

Searching for Supersymmetry in 13 TeV proton proton collisions at LHC (using the CMS Experiment)

Seema Sharma

Indian Institute of Science Education and Research (IISER), Pune

Tata Institute of Fundamental Research, Mumbai March 17, 2016

- Introduction
- CMS in action event reconstruction
- CMS SUSY search program
 - Jets+MET search
 - Other searches
- (Brief) Summary of present status

Standard Model of Elementary Particles

IISER PUNE

A remarkably successful theory !! ¹⁵ CMS Preliminary

The Standard Model has been tested at various collider and noncollider experiments with high precision !!

A Successful LHC Run-I

A scalar particle of mass ~125 GeV established using 7 TeV and 8 TeV data

Rate of different decay modes & various production mechanism crosssections, and various couplings are consistent with SM expectations, although with large uncertainties in some cases.

More details: http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html

Why Beyond Standard Model ?

IISER PUNE

A few fundamental questions of particle physics not addressed by the Standard Model :

- How to stabilize the radiative corrections to Higgs mass in the theory?
- Why EWK and Plank scales are so separated ?
- Any insight into gravity ?
- What is the nature and identity of dark matter ?
- A new fundamental particle ?
- Why different particles have different masses
- Is there a new symmetry ?
 - Grand unification of all the forces
- What is the origin of matter-antimatter asymmetry in nature ?
- Is CP violation the answer ?
- How do neutrino masses and mixing fits in the big picture ?

The Standard Model is an incomplete theory !

Physics Beyond Standard Model

A lot of models which predicts new physics at the TeV scale accessible at LHC :

- Supersymmetry (SUSY)
- Extra dimensions
- Grand Unified Theories (SU(5), O(10), E6 ..)
- LeptoQuarks
- TechniColor
- Compositeness
- Strong dynamics (composite Higgs)

Most of these theories predicts new particles with mass scales of O(TeV).

Supersymmetry

Supersymmetry : A super-partner of every SM particle differing by spin-half

Standard Model Particles

Supersymmetry Particles

SUSY is a broken symmetry : Expect new particles in ~TeV range !

"Natural SUSY" requires :

- light stops, sbottoms (<1 TeV)
- not so heavy gluinos (1.5-2 TeV)
- light $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm}$ (few hundred GeV)

In **R-Parity conserving** models, lightest supersymmetry particle (**LSP**) is stable. Popularly lightest neutralino $\tilde{\chi}_1^0$ is an LSP.

Why is Supersymmetry Attractive ?

h

50 - 1/α1

 $1/\alpha_2$

40

20

 $\alpha^{-1} 30$

- Radiative corrections to Higgs boson mass :
 - Fermion and boson loops contribute to Higgs mass loop with opposite signs, hence avoid quadratic divergences
- Unification of couplings of three interactions
 - SM predicts "running" of coupling constants as a function of energy but without making these cross at the same energy
- Dark matter candidate
 - If the LSP is neutral and weakly interacting, it is a potential dark matter candidate
- A SUSY extension is a small perturbation consistent with the electroweak precision data

Log_ (Q/GeV)

 $-\frac{N_c \lambda^2}{16\pi^2} \Big[2\Lambda_{cutoff}^2 + \dots + \Big]$

 $= + \frac{N_c \lambda^2}{16 \pi^2} \Big[2\Lambda_{cutoff}^2 + \dots + \Big]$

SUSY

SM

Accelerate Particles $E = mc^2$

With sufficient centre-of-mass energy available, new massive particles can be produced

Large Hadron Collider

Stellar performance during Run I and excellent start up of Run II !

CMS Integrated Luminosity, pp

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

How do We Study Collision Events ? (CMS Detector)

Compact Muon Solenoid (CMS)

Weakly interacting neutral particles do not leave any trace in the detector, e.g. v in SM and $\tilde{\chi}_1^0$ in SUSY.

Missing Transverse Momentum (MET)

(Measuring the Weakly Interacting Neutral Particles)

MET : vector sum of momentum of all particles transverse to the beam direction

$$\vec{P}_T^{P_1} + \vec{P}_T^{P_2} = 0 = \sum_i \vec{P}_T^i (measured)$$

$$\vec{P}_T^{miss} = -\sum_i \vec{P}_T^i(measured) \neq 0 \Rightarrow$$
 Some particles are not detected (e.g. v, neutralino)

In addition, any mis-measurement may result in an imbalance in p_T For e.g. non-functional detector channels, electronic noise, non-collision backgrounds ...

