
Pion electromagnetic form factor from analyticity and unitarity

B. Ananthanarayan
Centre for High Energy Physics

Indian Institute of Science
Bangalore 560 012, India

work done in collaboration with
Irinel Caprini, Diganta Das and I. Sentitemsu Imsong

2015

Pion electromagnetic form factor from analyticity and unitarity



Introduction

Pion electromagnetic form factor from analyticity and unitarity



Introduction

The pion form factor

encodes the information of strong interaction

probe of perturbative QCD and asymptotic predictions

enters the muon (g − 2) and other observables

amenable to experiment in a variety of kinematic regimes

spacelike (t < 0), timelike but analyticity region 0 < t < 4M2
π

(physical) timelike region t > 4M2
π where it is complex

analytic in the cut plane

can be studied using general principles

information is precise enough to test experiment in an essential way

our work tests chiral perturbation theory and lattice

produces a model independent determination (bounds) on the radius, shape
parameters and modulus of the form factor in part of the spacelike region

produces values for the two-pion contribution to the (g − 2) of the muon with
central values agreeing with other determinations, but with reduced uncertainties

Based on the publications: BA, IC, DD and ISI, European Physical Journal, C 72
(2012) 2192; 73 (2013) 2520; Physical Review D 89 (2014) 036007.
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Strategy

Model independent method to optimize inputs coming from various sources

Phase shift in the elastic region now known to great accuracy

Modulus information known from high statistics experiments in the elastic region,
in regions of stability where experiments essentially agree

Measurements in the spacelike region

Framework that results from completely general principles

Theory of complex variables as the building block

Using analyticity to correlate all these inputs without dangers of instabilities

Outcome: reliable bounds for the radius, shape parameters, bounds on modulus
in low energy region where data are either scarce or in conflict, and saturation of
the integral for muon g − 2, with the possibility of reduced error, using the results
in a self-consistent manner

Our central values are consistent with prior determinations, but the error we attach
is lowered compared to other determinations, due to the correlation introduced by
analyticity and unitarity
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Definition and properties.

Pion electromagnetic form factor F (t) is defined as,
˙

π+(p′)
˛

˛ Jem
µ

˛

˛π+(p)
¸

= (p + p′)Fπ(t), t = q2 = −Q2 = (p − p′)2.

Fπ(t) is normalized as Fπ(0) = 1.

Fπ(t) is real for t ≤ 4M2
π .

branch cut from threshold of two particle production t+ = 4M2
π to t = ∞.

elastic region is t+ ≤ t ≤ tin, where tin = (Mω + Mπ0)2 is the first inelastic
threshold of ωπ production. (dictated by phenomenology: theoretically given by
16M2

π )

the expansion of the pion electromagnetic form factor around t = 0 is written as,

Fπ(t) = 1 +
1

6
r2
πt + ct2 + dt3 + · · ·
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Theory Descriptions.

At large spacelike momenta Q2 = −t > 0, perturbative QCD predicts at LO,
[Lepage & Brodsky 1979, Efremov & Radyushkin 1980, Farrar & Jackson 1979]

Fπ(−Q2) ∼ 16πf2
παs(Q2)

Q2
, Q2 → ∞,

where, fπ is the pion decay constant.

asymptotic behavior for large time like momenta t > 0 [Cornille & Martin, 1975]

|Fπ(t)| ∼ 1

t
.

Low energy description: ChPT up to two loops
[Gasser & Meissner 1991, Colangelo, Finkemeier & Urech 1996, Bijnens,
Colangelo & Talavera 1998 ]

Lattice gauge theory [Aoki et. al 2009]
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Generalized Meiman Problem

If the phase of the form factor is known (from Fermi-Watson theorem in the elastic
region from scattering)

Arg[F (t + iǫ)] = δ1
1 , t+ ≤ t ≤ tin,

where δ1
1

is the phase shift of the P -wave of ππ elastic scattering.

