
cbna ASET 2016 Ashutosh Gupta TIFR, India 1

Why systems fail?
- blue screen, leaked pictures, dictators, cancer -

How to stop them?

Ashutosh Gupta

TIFR, India

Compile date: 2016-03-18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 2

There was a simple life

“Something’s not right – our air and water is clean, we get plenty of exercise,
everything we eat is organic and free-range, and yet nobody lives past thirty”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 3

And progress happened

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 4

Progress brought complexity

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 5

Progress brought complexity

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 6

Progress brought complexity

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 7

Complexity caused bugs

Blue screen Leaked pictures Dictators Cancer

Often our systems show undesired behaviors!!

Why bugs happen?

How can we build bug-free systems?

Let us look at an example (play video).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 8

Complexity caused bugs

Blue screen Leaked pictures Dictators Cancer

Often our systems show undesired behaviors!!

Why bugs happen?

How can we build bug-free systems?

Let us look at an example (play video).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 9

Complexity caused bugs

Blue screen Leaked pictures Dictators Cancer

Often our systems show undesired behaviors!!

Why bugs happen?

How can we build bug-free systems?

Let us look at an example (play video).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 10

Example: Ariane 5 failure

From the failure report: “... software exception (in the navigation system)
was caused during execution of a data conversion from 64-bit floating point
to 16-bit ... (the) number which was converted had a value greater than
what could be represented by a 16-bit ...”

“Although the source of the Operand Error has been identified, this in itself
did not cause the mission to fail. The reason lies in the culture within
the Ariane programme of only addressing random hardware failures.”

The backup device also failed!! Software bugs have no nice distribution!

Essentially, a misunderstanding of the nature of the system.

Culture = the belief that all errors
have normal distributions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 11

Example: Ariane 5 failure

From the failure report: “... software exception (in the navigation system)
was caused during execution of a data conversion from 64-bit floating point
to 16-bit ... (the) number which was converted had a value greater than
what could be represented by a 16-bit ...”

“Although the source of the Operand Error has been identified, this in itself
did not cause the mission to fail. The reason lies in the culture within
the Ariane programme of only addressing random hardware failures.”

The backup device also failed!! Software bugs have no nice distribution!

Essentially, a misunderstanding of the nature of the system.

Culture = the belief that all errors
have normal distributions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 12

Example: Ariane 5 failure

From the failure report: “... software exception (in the navigation system)
was caused during execution of a data conversion from 64-bit floating point
to 16-bit ... (the) number which was converted had a value greater than
what could be represented by a 16-bit ...”

“Although the source of the Operand Error has been identified, this in itself
did not cause the mission to fail. The reason lies in the culture within
the Ariane programme of only addressing random hardware failures.”

The backup device also failed!! Software bugs have no nice distribution!

Essentially, a misunderstanding of the nature of the system.

Culture = the belief that all errors
have normal distributions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 13

Example: Ariane 5 failure

From the failure report: “... software exception (in the navigation system)
was caused during execution of a data conversion from 64-bit floating point
to 16-bit ... (the) number which was converted had a value greater than
what could be represented by a 16-bit ...”

“Although the source of the Operand Error has been identified, this in itself
did not cause the mission to fail. The reason lies in the culture within
the Ariane programme of only addressing random hardware failures.”

The backup device also failed!! Software bugs have no nice distribution!

Essentially, a misunderstanding of the nature of the system.

Culture = the belief that all errors
have normal distributions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 14

Example: Ariane 5 failure

From the failure report: “... software exception (in the navigation system)
was caused during execution of a data conversion from 64-bit floating point
to 16-bit ... (the) number which was converted had a value greater than
what could be represented by a 16-bit ...”

“Although the source of the Operand Error has been identified, this in itself
did not cause the mission to fail. The reason lies in the culture within
the Ariane programme of only addressing random hardware failures.”

The backup device also failed!! Software bugs have no nice distribution!

Essentially, a misunderstanding of the nature of the system.