Measurement of Jets

Jets : manifestation of quarks and gluons

- a collimated spray of "colorless" hadrons : π^{\pm} , π^{0} , K^{\pm} , K^{0} , p, n ...
- experimental probe to study properties of original quark or gluon
- Both the CMS and ATLAS use anti-kT clustering with distance parameter of 0.4 (know as AK4 jets)

Identification of b-quarks

Using the properties of B-hadrons : displaced secondary vertices

The Continuing Paradigm @ 13 TeV

IISER PUNE

Standard Model Measurements

SUSY Searches with CMS Experiment

Going from 8 TeV → 13 TeV

Massive particles can be produced at higher energy thresholds as the LHC operational energy is increasing.

• Expect to enter new sensitivity regime for gluino searches with 1 fb⁻¹ data @13 TeV

• Stops and squark searches by 3-5 fb⁻¹ and elecroweak production by 8-10 fb⁻¹

Going from 8 TeV → 13 TeV

Massive particles can be produced at higher energy thresholds as the LHC operational energy is increasing.

• Expect to enter new sensitivity regime for gluino searches with 1 fb⁻¹ data @13 TeV

• Stops and squark searches by 3-5 fb⁻¹ and elecroweak production by 8-10 fb⁻¹

SUSY Production @ LHC

An example decay chain of a SUSY event **Two LSPs (\tilde{\chi}_1^o) : Large MET**

- Strong production
- squarks and gluino pairs, large cross-section at hadron colliders
- typically Jets & MET based searches categorized in numbers of leptons (and photons)
- Third generation squarks
- Small cross-section as compared to light squark pair productions
- Final state may include ttbar pairs, multiple b-jets

- Weak production
- direct neutralino/chargino production
- searches based on multileptons and MET signatures

Generic Searches vs Targeted Searches

Two LSPs $(\tilde{\chi}_1^0)$: Large MET

Mostly involves Jets

Categorize further in number of leptons and photons.

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

The targeted searches go in parallel and gain more significance with increasing data

- Searches for direct production of top and bottom squarks
 - Exploit the well establishes properties of top quarks
- Aggressive on b/τ -tagging and specific kinematics
- Electroweakino and slepton production

Gluino final states - a few examples

 \tilde{t}_1^*

SUSY Possibilities

- Aim is to design a search program that can cover a large number of potential SUSY scenarios.

SUSY Simplified models: assume simple decay chains.

- Except the particles participating in decay chains, all the sparticles are assumed too heavy to be accessible at the LHC.

- Allows to study search sensitivity to the masses and the kinematics for designing the analyses.

 $\tilde{\chi}_1^{\pm}$

b

All Hadronic Searches at CMS

General Strategy: details may differ in varios analysis

- Veto lepton to reject W/top + Jets with $W \rightarrow \ell v$
- Contributes as background if
 - t \rightarrow W (e/ $\mu \nu$) + Jets and e/ μ is not identified
 - t \rightarrow W ($\tau \nu$)+ Jets and τ decays hadronically reconstructed as a Jet
- Large hadronic as well as missing transverse momentum
- Z(vv) + Jets an irreducible background

- Large MET effectively reject QCD multijets (jet mismeasurement, instrumental effects etc.)
 - $\Delta \Phi(MHT, Jets^{\{1,2,3,4\}}) >$ (0.5, 0.5, 0.3, 0.3)

Analysis Designed Around Search Variables

CMS-PAS-SUS-15-002

Missing Transverse Hadronic Energy (using jets with $p_T > 30$ GeV, $|\eta| < 5.0$)

$$H_T = \left| -\sum_{i}^{jets} \vec{p}_T, i \right|$$

$$M_{T2} = \min_{\substack{p_T^{c1} + p_T^{c2} = \not p_T}} \left[\max\left(m_T^{(1)}, m_T^{(2)} \right) \right]$$

- $-M_{T2} \sim MET$ for symmetric topologies : SUSY
- $-M_{T2} \sim 0$ for nearly balanced systems
- $-M_{T2}$ < MET for imbalanced and asymmetric systems

CMS-PAS-SUS-15-005

For an multi-jet system, jets are merged to make an equivalent dijet system such that difference in E_T of two systems (ΔH_T) is minimum.