If the modulus |F (t)| known above tin. The information on modulus is used to
obtain a reliable evaluation of

1

π

Z

∞

tin

dtρ(t)|Fπ(t)|2 = I.

with ρ(t) are the weight functions of the following type

ρ(t) =
tβ

(t + Q2)γ
,

where, Q2 ≥ 0 and β and γ satisfy the relation β ≤ γ ≤ β + 2 (to ensure
convergence)

problem is to find constraints on the values F (t) and its derivatives outside the cut
[Meiman, 1963, Duren, 1970]

Many early applications: [Okubo, 1970, Micu, 1972, Auberson, 1975, Singh &
Raina, 1979]
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Generalized problem

The phase information along t+ ≤ t ≤ tin is taken into account by defining the
Omnès function,[Caprini 2000]

O(t) = exp
“ t

π

Z

∞

t+

dt′
δ(t′)

t′(t′ − t)

”

where, δ(t) = δ1
1
(t) for t ≤ tin, and is Lipschitz continuous for t ≥ tin.

Using Omnès function Fπ(t) can be written as,

Fπ(t) = O(t)h(t)

such that, h(t) is real for t ≤ tin, i.e. it is analytic in the t-plane cut along t > tin.

the integral condition reads as,

1

π

Z

∞

tin

dtρ(t)|O(t)|2 |h(t)|2 = I
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Conformal Map

the problem is cast into a canonical form by performing a conformal
transformation,

z̃ =

√
tin −√

tin − t√
tin +

√
tin − t

the transformation maps the complex t-plane cut for t > tin onto the unit disk
|z| < 1 in the z-plane defined by z ≡ z̃(t).

The upper (lower) lip of the branch-cut
[tin,∞] is mapped onto the upper (lower)
half of the unit circle in the complex z-plane,

the real line [−∞, 0] to [−1, 0] and [0, tin]
to [0, 1].

Im t

Re t

z(t)
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Determinantal Inequality

using the conformal transformation, the integral condition can be written as,

1

2π

Z

2π

0

dθ|g(eiθ)|2 = I, z = eiθ,

we have defined g(z) = w(z)ω(z)F (t̃(z))[O(t̃(z))]−1,

w(z) and ω(z) are the “outer functions” for the weight function and Jacobian of the
transformation, and |O(t)| and are written as,

w(z) = (2
√

tin)1+β−γ (1 − z)1/2

(1 + z)3/2−γ+β

(1 + z̃(−Q2))γ

(1 − zz̃(−Q2))γ
,

ω(z) = exp

0

B

@

q

tin − t̃(z)

π

Z

∞

tin

ln |O(t′)| dt′√
t′ − tin(t′ − t̃(z))

1

C

A
,

where t̃(z) is the inverse of z = z̃(t), for z̃(t)
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Determinantal Inequality

with techniques of complex analysis, it can be shown that Eq-(1) leads to
determinantal inequality,

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Ī ξ̄1 ξ̄2 · · · ξ̄N

ξ̄1
z2K
1

1 − z2
1

(z1z2)K

1 − z1z2

· · · (z1zN )K

1 − z1zN

ξ̄2
(z1z2)K

1 − z1z2

(z2)2K

1 − z2
2

· · · (z2zN )K

1 − z2zN

...
...

...
...

...

ξ̄N
(z1zN )K

1 − z1zN

(z2zN )K

1 − z2zN
· · ·

z2K
N

1 − z2
N

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

≥ 0,

where the auxiliary quantities

Ī = I −
K−1
X

k=0

g2
k, ξ̄n = g(zn) −

K−1
X

k=0

gkzk
n

are defined in terms of the values :
»

1

k!

dkg(z)

dzk

–

z=0

= gk, 0 ≤ k ≤ K − 1,

g(zn) = ξn, 1 ≤ n ≤ N.

