictionless, convex-shaped grains

% (p(h)) # const
RIGIDITY

% Changing shape of bounding box is the analog of
straining

% Does the pattern persist ?

% Alternatively, create an ensemble with a given
stress tensor (flat measure) and measure density
pattern/overlap



Torque Balance Friction law on each contact -

With friction: force tiles can be convex and non-convex
1

3 \H\f .

Torque balance from 2 large and two small forces

% Do not have a way of implementing these constraints, rigorously
yet since they involve coupling of real and force/gauge space.

% We have analyzed experiments to determine the statistics of
tilings



EVOLUTION IN RECIPROCAL SPACE

http://www.aps.org/meetings/march/vpr/2015/videogallery/index.cfm
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Overlap between two
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[EST OF PERSISTENT PATTERN

Grid stretched affinely with
bounding box

I height pattern evolves affinely, large overlap
The stress-generated pattern can sustain further loading



Strain Step

Persistence of Structure: Overlap

Reciprocal Space Real Space
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PERSISTENCE OF PAT TERNS

Low density High density




ORDER PARAMETER
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Competition
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Under shear: Box shape changes and point density increases
(depends on protocol)

Shear favors: non-convex polygons

Increasing number of contacts favors convex polygons
Competition drives transition (much like entropy vs energy ?)
Transition driven by density of points in this reciprocal space

Broken Translational Symmetry in Height Space
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Amorphous Solids:
Broken Translational Symmetry
Straining costs energy/entropy

T=0 Granular Solids:

Broken Translational Symmetry(height space)
No concept of strain

States created by load can sustain further loading




