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Hiring staft - not adversarial

Success with prob > 1/4

first half second half



Actually Matching




Actually Matching




Actually Matching




Actually Matching




Actually Matching

accept the edge with the largest weight instantaneously
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Natural Generalization

Students

Objective: Matching with largest sum weight
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Sampling idea as before
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match the largest weight
more than price ‘

Result: 8-competitive/optimal [Korula, Pal’ 08]
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Note that sum-weight is still dominated by Max-Weight with MATCHING
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Upper Bound : Max-Weight with Matching
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Choose one BS randomly and associate all users rejected by Matching

Find best matching I

match the largest weight
more than price

Sampling idea as before

A p1=9

all users rejected in sampling
é\ or decision phase

Result: 8m/(m-1)—competitive/optimal [V Thangaraj’ 13]
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Lot of users get associated to just one BS

Still better than natural algorithm of connecting to the

strongest BS
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Truthful Auction

Winner: Largest bid

Price: Second-Largest bid

No incentive to bid more than private utility
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For simplicity at most one task per helper and one helper per task
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Objective: Truthful Matching with largest sum weight under a budget constraint



when Is a reverse auction truthful ?

Monotonicity - if an agent is selected with bid b, then
he is always selected if he bids below b

Critical Price - there exists a threshold price such that
R. Myerson If an agent bids above it, he is never selected
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same idea as before, sampling followed by decision

In Sampling Phase

bid value threshold utility
100 100 . I b(e)

D1=2 —_— ‘ bid to benefit ratio of an edge 73

o= ‘ good Graph G(vy) = {e cG: % < ’y}
o)

M(7) be greedy matching over G(v)

® - Find largest 7
Y ZeEM(*y) U(e) S b

P1+P2+..+Pm < B

For decision phase utility threshold of each blue node to be value in Matching M(~)
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bid value utility threshold

oF ‘ ‘ 100 remove all edges with bid to benefit ratio >7y

o match the largest weight more than
D2 ‘ ‘ = 0.1 utility threshold

Payment for each selected e, p(e) = ~yv(e)

n=.1

}Q 20
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Result: 144 —competitive/optimal and truthful [V, Coupechoux]
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SON, NOT
EVERYTHING
1S BETTER
WIRELESS

| don't always fail

=
J

But when | do, | make sure that you're
in the middle of something important.
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NATION, IN OTHER NEWS

Kerala IAS officer lures public with biryani to
clean lake

DECCAN CHRONICLE
Published Jan 27, 2016, 5:54 pm IST Updated Jan 27, 2016, 5:57 pm IST

Volunteers cleaned up the 14-acre lake and were rewarded with a plate of Malabar
biryani.
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Q IAS officer and collector Prasanth Nair (Photo Courtesy: Facebook.com/Prasanth Nair)






Secretary Problem

1. Why arbit doesn't work
2. Randomized Model
3. Simple Algo 1/2

Sec. Prob as Matching with only one left vertex
Bipartite matching problem

Greedy

1/2 algo

Philosophy from Sec problem Hide the first half Set the price
and select above the threshold

Wireless Prob

Use the same philosophy s
Designate one BS as garbage

rest Guarantee (M-1)/8M

em -BS assoc
Equal weight case- Offline is to keep one per good BS

now that OF
and do Onl

- < Max Weight
ne Matching on the