N real points zn ∈ (−1, 1) and (K − 1) derivatives at z = 0
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Procedure

In our evaluations, we supply the phase information to construct the Omnès
function

We construct the outer function for the Omnès function

We construct the outer function for the weight and the Jacobian of the
transformation

We supply basic shape parameters, or alternatively constrain them by supplying
information on the form factor from points in the (extended) analyticity region

We obtain constraints on chosen points in the analyticity region by working the
machinery

Mathematically speaking there is no restriction on adding as many denumerable
pieces of information as possible

In practice experimental error begins to make the bounds lose coherence

Small number of reliable experimental inputs are used
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Basic Inputs
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Phase Inputs

phase is determined from Roy equation [Ananthanarayan, Colangelo, Gasser,
Leutwyler 2001, Colangelo, Gasser, Leutwyler 2001, Kaminski, Pelaez, Yndurain
2008, Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Yndurain 2011]

below
√

tin = 0.917GeV the phase δ1
1(t) is parametrized as,

cotδ1
1(t) =

√
t

2k3
(M2

ρ − t)

 

2M3
π

M2
ρ

√
t

+ B0 + B1

√
t −√

t0 − t√
t +

√
t0 − t

!

,

where k =
p

t/4 − M2
π and

√
t0 = 1.05GeV, B0 = 1.043 ± 0.011,

B1 = 0.19 ± 0.05 and Mρ = 773.6 ± 0.9 MeV [Garcia-Martin, Kaminski, Pelaez,
Ruiz de Elvira, Yndurain 2011]

Correction for isospin breaking due to ρ − ω interference:

Fρ−ω(t) =
“

1 + ǫ
t
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Weights used and Evaluations

the value of I in Eq-(1) is calculated from tin to
√

t = 3GeV using Babar data
[Aubert et al (BABAR Collaboration). Phys. Rev. Lett. 103, 231801 (2009)]

3GeV ≤
√

t ≤ 20GeV a constant modulus is chosen that is smoothly connected
with a 1/t decrease above 20 GeV. [Ananthanarayan, Caprini, Imsong 2012]

optimal bound is obtained with the following choices of ρ(t) [Ananthanarayan,
Caprini, Das, Imsong 2012]

ρ(t) =
1

t
, ρ(t) =

√
t

t + 3

β γ Q2 I

0 1 0 0.578 ± 0.022

1/2 1 3 0.246 ± 0.011

adopted range of charge radius [Colangelo 2004, Masjuan et al. 2008]

〈r2
π〉 = 0.43 ± 0.01 fm2,

spacelike inputs [Horn et al. 2006, Huber et al. 2008]

F (−1.60GeV2) = 0.243 ± 0.012+0.019
−0.008 ,

F (−2.45GeV2) = 0.167 ± 0.010+0.013
−0.007 ,
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BABAR

BABAR [Phys. Rev. Lett. 103, 231801 ,Phys. Rev. D 86, 032013]
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BABAR from 0.3 GeV to 3 GeV. The VDM
fit is shown in blue.

BABAR detector at SLAC PEP-II
asymmetric energy e+e− storage ring
operated at Υ(4S) resonance

2012 analysis is based on 232 fb−1 of
data
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SND and CMD-2

SND is a VEPP-2M e+e− detector operated between 1995 to 2000. It measured |Fπ|2
from cross section determination in the region

√
s < 1000MeV [J.Exp.Theor.Phys. 103

(2006) 38].
CMD-2 [Phys.Lett. B578 (2004) 285-289 , JETP Lett. 84 (2006) 413-417, Phys.Lett.
B648 (2007) 28-38 ]
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CMD-2 is also a VEPP-2M e+e−

detector in Novosibirsk, Russia.

analysis is based on 56 nb−1 of data
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KLOE

KLOE [Phys.Lett. B670 (2009) 285, Phys.Lett. B700 (2011) 102, Phys.Lett. B720
(2013) 336]
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Frascati φ-factory

e+e− collider running at center of
mass energy equal to the φ meson
mass

the analysis is based on 2.5 fb−1 of
data
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Results: bounds on modulus