 $-\alpha_{\rm T} = 0.5$ for balanced diet systems

 $-\alpha_T < 0.5$ for mismeasured jets (kills QCD)

$$\alpha_{\mathrm{T}} = \frac{1}{2} \cdot \frac{H_{\mathrm{T}} - \Delta H_{\mathrm{T}}}{\sqrt{H_{\mathrm{T}}^2 - H_{\mathrm{T}}^2}}$$

Mass scale $M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$

$$M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$

Scale-less even imbalance

$$R \equiv \frac{M_T^R}{M_R}$$

27

All Hadronic Searches at CMS (HT & MHT Analysis)

• The final state can have a large range of number of jets or b-jets depending upon the decay chains of mother particles

Background Estimation: Lost Lepton

Single µ/e control sample from data

- Reweight each event in control region with μ/e (in)efficiencies (measure in data or MC, parametrized in lepton pT, hadronic activity etc.).
- Account for isolation efficiency, reconstruction efficiency and kinematic & detector acceptance.
- The method predicts the full kinematics of the events using data itself.

Performance of Lost Lepton Method

How do we know that this method works?

Uncertainties in Lost Lepton Method

How well do we understand estimated background ?

- Limited by statistics of single lepton events in data especially in the search regions defined by high jet multiplicity, large MHT etc. (3-100%)
- These are generally most sensitive regions too !
- Precision of closure test (2-30%) :
- The control region (isolated) and search regions (non-isolated) leptons are basically in different environments.
- Efficiencies are parametrized in terms of lepton kinematic properties, and may not exactly reflect search region environment.
- Efficiencies are taken from simulations and any differences wrt those measured in data contribute to the uncertainties (1-5%).
- Kinematic acceptance is taken from simulation (<1 %).

Hadronic Tau (**t**_h) Background

- No dedicated τ veto hadronically decaying taus are reconstructed as usual AK4 jets.
- A large fraction of single prong τ_h are rejected by an isolated track veto
- Need to measure the contribution of remaining single and multi prong hadronic taus.

- Recalculate NJets, HT, MHT using this modified muon and count the number of events in the various search regions τ_h background.
- Various corrections and branching fractions are appropriately applied.

Background Estimation: ZInvisible

- A straightforward method is to use $Z (\rightarrow e^+e^- \text{ or } \mu^+\mu^-) + \text{Jets}$ events as the topology of events is identical if one ignores leptons in the event
 - suffers from lack of statistics in tighter search regions, use hybrid method including γ + Jets too.

Start with a γ +jets control sample with large hadronic activity and pT(γ)>100 GeV.

Main difficulty is to validate this Z to photon ratio which is taken from theory, especially in the phase space containing large jet or b-jet multiplicity, MHT tails

Background Estimation: ZInvisible

(Understanding Z/y ratio)

For N-bjets = 0

- Use Zµµ+jets/γ+jets from data to correct MC and any trends as a function of jet multiplicity
- Use γ+jets data events to estimate number of Z(vv)+Jets including shapes of jet multiplicity, HT, MHT etc.

For N-bjets > 0

- Use $Z\mu\mu$ +jets events to derive transfer factors from 0-bjets -> N-bjets
- Use these transfer factors on γ +jets 0-b data events to estimate number of Z(vv)+Jets including shapes of jet multiplicity, HT, MHT etc.
- For high jet multiplicity regions, use light quark -> heavy flavor mistagging probabilities.

Background Estimation: ZInvisible

How well the method performs ?

Major systematic uncertainties: photon purity, Z/γ ratio from data, b-jet extrapolation, $Z(\mu\mu)$ +jets kinematics.

Background Estimation: QCD Multijets

- Large MET effectively reject QCD multijets (jet mismeasurement, instrumental effects etc.)
 - $\Delta \Phi(MHT, Jets^{\{1,2,3,4\}}) > (0.5, 0.5, 0.3, 0.3)$

QCD background is estimates using a data driven method using the control sample defined by inverting the $\Delta \Phi$ selection.

7≤Njet≤8.

