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‣No thermal fluctuations

‣Purely repulsive, contact 

interactions, friction

‣States controlled by 

driving at the boundaries

‣Non-ergodic in the 

extreme sense: stays in 

one configuration unless 

driven

GRANULAR WORLD



h"ps://www.astro.umd.edu/~dcr/gallery.html
http://jfi.uchicago.edu/~jaeger/ 

Shear: a dominant driving 
force in the athermal world





Shear-induced Solidification  in a Model 
Granular System



Shear-Jamming 

The governing principle is that force chains emerge to support the imposed 
external stress.   Question is whether they are rigid in the sense that they can 
support additional shear stress, even small.

Cates et al: Phys Rev. Lett 81, 1841 (1998)
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We consider materials whose mechanical integrity is the result of a jamming process. We argue

that such media are generically “fragile,” unable to support certain types of incremental loading
without plastic rearrangement. Fragility is linked to the marginal stability of force chain networks
within the material. It can lead to novel mechanical responses that may be relevant to (a) jammed
colloids and (b) poured sand. The crossover from fragile to elastoplastic behavior is explored.
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Consider a concentrated colloidal suspension of hard
particles under shear [Fig. 1(a)]. Above a certain threshold
of stress, this system may jam [1]. (To observe such an
effect, stir a concentrated suspension of cornstarch with a
spoon.) Jamming apparently occurs because the particles
form “force chains” along the compressional direction [1].
Even for spherical particles the lubrication films cannot
prevent contacts; once these arise, an array or network of
force chains can support the shear stress indefinitely [2].
By this criterion, the material is a solid. In this Letter, we
propose some simple models of jammed systems like this,
whose solidity stems directly from the applied stress itself.
We argue that such materials may show fundamentally
new mechanical properties, very different from those of
conventional (elastic or elastoplastic) bodies.
We start from a simple model of a force chain: a linear

string of rigid particles in point contact. Crucially, this
chain can only support loads along its own axis [Fig. 2(a)]:
successive contacts must be collinear, with the forces along
the line of contacts, to prevent torques on particles within
the chain [3]. (Neither friction at the contacts nor particle
aspherity can obviate this.)
Let us now model a jammed colloid by an assembly

of such force chains, characterized by a director n, in a
sea of “spectator” particles, and incompressible solvent.
(We ignore for the moment any “collisions” between force
chains or deflections caused by weak interaction with the
spectators.) In static equilibrium, with no body forces act-
ing, the pressure tensor p

ij

s≠ 2s
ij
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where P is an isotropic fluid pressure, and L s.0d a
compressive stress carried by the force chains.
Even this minimal model of the jammed state exhibits

quite novel mechanical properties. Indeed, Eq. (1) permits
static equilibrium only so long as the applied compression
is along n; while this remains true, small, or even large, in-
cremental loads can be accommodated reversibly, by what
is (ultimately) an elastic mechanism. But the material is

certainly not an elastic body, for if instead one tries to shear
the sample in a slightly different direction (causing a rota-
tion of the principal stress axes) static equilibrium cannot
be maintained without changing the director n. And since
n describes force chains that pick their ways through a
dense sea of spectator particles, it cannot simply rotate; in-
stead, the existing force chains must be abandoned and new
ones created with a slightly different orientation. This en-
tails dissipative, plastic, reorganization, during which the
system will rejam to support the new load. (The system re-
sembles a liquid crystal, except that the stress causes tran-
sient rearrangement, not steady flow.)
The jammed colloid is an example of fragile matter: it

can statically support applied shear stresses (within some
range), but only by virtue of a self-organized internal
structure, whose mechanical properties have evolved to
support the load itself. Its incremental response can be
elastic only to compatible loads; incompatible loads (in this
case, those of a different compression axis), even if small,
will cause finite, plastic reorganizations. The inability to
elastically support some infinitesimal loads is our definition
of “fragile” (and more precise than any we have previously
seen). It extends naturally to other perturbations; e.g.,
small changes in temperature which can lead to “static
avalanches” of rearrangement [4].
We now argue that jamming may lead generically to

fragile matter (as defined above). If a system arrests
as soon as it can support the external load, its state is

(a) (b)

FIG. 1. (a) A jammed colloid (schematic). Black: force
chains; grey: other force-bearing particles; white: spectators.
(b) Idealized rectangular network of force chains.
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• Fundamental Principle underlying Condensed Matter Physics:  rigidity is associated 
with broken symmetry

• Amorphous solids:  Broken translational symmetry.  No obvious order parameter but 
patterns of particles not destroyed by small thermal fluctuations  Overlap of 
configurations is a commonly used measure.

• Traditionally: energy or entropy gain leads to solidification

• Dry grains: no cohesive interactions and no thermal fluctuations.

Rigidity of amorphous solids

Broken translational symmetry in position space is a 
necessary but not a sufficient condition for rigidity

Rigidity also requires broken translational symmetry 
in a space of forces



Shear-Jamming Experiments  
(Quasistatic Forward + Cyclic Shear)

Max Bi, Jie Zhang, BC & Bob Behringer Nature (2011)

Ê
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Onset density for broken 
translational symmetry in position 

space
Lowest density for jamming 

without shear



Tour of Shear Jamming Experiments

Reynolds Pressure

Non-rattler Fraction (Non-Spectators)

Can think of this as 
increasing an effective 
friction coefficient
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Tour of Discontinuous Shear Thickening



Emergence of Rigidity: Story of Constraints 

Local force & torque balance 

satisfied for every grain

Imposed stresses determine sum of stresses over all 

grains

Friction law on each contact !! ≤ !!! !