Spacelike inputs: obtained from Jefferson Laboratory experiment
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Results: bounds on modulus

inclusion of uncertainties of inputs

Method 1: each input separately
varied, with the others kept fixed at
their central values

Method 2: all the inputs are
simultaneously varied within their
allowed interval and the conservative
bound is taken–largest upper bound
and smallest lower bound
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Results: bounds on modulus

Bounds without isospin correction due to ρ − ω interference [Ananthanarayan, Caprini,
Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds without isospin correction due to ρ − ω interference [Ananthanarayan, Caprini,
Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds without isospin correction due to ρ − ω interference [Ananthanarayan, Caprini,
Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds without isospin correction due to ρ − ω interference [Ananthanarayan, Caprini,
Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds without isospin correction due to ρ − ω interference [Ananthanarayan, Caprini,
Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

Belle

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

|F
(t

)|
2

Belle

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds with isospin correction correction due to ρ − ω interference [Ananthanarayan,
Caprini, Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

KLOE
BaBaR

Isospin breaking included

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds with isospin correction correction due to ρ − ω interference [Ananthanarayan,
Caprini, Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

KLOE
BaBaR

Isospin breaking included

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds with isospin correction correction due to ρ − ω interference [Ananthanarayan,
Caprini, Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

KLOE
BaBaR

Isospin breaking included

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Bounds with isospin correction correction due to ρ − ω interference [Ananthanarayan,
Caprini, Das, Imsong 2012]

0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

0.3 0.35 0.4 0.45 0.5
t
1/2

 [GeV]

0

1

2

3

4

|F
(t

)|
2

KLOE
BaBaR

Isospin breaking included

ρ(t) = 1/t

0.7 0.725 0.75 0.775 0.8 0.825
t
1/2

 [GeV]

0

10

20

30

40

50

60

|F
(t

)|
2

BaBaR
CMD-2
KLOE

Isospin breaking included

ρ(t) = 1/t

above the ρ peak, data are consistent
with central band

below ρ peak data are at the upper
edge of the central band

Pion electromagnetic form factor from analyticity and unitarity



Results: bounds on modulus

Optimization of inputs [Ananthanarayan, Caprini, Das, Imsong 2012]
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Results: bounds on modulus

Optimal bounds
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Rigorous properties of the bounds

The following observations may be made for the bounds we derive. That they

Are optimal for a given input

Are independent of the phase δ(t) of the Omnès function for t > tin

For a fixed weight ρ(t), they depend in a monotonous way on I, becoming stronger/weaker
when this value is decreased/increased
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Conclusions: bounds on modulus

overall no inconsistency

at low energy our bound are stringent

knowledge of form factor below 0.5 Gev can be improved

slight inconsistency between our bound and Babar data at low energies
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Precision bounds on shape parameters

Pion electromagnetic form factor from analyticity and unitarity



〈r2
π〉

[Ananthanarayan, Caprini, Das, Imsong 2012]

drastic variation at low energies

at low energies, for several
experimental points no solution to 〈r2

π〉
is found

final allowed range is the intersection
of the allowed ranges at fixed energies

intersection is empty when all points
are considered: inconsistencies in
data between measurements at
different energies
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〈r2
π〉

[Ananthanarayan, Caprini, Das, Imsong 2012]

for prediction, we restrict ourselves
from 0.65 GeV to 0.70 GeV (“stability
region”)

strict intersection leads to

〈r2
π〉min ≈ 0.42 fm2, 〈r2

π〉max ≈ 0.44 fm2.