Culture = the belief that all errors
have normal distributions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 15

Desired behaviors

First we need to ask,

what do we expect from our systems?

For a system, we need to have goals that define the set of desired behaviors.

For example, a rocket should have the following goals

I it does not explode in flight (safety)

I it eventually reaches to the orbit (liveness)

I ...

The specifications may not be explicitly available to us.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 16

Desired behaviors

First we need to ask,

what do we expect from our systems?

For a system, we need to have goals that define the set of desired behaviors.

For example, a rocket should have the following goals

I it does not explode in flight (safety)

I it eventually reaches to the orbit (liveness)

I ...

The specifications may not be explicitly available to us.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 17

Desired behaviors

First we need to ask,

what do we expect from our systems?

For a system, we need to have goals that define the set of desired behaviors.

For example, a rocket should have the following goals

I it does not explode in flight (safety)

I it eventually reaches to the orbit (liveness)

I ...

The specifications may not be explicitly available to us.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 18

Desired behaviors

First we need to ask,

what do we expect from our systems?

For a system, we need to have goals that define the set of desired behaviors.

For example, a rocket should have the following goals

I it does not explode in flight (safety)

I it eventually reaches to the orbit (liveness)

I ...

The specifications may not be explicitly available to us.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 19

Safety vs. Liveness

Both goals are often in odds with each other.

Liveness wants to move and safety wants to play conservative.

Designing a system that is both safe and live is hard.

Example 1.1

Government

Safety Liveness

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 20

Safety vs. Liveness

Both goals are often in odds with each other.

Liveness wants to move and safety wants to play conservative.

Designing a system that is both safe and live is hard.

Example 1.1

Government

Safety Liveness

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 21

Safety vs. Liveness

Both goals are often in odds with each other.

Liveness wants to move and safety wants to play conservative.

Designing a system that is both safe and live is hard.

Example 1.1

Government

Safety Liveness

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 22

Safety vs. Liveness

Both goals are often in odds with each other.

Liveness wants to move and safety wants to play conservative.

Designing a system that is both safe and live is hard.

Example 1.1

Government

Safety Liveness

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 23

Development tools

Once we have the goals then we need right set of tools to design the system

For example,

I Programming language or instruments

I Organizational structure

I Skills of people

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 24

Development tools

Once we have the goals then we need right set of tools to design the system

For example,

I Programming language or instruments

I Organizational structure

I Skills of people

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 25

Example: bad excel

I In a 2010 paper, famous economists Reinhart and Rogoff inferred from
the past century data that excessive debt hampers growth

I The paper quickly became a classic for the austerity hawks

I However, a student spotted a problem. Their spreadsheet skipped key
data points, which biased the results in favour of the inference.

Last five rows
are skipped!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 26

Example: bad excel

I In a 2010 paper, famous economists Reinhart and Rogoff inferred from
the past century data that excessive debt hampers growth

I The paper quickly became a classic for the austerity hawks

I However, a student spotted a problem. Their spreadsheet skipped key
data points, which biased the results in favour of the inference.

Last five rows
are skipped!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 27

Example: bad excel

I In a 2010 paper, famous economists Reinhart and Rogoff inferred from
the past century data that excessive debt hampers growth

I The paper quickly became a classic for the austerity hawks

I However, a student spotted a problem. Their spreadsheet skipped key
data points, which biased the results in favour of the inference.

Last five rows
are skipped!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 28

Example: bad excel

I In a 2010 paper, famous economists Reinhart and Rogoff inferred from
the past century data that excessive debt hampers growth

I The paper quickly became a classic for the austerity hawks

I However, a student spotted a problem. Their spreadsheet skipped key
data points, which biased the results in favour of the inference.

Last five rows
are skipped!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 29

Example: bad excel (contd.)

The key point is that excel is a bad programming environment

I the program is not visible to the user - one only sees cells with numbers

I data and program are not separated

I no debugging tool

I hard to monitor changes

I almost impossibility of code review

Excel should not be used for any serious work!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 30

Example: bad excel (contd.)