Positivity of all forces !! ≥ 0!



•Present a representation that captures the essential 
physics:  “force” space
•In this representation there is a qualitative difference 
between frictionless and frictional grains
•Objective:  Construct a rigorous theory of rigidity in 
athermal systems
•Results for shear-jammed experimental states: shear-
induced broken symmetry in “force” space

Emergence of Rigidity in Dry Granular Solids



Imposing the conditions through gauge potentials (2D)

Ball & Blumenfeld (2002), Henkes, Bi, & BC (2007---),  DeGuili (2011--)

• Vector fields enforce force balance constraint
• Additional scalar field enforces torque balance
•There is a relation between the two

F3

F2

F1

F4

(0,0)

(F1)

(F1+
F2)

(F1+F2+
F3)

The vector fields:

We refer to them as heights: 
like a vector height field 
familiar in the context of 
groundstates of some frustrated 
magnets

Here the fields are continuous

F1



Imposing the conditions through gauge potentials (2D)

Ball & Blumenfeld (2002), Henkes, Bi, & BC (2007---),  DeGuili (2011--)

F3

F2

F1

F4

(0,0)

(F1)

(F1+
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F3)

F1

Gauge potentials: irrelevant additive constant.  Any set of these fields satisfy force and torque 
balance.   There are constraints relating the two potentials, which depend on real-space geometry. 

loops enclosing voids

height vector
scalar potential

hh
h h



ONLY FORCE BALANCE

Force Tilings (Maxwell-Cremona Tiles)

for systems where all normal forces are 
repulsive, we have a single sheet



SHEAR-THICKENING

-1 1

Strain rate = 0.3

-1 1

Strain rate = 1



Height difference across 
the boundaries: 
determined by 
boundary stresses

Position of vertices: 
height vectors starting 
from some arbitrary 
origin

Force space: height vectors play the role of position vectors 
(of grains, atoms...)

Ensemble of tilings at a given external stress:  Statistical 
properties, correlations, order parameters. Devise a 
Monte Carlo Metropolis scheme, for example.



Torque Balance Friction law on each contact

★Do these introduce correlations ?
★Example:  Polygons have to be convex 
for frictionless, convex-shaped  grains

★Changing shape of bounding box is the analog of 
straining
★Does the pattern persist ?
★Alternatively, create an ensemble with a given 
stress tensor (flat measure) and measure density 
pattern/overlap

RIGIDITY



Torque Balance Friction law on each contact

With	
  fric<on:	
  force	
  <les	
  can	
  be	
  convex	
  and	
  non-­‐convex	
  

Torque	
  balance	
  from	
  2	
  large	
  and	
  two	
  small	
  forces

1
2

3
4

2

1

3

4

★Do not have a way of implementing these constraints, rigorously 
yet since they involve coupling of real and force/gauge space. 

★We have analyzed experiments to determine the statistics of 
tilings



EVOLUTION IN RECIPROCAL SPACE

http://www.aps.org/meetings/march/vpr/2015/videogallery/index.cfm



TEST OF PERSISTENT PATTERN 
IN HEIGHT SPACE

Overlap between two 
configurations

Grid stretched affinely with 
bounding box

If height pattern evolves affinely, large overlap
The stress-generated pattern can sustain further loading



Persistence  of  Structure:  Overlap
Real	
  Space
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PERSISTENCE OF PATTERNS
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ORDER PARAMETER



Broken	
  Transla<onal	
  Symmetry	
  in	
  Height	
  Space

h
x

hy

F̄
x

F̄y

.. ... ..
.

. F̄
x

F̄y

h
x

hy

. . .. . ..
.

. .. . .

.
.

.

..
.
.

.

....
..

.

.
. .. ..

.. ..
.

.
. .

.
.

.
.. . .

.
.

.

. .

.
..

. .
.

...

. .
.. .

.

..

.
.

..
.

. . .
... .. .

.
. .

h
x

hy

F̄
x

F̄y

.. .
. .

..
.

. ..
. ...

. .. .. .

Under	
  shear:	
  Box	
  shape	
  changes	
  and	
  point	
  density	
  increases	
  
(depends	
  on	
  protocol)
Shear	
  favors:	
  non-­‐convex	
  polygons
Increasing	
  number	
  of	
  contacts	
  favors	
  convex	
  polygons	
  
Compe<<on	
  drives	
  transi<on	
  (much	
  like	
  entropy	
  vs	
  energy	
  ?)
Transi<on	
  driven	
  by	
  density	
  of	
  points	
  in	
  this	
  reciprocal	
  space

Compe<<on







RIGIDITY 
Amorphous Solids:
Broken Translational Symmetry
Straining costs energy/entropy

T=0 Granular Solids: 
Broken Translational Symmetry(height space) 
No concept of strain
States created by load can sustain further loading