weighted average leads to

〈r2
π〉min, av ≈ 0.40 fm2, 〈r2

π〉max, av ≈ 0.45 fm2.
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c − d

[Ananthanarayan, Caprini, Das, Imsong 2012]

c ∈ (3.79, 4.00)GeV−4,

d ∈ (10.14, 10.56) GeV−6,

higher shape parameters are sensitive
to modulus data

the bounds shown are for timelike
modulus data from Babar

should be regarded as provisional

a previous analysis with
〈r2

π〉 = 0.435 ± 0.005

c ∈ (3.75, 3.98) GeV−4,

d ∈ (9.91, 10.45) GeV−6,

[Ananthanarayan, Caprini, Imsong
2011]

c = 3.9GeV−4 and d = 9.70GeV−6

[Truong 1998]
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Conclusions: bounds on shape parameters

lower and upper limit on charge radius

〈r2
π〉 ∈ (0.42, 0.44) fm2

higher shape parameters are sensitive to timelike modulus data

and yet we have quite stringent predictions that have narrowed down the allowed
range to a few percent

bounds on higher shape parameters require precise data
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Pionic contribution to the muon (g − 2)
from e

+
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− experiments
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Pionic contribution to muon (g − 2)

The present numbers for aµ in the SM and the experimental value read:

116591803(1)(42)(26) × 10−11) where the errors come from QED, had, etc
11659209.1(5.4)(3.3) × 10−10 where the errors are sys and stat.

future experimental precision: δexpt
µ ∼ 16 × 10−11

current theoretical precision: δth
µ ∼ 49 × 10−11

at low energy large theory uncertainty from non-perturbative hadronic contribution
(δLOV P

µ ∼ 41 × 10−11)

large uncertainty in low energy experimental data on cross section

We determine two-pion contribution to muon (g − 2) based on our improved knowledge
on the modulus of pion electromagnetic form factor at low energy. [Ananthanarayan,
Caprini, Das, Imsong, arXiv:1312.5849]
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Pionic contribution to muon (g − 2): Basics

The two-pion contribution to the magnetic moment at LO is

aππ,LO
µ =

α2m2
µ

12π2

Z

∞

t+

dt

t
K(t) β3

π(t) |F (t)|2(1 +
α

π
ηπ(t)),

where, t+ = 4m2
π , βπ(t) = (1 − t+/t)1/2 and

K(t) =

Z 1

0

du(1 − u)u2(t − u + m2
µu2)−1

The LO contribution does not contain any vacuum polarization effects but include
one photon FSR effect. The modulus |F (t)| is extracted from the data by
removing the vacuum polarization effect.
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Low energy contribution to aµ

Leading Order (LO) two-pion contribution to aµ from the range [tl, tu]:

a
ππ, LO
µ [

√
tl,

√
tu] =

α2m2
µ

12π2

Z

tu

tl

dt K(t) β
3
π(t) |F (t)|2

„

1 +
α

π
ηπ(t)

«

Particular values [Davier et al. 2010]

Threshold region, no data, ChPT fit:

a
ππ, LO
µ [2mπ, 0.30GeV] = (0.55 ± 0.01) × 10−10

From 0.3 GeV to 0.63 GeV, from combined e+e− experiments:

a
ππ, LO
µ [0.30GeV, 0.63GeV] = (132.6 ± 1.3) × 10−10

Problem: is it possible to reduce the error by exploiting the properties of F (t) and using information
from other energies?
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Pionic contribution to muon (g − 2): ranges

we determine aππ,LO
µ in the regions [2mµ, 0.30GeV] and [0.30, 0.63GeV] where

the cross section data (and hence |F (t)|) is poor

|F (t)| in the regions [2mµ, 0.30GeV] and [0.30, 0.63GeV] is derived using
measured values of |F (t)| between 0.65 GeV to 0.70 GeV.
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Bounds for experiments as energy of datum is varied
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Figure: Allowed intervals of aππ,LO
µ [0.30GeV, 0.63GeV] × 1010 using as input the Bern phase

and the timelike modulus measured in the region 0.65-0.70 GeV by the e+e− experiments.
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Optimization procedure

For central values of the input quantities we obtained very narrow allowed intervals for the
output modulus |F (t)| in the range [tl, tu] of interest

To account for the uncertainties, we generated a large sample of data by varying the input
quantities (phase, input modulus, spacelike value, charge radius) within their error intervals