Bin	$H_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	H_{T} [GeV]	N_{b-jet}	Lost-e/µ	$\tau \rightarrow had$	$Z \to \nu \overline{\nu}$	QCD	Total Pred.	Obs.
25	200-500	500-800	0	$18.78\substack{+3.08+2.31\\-3.05-2.20}$	$24.50\substack{+2.68+2.02\\-2.64-2.00}$	$27.40\substack{+2.78+6.72\\-2.78-5.14}$	$14.05\substack{+1.72+8.19\\-1.54-8.19}$	$84.72^{+6.62+11.00}_{-6.52-10.12}$	85
26	200-500	800-1200	0	$12.53^{+1.83+2.19}_{-1.79-2.17}$	$15.60^{+2.26+1.27}_{-2.22-1.25}$	$17.29^{+2.25+4.19}_{-2.25-3.17}$	$16.29^{+1.20+7.12}_{-1.12-7.12}$	$61.72^{+4.83+8.63}_{-4.73-8.19}$	60
27	200-500	1200+	0	$2.88\substack{+1.15+0.32\\-1.07-0.31}$	$3.50^{+1.29+0.31}_{-1.20-0.30}$	$6.03\substack{+1.29+2.34\\-1.29-1.66}$	$23.01\substack{+1.56+8.75\\-1.46-8.75}$	$35.42\substack{+3.17+9.07\\-2.99-8.92}$	42
28	500-750	500-800	0	$0.53\substack{+0.45+0.14\\-0.26-0.13}$	$0.81\substack{+0.66+0.19\\-0.47-0.19}$	$0.36\substack{+0.36+0.12\\-0.36-0.00}$	$0.06\substack{+0.10+0.09\\-0.04-0.02}$	$1.75\substack{+1.17+0.28\\-0.82-0.23}$	1
29	500-750	1200+	0	$1.03\substack{+0.88+0.33\\-0.80-0.24}$	$1.44\substack{+0.93+0.29\\-0.80-0.29}$	$0.60\substack{+0.43+0.26\\-0.43-0.18}$	$0.26\substack{+0.17+0.30\\-0.11-0.15}$	$3.34\substack{+1.87+0.54\\-1.66-0.44}$	1
30	750+	800+	0	$0.17\substack{+0.38+0.09\\-0.17-0.00}$	$0.17\substack{+0.49+0.11\\-0.17-0.00}$	$0.56\substack{+0.40+0.34\\-0.40-0.16}$	$0.19\substack{+0.16+0.23\\-0.09-0.10}$	$1.09\substack{+0.97+0.41\\-0.53-0.19}$	1
31	200-500	500-800	1	$25.79^{+2.93+3.13}_{-2.90-3.04}$	$31.75^{+2.96+2.34}_{-2.93-2.30}$	$11.68^{+2.24+3.63}_{-2.24-3.82}$	$8.08\substack{+1.36+5.05\\-1.18-5.05}$	$77.30^{+6.45+7.29}_{-6.35-7.39}$	63
32	200-500	800-1200	1	$9.01\substack{+1.63+1.28\\-1.58-1.10}$	$14.38\substack{+2.02+1.35\\-1.97-1.34}$	$7.37\substack{+1.54+2.27\\-1.54-2.39}$	$7.57\substack{+0.85+3.69\\-0.76-3.69}$	$38.34\substack{+4.06+4.67\\-3.94-4.73}$	43
33	200-500	1200+	1	$3.25^{+1.12+0.36}_{-1.01-0.34}$	$6.33^{+1.49+0.67}_{-1.42-0.66}$	$2.57\substack{+0.69+1.11\\-0.69-0.99}$	$13.70\substack{+1.22+5.93\\-1.13-5.93}$	$25.85^{+2.96+6.08}_{-2.77-6.06}$	29
34	500-750	500-800	1	$0.46\substack{+0.49+0.11\\-0.27-0.11}$	$0.51\substack{+0.55+0.11\\-0.29-0.11}$	$0.15\substack{+0.16+0.06\\-0.15-0.00}$	$0.00\substack{+0.12+0.05\\-0.00-0.00}$	$1.12\substack{+1.06+0.17\\-0.58-0.16}$	2
35	500-750	1200+	1	$0.00\substack{+0.40+0.00\\-0.00-0.00}$	$0.25\substack{+0.49+0.05\\-0.18-0.05}$	$0.26\substack{+0.19+0.12\\-0.19-0.07}$	$0.12\substack{+0.14+0.16\\-0.07-0.05}$	$0.63\substack{+0.92+0.21\\-0.27-0.10}$	2
36	750+	800+	1	$0.00\substack{+0.45+0.00\\-0.00-0.00}$	$0.02\substack{+0.46+0.01\\-0.01-0.00}$	$0.24\substack{+0.17+0.15\\-0.17-0.07}$	$0.00\substack{+0.08+0.03\\-0.00-0.00}$	$0.25\substack{+0.93+0.16\\-0.17-0.07}$	1