The key point is that excel is a bad programming environment

I the program is not visible to the user - one only sees cells with numbers

I data and program are not separated

I no debugging tool

I hard to monitor changes

I almost impossibility of code review

Excel should not be used for any serious work!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 31

Example: bad excel (contd.)

The key point is that excel is a bad programming environment

I the program is not visible to the user - one only sees cells with numbers

I data and program are not separated

I no debugging tool

I hard to monitor changes

I almost impossibility of code review

Excel should not be used for any serious work!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 32

Example: bad excel (contd.)

The key point is that excel is a bad programming environment

I the program is not visible to the user - one only sees cells with numbers

I data and program are not separated

I no debugging tool

I hard to monitor changes

I almost impossibility of code review

Excel should not be used for any serious work!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 33

Example: bad excel (contd.)

The key point is that excel is a bad programming environment

I the program is not visible to the user - one only sees cells with numbers

I data and program are not separated

I no debugging tool

I hard to monitor changes

I almost impossibility of code review

Excel should not be used for any serious work!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 34

Example: bad excel (contd.)

The key point is that excel is a bad programming environment

I the program is not visible to the user - one only sees cells with numbers

I data and program are not separated

I no debugging tool

I hard to monitor changes

I almost impossibility of code review

Excel should not be used for any serious work!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 35

Example: bad excel (contd.)

The key point is that excel is a bad programming environment

I the program is not visible to the user - one only sees cells with numbers

I data and program are not separated

I no debugging tool

I hard to monitor changes

I almost impossibility of code review

Excel should not be used for any serious work!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 36

Tools for analysis
Once we have built the system, we need an appropriate analysis method to
check that the system stisfies with the goals.

Example 1.2

All behaviors of the Ariane 5 software should have been analyzed.

The software on such machines have more states then stars in the universe.

In the state space, the distribution of the errors is unknown.

We are dealing with an ugly beast!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 37

Tools for analysis
Once we have built the system, we need an appropriate analysis method to
check that the system stisfies with the goals.

Example 1.2

All behaviors of the Ariane 5 software should have been analyzed.

The software on such machines have more states then stars in the universe.

In the state space, the distribution of the errors is unknown.

We are dealing with an ugly beast!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 38

Tools for analysis
Once we have built the system, we need an appropriate analysis method to
check that the system stisfies with the goals.

Example 1.2

All behaviors of the Ariane 5 software should have been analyzed.

The software on such machines have more states then stars in the universe.

In the state space, the distribution of the errors is unknown.

We are dealing with an ugly beast!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 39

Tools for analysis
Once we have built the system, we need an appropriate analysis method to
check that the system stisfies with the goals.

Example 1.2

All behaviors of the Ariane 5 software should have been analyzed.

The software on such machines have more states then stars in the universe.

In the state space, the distribution of the errors is unknown.

We are dealing with an ugly beast!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 40

Tools for analysis
Once we have built the system, we need an appropriate analysis method to
check that the system stisfies with the goals.

Example 1.2

All behaviors of the Ariane 5 software should have been analyzed.

The software on such machines have more states then stars in the universe.

In the state space, the distribution of the errors is unknown.

We are dealing with an ugly beast!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 41

Only continuous math is inappropriate

The classic methods such as differential equations, linear optimizations,
simulation, important sampling, etc are the shiny knights that have slayed
many problems.

Unfortunately, these methods are insufficient in our setting.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 42

Bugs hunting needs combinatorial reasoning!!

It is time to get rough! Nice approximations do not work.

We have to search the combinatorial space for the analysis.

We need to make unholy alliances. The search is often aided by smart
optimizations and machine learning that tells where to search first.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 43

Bugs hunting needs combinatorial reasoning!!

It is time to get rough! Nice approximations do not work.

We have to search the combinatorial space for the analysis.

We need to make unholy alliances. The search is often aided by smart
optimizations and machine learning that tells where to search first.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 44

Bugs hunting needs combinatorial reasoning!!

