Graph Matchings and Wireless Communication

Graph Matchings and Wireless Communication

Rahul Vaze

In this talk

In this talk

105 pictures 3 equations

In this talk

105 pictures 3 equations
color blind friendly

In this talk

105 pictures 3 equations

color blind friendly

NOT in this talk

Wireless Channel

Wireless Channel

Wireless Channel

Wireless Channel

$$
\text { Rate }=\log _{2}\left(1+\frac{|h|^{2} P}{N}\right) \text { bits } / \text { sec } / H z
$$

Wireless Channel

$$
\text { Rate }=\log _{2}\left(1+\frac{|h|^{2} P}{N}\right) \text { bits } / \text { sec } / H z
$$

SNR

Wireless Channel

$$
\text { Rate }=\log _{2}\left(1+\frac{|h|^{2} P}{N}\right) \text { bits } / \mathrm{sec} / H z
$$

SNR

Legacy Problem

Legacy Problem -Wireless Communication

Find optimal BS allocation to maximize sum-rate

Modern Problem

5G

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

mechanism to avoid cheating
ensure maximum throughput

Modern Problem Device-2-Device Communication

mechanism to avoid cheating

ensure maximum throughput

Find optimal helper association and incentive rule that is truthful

small detour

		-	4-
	The mathematics behind a perfect match		
$\stackrel{8}{*}$	Trapolvanturahadnugnanes In sectiory moditi He Seller Lowis pollow milbathal ang beproketantsowowitaionle is tet qwau. have wistike - 4 wipht nathonatiol 		The nusur ha hy wotabily
			dhare Sumplakrats
			Tuflornat etome.
5			
			yoncurizelt ${ }^{\text {a }}$
3		$=$	puitedes
		Ea Themtion of marn intatuiks	
		Tavirkerscticacuion iop	
			fresta
			ariss Sowne

how many to date before committing !

Hiring impatient staff

Hiring impatient staff

Hiring impatient staff

prob. of choosing best candidate is $1 / n$

Hiring staff - not adversarial

Hiring staff - not adversarial

Hiring staff - not adversarial

Hiring staff - not adversarial

sampling phase
first half

Hiring staff - not adversarial

first half

Hiring staff - not adversarial

Hiring staff - not adversarial

sampling phase
first half

Hiring staff - not adversarial

sampling phase
first half

Hiring staff - not adversarial

Success with prob > 1/4

sampling phase
first half

Actually Matching

Actually Matching

Actually Matching

Actually Matching

Actually Matching

accept the edge with the largest weight instantaneously

Natural Generalization

Natural Generalization

Students

Advisors

Natural Generalization

each advisor gets at most one student

Students

Advisors

Natural Generalization

each advisor gets at most one student

Advisors

Natural Generalization

each advisor gets at most one student

Students

Advisors

Natural Generalization

each advisor gets at most one student - allocation made by

Objective: Matching with largest sum weight

Example

Example

at most one accepted edge

Objective: Matching with largest sum weight

Example

at most one accepted edge

Objective: Matching with largest sum weight

How to solve this ONLINE

How to solve this ONLINE

How to solve this ONLINE

Sampling idea as before

How to solve this ONLINE

Sampling idea as before

How to solve this ONLINE

Sampling idea as before

Find best matching

How to solve this ONLINE

Sampling idea as before

Find best matching

How to solve this ONLINE

Sampling idea as before

Find best matching

How to solve this ONLINE

Sampling idea as before

Find best matching

How to solve this ONLINE

Sampling idea as before

Find best matching

How to solve this ONLINE

Sampling idea as before

Find best matching
match the largest weight more than price

How to solve this ONLINE

Sampling idea as before

Result: 8-competitive/optimal [Korula, Pal' 08]

Legacy Problem -Wireless Communication

Find optimal BS allocation to maximize sum-rate

Example

Example

Still Interested in largest sum-weight but No longer MATCHING

Objective: Association with largest sum weight

Example

Still Interested in largest sum-weight but No longer MATCHING

Objective: Association with largest sum weight

Important Observation

Important Observation

Note that sum-weight is still dominated by Max-Weight with MATCHING

Important Observation

Note that sum-weight is still dominated by Max-Weight with MATCHING

Important Observation

Note that sum-weight is still dominated by Max-Weight with MATCHING

Important Observation

Note that sum-weight is still dominated by Max-Weight with MATCHING

Upper Bound : Max-Weight with Matching

How to solve this ONLINE

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching

Sampling idea as before

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching

Sampling idea as before

all users rejected in sampling or decision phase

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

all users rejected in sampling or decision phase

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

Find best matching

all users rejected in sampling or decision phase

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

Find best matching

all users rejected in sampling or decision phase

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

Find best matching

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

Find best matching

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

Find best matching
match the largest weight more than price

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

Find best matching
match the largest weight more than price

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

How to solve this ONLINE

Choose one BS randomly and associate all users rejected by Matching
Sampling idea as before

Result: 8m/(m-1)—competitive/optimal [V, Thangaraj' 13]

Implication

Lot of users get associated to just one BS

Implication

5G

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

Modern Problem Device-2-Device Communication

mechanism to avoid cheating

 ensure maximum throughput subject to payment budget unknown help opportunitiesFind optimal helper association and incentive rule that is truthful

Why care about truthfulness?