37	200-500	500-800	2	$13.15\substack{+2.16+1.54\\-2.11-1.51}$	$16.03^{+1.87+1.20}_{-1.81-1.18}$	$4.79^{+1.46+2.36}_{-1.46-2.43}$	$0.16\substack{+0.32+0.57\\-0.00-0.16}$	$34.13\substack{+4.29+3.09\\-4.18-3.10}$	32
38	200-500	800-1200	2	$6.33\substack{+1.29+0.74\\-1.22-0.71}$	$10.73\substack{+1.82+0.89\\-1.76-0.88}$	$3.03\substack{+0.95+1.48\\-0.95-1.53}$	$2.15\substack{+0.48+1.12\\-0.40-1.12}$	$22.24\substack{+3.29+2.18\\-3.15-2.21}$	17
39	200-500	1200+	2	$1.73\substack{+0.79+0.20\\-0.62-0.19}$	$1.89\substack{+0.88+0.18\\-0.75-0.18}$	$1.06\substack{+0.38+0.61\\-0.38-0.58}$	$3.55_{-0.55-1.64}^{+0.64+1.64}$	$8.22^{+1.82+1.77}_{-1.52-1.76}$	4
40	500-750	500-800	2	$0.00\substack{+0.39+0.00\\-0.00-0.00}$	$0.04\substack{+0.46+0.01\\-0.02-0.01}$	$0.06\substack{+0.07+0.03\\-0.06-0.00}$	$0.00\substack{+0.12+0.05\\-0.00-0.00}$	$0.10\substack{+0.86+0.06\\-0.06-0.01}$	0
41	500-750	1200+	2	$0.00\substack{+0.43+0.00\\-0.00-0.00}$	$0.07\substack{+0.47+0.04\\-0.07-0.00}$	$0.11\substack{+0.08+0.06\\-0.08-0.02}$	$0.03\substack{+0.11+0.05\\-0.02-0.01}$	$0.21\substack{+0.90+0.08\\-0.11-0.03}$	1
42	750+	800+	2	$0.00\substack{+0.34+0.00\\-0.00-0.00}$	$0.13\substack{+0.48+0.06\\-0.13-0.00}$	$0.10\substack{+0.07+0.07\\-0.07-0.02}$	$0.00\substack{+0.08+0.03\\-0.00-0.00}$	$0.23\substack{+0.82+0.08\\-0.15-0.02}$	0
43	200-500	500-800	3+	$3.93\substack{+1.25+0.46\\-1.16-0.45}$	$5.78^{+1.31+0.68}_{-1.23-0.67}$	$2.54\substack{+1.50+1.76\\-1.50-1.04}$	$1.09\substack{+0.62+0.86\\-0.41-0.68}$	$13.34\substack{+3.03+2.12\\-2.85-1.48}$	3
44	200-500	800-1200	3+	$0.44\substack{+0.49+0.05\\-0.25-0.05}$	$1.66\substack{+0.76+0.26\\-0.60-0.26}$	$1.60\substack{+0.96+1.11\\-0.96-0.65}$	$0.60\substack{+0.30+0.39\\-0.21-0.39}$	$4.30^{+1.60+1.20}_{-1.30-0.80}$	4
45	200-500	1200+	3+	$0.66\substack{+0.72+0.12\\-0.52-0.12}$	$0.65\substack{+0.61+0.10\\-0.40-0.10}$	$0.56\substack{+0.35+0.42\\-0.35-0.21}$	$0.04\substack{+0.19+0.12\\-0.00-0.04}$	$1.91\substack{+1.39+0.47\\-0.99-0.27}$	1
46	500-750	500-800	3+	$0.00\substack{+0.52+0.00\\-0.00-0.00}$	$0.00\substack{+0.46+0.00\\-0.00-0.00}$	$0.03\substack{+0.04+0.02\\-0.03-0.00}$	$0.04\substack{+0.09+0.07\\-0.03-0.01}$	$0.07\substack{+0.98+0.07\\-0.05-0.01}$	0
47	500-750	1200+	3+	$0.00\substack{+0.47+0.00\\-0.00-0.00}$	$0.00\substack{+0.46+0.00\\-0.00-0.00}$	$0.06\substack{+0.05+0.04\\-0.05-0.00}$	$0.00\substack{+0.09+0.03\\-0.00-0.00}$	$0.06\substack{+0.94+0.05\\-0.05-0.00}$	0
48	750+	800+	3+	$0.00\substack{+0.61+0.00\\-0.00-0.00}$	$0.01\substack{+0.46+0.01\\-0.01-0.00}$	$0.05\substack{+0.05+0.05\\-0.05-0.00}$	$0.00\substack{+0.08+0.03\\-0.00-0.00}$	$0.06\substack{+1.07+0.06\\-0.05-0.00}$	0