It is time to get rough! Nice approximations do not work.

We have to search the combinatorial space for the analysis.

We need to make unholy alliances. The search is often aided by smart
optimizations and machine learning that tells where to search first.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 45

Topic 1.1

Formal Verification 101

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 46

“Fronts” of software reliability

Language
design

Systematic
testing

Programming
environments

Technical
education

Formal Verification Automated Synthesis

Heterogeneous technologies need to
work together for effective reliability

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 47

“Fronts” of software reliability

Language
design

Systematic
testing

Programming
environments

Technical
education

Formal Verification Automated Synthesis

Heterogeneous technologies need to
work together for effective reliability

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 48

“Fronts” of software reliability

Language
design

Systematic
testing

Programming
environments

Technical
education

Formal Verification Automated Synthesis

Heterogeneous technologies need to
work together for effective reliability

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 49

“Fronts” of software reliability

Language
design

Systematic
testing

Programming
environments

Technical
education

Formal Verification Automated Synthesis

Heterogeneous technologies need to
work together for effective reliability

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 50

“Fronts” of software reliability

Language
design

Systematic
testing

Programming
environments

Technical
education

Formal Verification Automated Synthesis

Heterogeneous technologies need to
work together for effective reliability

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 51

Verification problem

I Hardware

I Software

I Safety

I Liveness

I Quantitative

I Probabilistic

Program Property

?
⇒

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 52

Software verification

I Desired property is expresses as a logical formula ψ

I For a given program P, we aim to prove theorem

P ⇒ ψ

(all behaviors of P satisfy ψ)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 53

Abstraction is the key method to prove P ⇒ ψ

I P moves from a state to another state

I Abstract model P# moves from
a set of states to another set of states
(abstract model has more behaviors than program)

I We prove the following implications

P ⇒ P# ⇒ ψ
Correct by
construction

Hopefully, easier
to check

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 54

Abstraction is the key method to prove P ⇒ ψ

I P moves from a state to another state

I Abstract model P# moves from
a set of states to another set of states
(abstract model has more behaviors than program)

I We prove the following implications

P ⇒ P# ⇒ ψ
Correct by
construction

Hopefully, easier
to check

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 55

Abstraction is the key method to prove P ⇒ ψ

I P moves from a state to another state

I Abstract model P# moves from
a set of states to another set of states
(abstract model has more behaviors than program)

I We prove the following implications

P ⇒ P# ⇒ ψ
Correct by
construction

Hopefully, easier
to check

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 56

Abstraction is the key method to prove P ⇒ ψ

I P moves from a state to another state

I Abstract model P# moves from
a set of states to another set of states
(abstract model has more behaviors than program)

I We prove the following implications

P ⇒ P# ⇒ ψ

Correct by
construction

Hopefully, easier
to check

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 57

Abstraction is the key method to prove P ⇒ ψ

I P moves from a state to another state

I Abstract model P# moves from
a set of states to another set of states
(abstract model has more behaviors than program)

I We prove the following implications

P ⇒ P# ⇒ ψ
Correct by
construction

Hopefully, easier
to check

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 58

Abstraction is the key method to prove P ⇒ ψ

I P moves from a state to another state

I Abstract model P# moves from
a set of states to another set of states
(abstract model has more behaviors than program)

I We prove the following implications

P ⇒ P# ⇒ ψ
Correct by
construction

Hopefully, easier
to check

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 59

Example : program to CFG

void main() {

i = 0;

while(i < 10) {

i++;

}

assert(i >= 0);

}

I

L

E

i := 0

i < 0

i < 10; i := i + 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 60

Example : program to CFG

void main() {

i = 0;

while(i < 10) {

i++;

}

assert(i >= 0);

}

I

L

E

i := 0

i < 0

i < 10; i := i + 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 61

Example : CFG to abstract model

I CFG

I

L

E

i := 0

i < 0

i < 10; i := i + 1

I Abstract model

I: >

L: i ≥ 0

E: ⊥

i := 0

i < 0

i < 10; i := i + 1

What information to
keep at L to prove
the program correct?