For each point in the sample we computed upper and lower bounds on |F (t)|

We have taken the most conservative bounds, i.e. the largest upper bound and the smallest
lower bound on |F (t)| from the values obtained with the sample of generated data ⇒ a larger
allowed interval

We finally varied the input spacelike and timelike points. Since the analyticity constraints
provided by the values at different t must be valid simultaneously, we have taken the
“intersection" of the individual allowed ranges, i.e. the smallest upper bound and the largest
lower bound

By inserting the upper and lower bounds on |F (t)| into the integral we derived allowed
intervals for aππ, LO

µ [
√

tl,
√

tu]
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Analysis of the results

For SND and CMD2 the intervals are rather large and consistent between them

For BABAR the intervals are narrower and exhibit a moderate variation from point to point

For KLOE the intervals exhibit a more pronounced variation with the input point

Taking the intersection is equivalent with combining the central values and errors with a large
correlation

This prescription requires good, consistent input data, which produce narrow allowed intervals
with a relatively large common part

A too small overlap may signal inconsistencies among the input data

In this analysis we kept all the points, assuming they are all reliable
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Pionic contribution to muon (g − 2): results

Table: Central values and errors for the quantity aππ,LO
µ [2mπ, 0.30GeV] × 1010 obtained from

the bounds on |F (t)| calculated with input from the four e+e− experiments.

Bern phase Madrid phase
CMD2 06 0.5528 ± 0.0089 0.5527 ± 0.0092
SND 06 0.5532 ± 0.0083 0.5530 ± 0.0086
BABAR 09 0.5534 ± 0.0080 0.5533 ± 0.0083
KLOE 13 0.5531 ± 0.0080 0.5530 ± 0.0084

Table: Central values and errors for the quantity aππ,LO
µ [0.30GeV, 0.63GeV] × 1010 obtained

from the bounds on |F (t)| calculated with input from the four e+e− experiments.

Bern phase Madrid phase
CMD2 06 130.531 ± 3.955 129.739 ± 4.545
SND 06 132.775 ± 2.862 132.313 ± 2.759
BABAR 09 133.732 ± 1.761 133.484 ± 1.461
KLOE 13 132.380 ± 1.721 132.086 ± 1.451
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Pionic contribution to muon (g − 2): summary

After combining four experiments and two phases

aππ,LO
µ [2mπ , 0.30GeV] = (0.553 ± 0.004) × 10−10, (1)

and
aππ,LO

µ [0.30GeV, 0.63GeV] = (132.703 ± 1.018) × 10−10. (2)

aππ,LO
µ [2mπ , 0.30GeV] = (0.55 ± 0.01) × 10−10

aππ,LO
µ [0.30GeV, 0.63GeV] = (132.6 ± 1.3) × 10−10 [Davier et. al 2010]

aππ,LO
µ [0.30GeV, 0.63GeV] = (133.877 ± 1.472) × 10−10 [BABAR]

remarkable consistency of BABAR data with the analyticity constraints

by combining the direct integration of the BABAR data below 0.63 GeV with our
independent determination based on data from higher energies for the other three
experiments we obtain

aππ,LO
µ [0.30GeV, 0.63GeV] = (133.083 ± 0.837) × 10−10 (3)
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experiments we obtain

aππ,LO
µ [0.30GeV, 0.63GeV] = (133.083 ± 0.837) × 10−10 (3)
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Pionic contribution to muon (g − 2): Conclusion

We have devised a non-perturbative analytic tool for improving the determination
of the pionic contribution to muon (g − 2)

This model independent approach reduces the error by δπ,π
µ = 5 × 10−11

With improved input from low and intermediate energies the uncertainty in the
hadronic part of the muon anomaly can be further reduced

Calls for more precise experimental information in the low energy region and also
the region where the main contribution to the (g − 2) comes from

Extension of our work to τ -decay data in progress

Pion electromagnetic form factor from analyticity and unitarity



Pionic contribution to muon (g − 2): Conclusion

We have devised a non-perturbative analytic tool for improving the determination
of the pionic contribution to muon (g − 2)