Results

CMS

2.3 fb⁻¹ (13 TeV)

38

If there was SUSY Signal

Interpretation : Gluino Pair Production

Systematic uncertainties applied on signal: luminosity, lepton track veto, trigger efficiency, ISR modeling, PDF uncertainty.

Inclusive searches with one lepton final states

Jets are increasingly becoming powerful tools ! (Accidental substructure)

- A lot of development in identifying and reconstructing boosted heavy particles
 - Jet substructure techniques to identify fully hadronic topologies.

Jets are increasingly becoming powerful tools ! (Accidental substructure)

Current Status

Current Status (pMSSM)

arXiv:1602.06194

More SUSY Results using 13 TeV data

http://cms-results.web.cern.ch/cms-results/public-results/preliminaryresults/LHC-Jamboree-2015.html

Search for Supersymmetry

- Supersymmetry in Multijet + Missing $E_{\rm T}$
- Supersymmetry in All-Hadronic Using M_{T2}
- Supersymmetry in All-Hadronic Using $\alpha_{\rm T}$
- Supersymmetry in All-Hadronic Using Razor
 Variables
- Supersymmetry in One-Lepton Events Using Large Radius Jets
- Supersymmetry in Same-Sign Dilepton Events
- Supersymmetry in Opposite-Sign Dilepton Events

A few more which are yet to be linked on public pages.

- A variety of analyses to search for supersymmetric partners in 2.3 fb⁻¹ of 13 TeV data
- The gluinos of mass up to 1.6 TeV excluded for low LSP masses
- The gluino exclusion limits are extended by 150-200 GeV as compared to 8 TeV results.
- Expecting up to 10 fb⁻¹ by the summer this year

A lot of excitement ahead, stay tuned !

Near Future

Further Future

Backup

b-tagging efficiency

Gluino Mediated Stop Production

Two LSPs $(\tilde{\chi}_1^0)$: Large MET

Drahening machon for 1005

Searches performed in the final state categorized into : Further categorized into 0, 1, SS/OS 2-leptons, multileptons

New Physics Cross sections @ LHC

SUSYCrossSections#SUSY_Cross_Sections_using_8_TeV

Acquiring Data of Interest

New Physics @ LHC

New particles can be produced in collisions of particles at high energies.

- Interactions between the constituent partons.
- As the LHC operating energy increases, massive states can be produced at higher energy thresholds : $M_{new} = \sqrt{s}$ (centre-of-mass energy)
 - 7 TeV \rightarrow 8 TeV \rightarrow 13 TeV
- Multiple production channels (strong, electroweak) : gg, qq', qg, WW ...

A Generic HEP Detector & Event Reconstruction

Reconstruct all the stable particles : electrons, photons, muons, charged and neutral hadrons

(Fake) MET

Mis-measurement of jets can result in fake missing transverse momentum.

Detector response < 1 \rightarrow mimic signature of a v or $\tilde{\chi}_1^0$

Understanding jet p_T resolution is very important to control the QCD multijet background.

Seema Sharma, Fermilab