Why care about truthfulness?

Why care about truthfulness?

8.28 Crores

Why care about truthfulness?

Why care about truthfulness?

8.28 Crores

16 Crores

14 Crores

Why care about truthfulness?

8.28 Crores

16 Crores
14 Crores

7 Crores

E. Clarke

T. Groves

Truthful Auction

Truthful Auction

Truthful Auction

Winner: Largest bid
Price: Second-Largest bid

Truthful Auction

Winner: Largest bid
Price: Second-Largest bid

No incentive to bid more than private utility

Problem is equivalent to Crowdsourcing

Problem is equivalent to Crowdsourcing

multiple election tasks

Problem is equivalent to Crowdsourcing

multiple election tasks

Problem is equivalent to Crowdsourcing

multiple election tasks

Problem is equivalent to Crowdsourcing

multiple election tasks

Example

Example

For simplicity at most one task per helper and one helper per task

Example

For simplicity at most one task per helper and one helper per task

Objective: Truthful Matching with largest sum weight under a budget constraint

Example

For simplicity at most one task per helper and one helper per task

Objective: Truthful Matching with largest sum weight under a budget constraint

Example

For simplicity at most one task per helper and one helper per task

Objective: Truthful Matching with largest sum weight under a budget constraint

Example

For simplicity at most one task per helper and one helper per task

Objective: Truthful Matching with largest sum weight under a budget constraint

when is a reverse auction truthful ?

R. Myerson

Monotonicity - if an agent is selected with bid b, then he is always selected if he bids below b

Critical Price - there exists a threshold price such that if an agent bids above it, he is never selected

Algorithm

$$
\mathrm{p}_{1}+\mathrm{p}_{2+\ldots+} \mathrm{p}_{\mathrm{m}}<\mathrm{B}
$$

Algorithm

same idea as before, sampling followed by decision

$$
\mathrm{p}_{1}+\mathrm{p}_{2+\ldots+} \mathrm{p}_{\mathrm{m}}<\mathrm{B}
$$

Algorithm

same idea as before, sampling followed by decision

Algorithm

same idea as before, sampling followed by decision

In Sampling Phase
bid to benefit ratio of an edge $\frac{b(e)}{v(e)}$

$$
\mathrm{p}_{1}+\mathrm{p}_{2+\ldots+} \mathrm{p}_{\mathrm{m}}<\mathrm{B}
$$

Algorithm

same idea as before, sampling followed by decision

In Sampling Phase
bid to benefit ratio of an edge $\frac{b(e)}{v(e)}$
good Graph $\quad G(\gamma)=\left\{e \in G: \frac{b(e)}{v(e)}<\gamma\right\}$

$$
\mathrm{p}_{1}+\mathrm{p}_{2+\ldots+} \mathrm{p}_{\mathrm{m}}<\mathrm{B}
$$

Algorithm

same idea as before, sampling followed by decision

Algorithm

same idea as before, sampling followed by decision

Algorithm

same idea as before, sampling followed by decision

Algorithm

same idea as before, sampling followed by decision

Algorithm

same idea as before, sampling followed by decision

Algorithm

same idea as before, sampling followed by decision

Algorithm

same idea as before, sampling followed by decision

For decision phase utility threshold of each blue node to be value in Matching $\mathrm{M}(\gamma)$

Algorithm - decision phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Algorithm - decision phase

γ and threshold utility obtained from sampling phase

Result: 144-competitive/optimal and truthful [V, Coupechoux]

Acknowledgments

Andrew Thangaraj
IIT-M

Funding

Marceau Coupechoux
Telecom ParisTech

I don't always fail

But when I do, I make sure that you're in the middle of something important.

NATION, IN OTHER NEWS

Kerala IAS officer lures public with biryani to

 clean lakeDECCAN CHRONICLE
Published Jan 27, 2016, 5:54 pm IST
Updated Jan 27, 2016, 5:57 pm IST

Volunteers cleaned up the 14-acre lake and were rewarded with a plate of Malabar biryani.

- IAS officer and collector Prasanth Nair (Photo Courtesy: Facebook.com/Prasanth Nair)

$\boldsymbol{\eta} \boldsymbol{\eta}_{10}$

Sec. Prob as Matching with only one left vertex Bipartite matching problem

Greedy $1 / 2$ algo
Philosophy from Sec problem Hide the first half Set the price and select above the threshold

Wireless Problem -BS assoc
Equal weight case- Offline is to keep one per good BS Use the same philosophy show that OFF < Max Weight Designate one BS as garbage and do Online Matching on the rest Guarantee ($\mathrm{M}-1$)/8M