This model independent approach reduces the error by δπ,π
µ = 5 × 10−11

With improved input from low and intermediate energies the uncertainty in the
hadronic part of the muon anomaly can be further reduced

Calls for more precise experimental information in the low energy region and also
the region where the main contribution to the (g − 2) comes from

Extension of our work to τ -decay data in progress

Pion electromagnetic form factor from analyticity and unitarity



Pionic contribution to muon (g − 2): Conclusion

We have devised a non-perturbative analytic tool for improving the determination
of the pionic contribution to muon (g − 2)

This model independent approach reduces the error by δπ,π
µ = 5 × 10−11

With improved input from low and intermediate energies the uncertainty in the
hadronic part of the muon anomaly can be further reduced

Calls for more precise experimental information in the low energy region and also
the region where the main contribution to the (g − 2) comes from

Extension of our work to τ -decay data in progress

Pion electromagnetic form factor from analyticity and unitarity



Pionic contribution to muon (g − 2): Conclusion

We have devised a non-perturbative analytic tool for improving the determination
of the pionic contribution to muon (g − 2)

This model independent approach reduces the error by δπ,π
µ = 5 × 10−11

With improved input from low and intermediate energies the uncertainty in the
hadronic part of the muon anomaly can be further reduced

Calls for more precise experimental information in the low energy region and also
the region where the main contribution to the (g − 2) comes from

Extension of our work to τ -decay data in progress

Pion electromagnetic form factor from analyticity and unitarity



Pionic contribution to muon (g − 2): Conclusion

We have devised a non-perturbative analytic tool for improving the determination
of the pionic contribution to muon (g − 2)

This model independent approach reduces the error by δπ,π
µ = 5 × 10−11

With improved input from low and intermediate energies the uncertainty in the
hadronic part of the muon anomaly can be further reduced

Calls for more precise experimental information in the low energy region and also
the region where the main contribution to the (g − 2) comes from

Extension of our work to τ -decay data in progress

Pion electromagnetic form factor from analyticity and unitarity



Pionic contribution to muon (g − 2): Conclusion

We have devised a non-perturbative analytic tool for improving the determination
of the pionic contribution to muon (g − 2)

This model independent approach reduces the error by δπ,π
µ = 5 × 10−11

With improved input from low and intermediate energies the uncertainty in the
hadronic part of the muon anomaly can be further reduced

Calls for more precise experimental information in the low energy region and also
the region where the main contribution to the (g − 2) comes from

Extension of our work to τ -decay data in progress

Pion electromagnetic form factor from analyticity and unitarity



Statistical interpretation of the results

Start with prior distributions of the inputs – phase (uniform distribution), spacelike
data (gaussian), radius (uniform), and timelike data in the stable region (gaussian).

Assume the priors to be identical to the posterior distribution in our case.

First keep the timelike value fixed and vary the inputs. All the inputs
simultaneously varied.

Enlarge the bounds by the corresponding error. This way bounds are valid to a
certain confidence.

The above is done for a fixed timelike input. Then we vary the timelike input,
repeat the procedure for several timelike inputs at different points (in the stable
region) and combine the resulting bounds.
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Statistics continue

Statistical approach to perform the above analysis –
Denote by δi the error on the bound Bi at a certain point due to the timelike input i.
Consider the error propagation to calculate a covariance matrix (from PDG) for the
bounds.

Uij = Σk,l

∂ηi

∂θk

∂ηj

∂θl

|
θ̂
Vkl

Vkl , k, l = 1, ..., n is the experimental correlation matrix.
From the matrix Uij and the central values Bi, one can obtain the average and the
corresponding error δi of the bounds at a fixed point. The bounds increased by the error
will be represent the bounds at @ 68% confidence.
Work in progress and results coming up soon

Pion electromagnetic form factor from analyticity and unitarity



Statistics continue

Statistical approach to perform the above analysis –
Denote by δi the error on the bound Bi at a certain point due to the timelike input i.
Consider the error propagation to calculate a covariance matrix (from PDG) for the
bounds.

Uij = Σk,l

∂ηi

∂θk

∂ηj

∂θl

|
θ̂
Vkl

Vkl , k, l = 1, ..., n is the experimental correlation matrix.
From the matrix Uij and the central values Bi, one can obtain the average and the
corresponding error δi of the bounds at a fixed point. The bounds increased by the error
will be represent the bounds at @ 68% confidence.
Work in progress and results coming up soon

Pion electromagnetic form factor from analyticity and unitarity



Statistics continue

Statistical approach to perform the above analysis –
Denote by δi the error on the bound Bi at a certain point due to the timelike input i.
Consider the error propagation to calculate a covariance matrix (from PDG) for the
bounds.

Uij = Σk,l

∂ηi

∂θk

∂ηj

∂θl

|
θ̂
Vkl

Vkl , k, l = 1, ..., n is the experimental correlation matrix.
From the matrix Uij and the central values Bi, one can obtain the average and the
corresponding error δi of the bounds at a fixed point. The bounds increased by the error
will be represent the bounds at @ 68% confidence.
Work in progress and results coming up soon

Pion electromagnetic form factor from analyticity and unitarity



Statistics continue

Statistical approach to perform the above analysis –
Denote by δi the error on the bound Bi at a certain point due to the timelike input i.
Consider the error propagation to calculate a covariance matrix (from PDG) for the
bounds.

Uij = Σk,l

∂ηi

∂θk

∂ηj

∂θl

|
θ̂
Vkl

Vkl , k, l = 1, ..., n is the experimental correlation matrix.
From the matrix Uij and the central values Bi, one can obtain the average and the
corresponding error δi of the bounds at a fixed point. The bounds increased by the error
will be represent the bounds at @ 68% confidence.
Work in progress and results coming up soon

Pion electromagnetic form factor from analyticity and unitarity



Statistics continue

Statistical approach to perform the above analysis –
Denote by δi the error on the bound Bi at a certain point due to the timelike input i.
Consider the error propagation to calculate a covariance matrix (from PDG) for the
bounds.

Uij = Σk,l

∂ηi

∂θk

∂ηj

∂θl

|
θ̂
Vkl

Vkl , k, l = 1, ..., n is the experimental correlation matrix.
From the matrix Uij and the central values Bi, one can obtain the average and the
corresponding error δi of the bounds at a fixed point. The bounds increased by the error
will be represent the bounds at @ 68% confidence.
Work in progress and results coming up soon

Pion electromagnetic form factor from analyticity and unitarity



Statistics continue

Statistical approach to perform the above analysis –
Denote by δi the error on the bound Bi at a certain point due to the timelike input i.
Consider the error propagation to calculate a covariance matrix (from PDG) for the
bounds.

Uij = Σk,l

∂ηi

∂θk

∂ηj

∂θl

|
θ̂
Vkl

Vkl , k, l = 1, ..., n is the experimental correlation matrix.
From the matrix Uij and the central values Bi, one can obtain the average and the
corresponding error δi of the bounds at a fixed point. The bounds increased by the error
will be represent the bounds at @ 68% confidence.
Work in progress and results coming up soon

Pion electromagnetic form factor from analyticity and unitarity



Conclusions and Outlook
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Conclusions

Worked the Meiman problem to logical extremes

Used high precision inputs from a variety of sources

Phase information

Spacelike information

High Precision modulus measurements

Computed bounds on modulus in low energy region

Computed bounds on shape parameters

Obtained excellent evaluation of pionic contribution to muon (g − 2) confirming
central values with reduced error of prior determinations
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Outlook

Meiman problem proved to be a very useful tool

Extension to data from τ -decays

Other effects such as ρ − γ mixing need to be studied

Combining of results from different experiments

Role of correlations need to be examined and elucidated upon

Statistical analysis work in progress
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