Verification problem≡ find the right abstract model

Verification methods only differ in
how to find such an abstract model

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 62

Example : CFG to abstract model

I CFG

I

L

E

i := 0

i < 0

i < 10; i := i + 1

I Abstract model

I: >

L: i ≥ 0

E: ⊥

i := 0

i < 0

i < 10; i := i + 1

What information to
keep at L to prove
the program correct?

Verification problem≡ find the right abstract model

Verification methods only differ in
how to find such an abstract model

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 63

Example : CFG to abstract model

I CFG

I

L

E

i := 0

i < 0

i < 10; i := i + 1

I Abstract model

I: >

L: i ≥ 0

E: ⊥

i := 0

i < 0

i < 10; i := i + 1

What information to
keep at L to prove
the program correct?

Verification problem≡ find the right abstract model

Verification methods only differ in
how to find such an abstract model

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 64

Example : CFG to abstract model

I CFG

I

L

E

i := 0

i < 0

i < 10; i := i + 1

I Abstract model

I: >

L: i ≥ 0

E: ⊥

i := 0

i < 0

i < 10; i := i + 1

What information to
keep at L to prove
the program correct?

Verification problem≡ find the right abstract model

Verification methods only differ in
how to find such an abstract model

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 65

Example : CFG to abstract model

I CFG

I

L

E

i := 0

i < 0

i < 10; i := i + 1

I Abstract model

I: >

L: i ≥ 0

E: ⊥

i := 0

i < 0

i < 10; i := i + 1

What information to
keep at L to prove
the program correct?

Verification problem≡ find the right abstract model

Verification methods only differ in
how to find such an abstract model

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 66

Example : A verification method

CEGAR: CounterExample Guided Abstraction Refinement

Program

Abstract Model
initial

abstraction
Model checker

no bug found

property holds

feasibility check

counterexample

successful

bug found
Refinement

spurious

counterexample

refined abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 67

Example : A verification method

CEGAR: CounterExample Guided Abstraction Refinement

Program Abstract Model
initial

abstraction

Model checker
no bug found

property holds

feasibility check

counterexample

successful

bug found
Refinement

spurious

counterexample

refined abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 68

Example : A verification method

CEGAR: CounterExample Guided Abstraction Refinement

Program Abstract Model
initial

abstraction
Model checker

no bug found

property holds

feasibility check

counterexample

successful

bug found
Refinement

spurious

counterexample

refined abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 69

Example : A verification method

CEGAR: CounterExample Guided Abstraction Refinement

Program Abstract Model
initial

abstraction
Model checker

no bug found

property holds

feasibility check

counterexample

successful

bug found

Refinement

spurious

counterexample

refined abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 70

Example : A verification method

CEGAR: CounterExample Guided Abstraction Refinement

Program Abstract Model
initial

abstraction
Model checker

no bug found

property holds

feasibility check

counterexample

successful

bug found
Refinement

spurious

counterexample

refined abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 71

Topic 1.2

What is so hard about concurrency?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 72

Schedule blowup

Exercise 1.1
What is the number of schedules between two threads with number of
instructions N1 and N2 ?

The blowup is not the only problem.

In the presence of synchronization primitives, the
sets of allowed schedules appear deceptively sim-
ple, but are ugly beasts
e. g., locks, barriers, etc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 73

Schedule blowup

Exercise 1.1
What is the number of schedules between two threads with number of
instructions N1 and N2 ?

The blowup is not the only problem.

In the presence of synchronization primitives, the
sets of allowed schedules appear deceptively sim-
ple, but are ugly beasts
e. g., locks, barriers, etc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 74

Memory behavior

We usually believe that memory is sequential consistent.

In the concurrent world, threads may not have same view of memory!

Example 1.3

Global init result = 0, ready = 0;

Backend Thread

r = calculate();

result = r;

ready = 1;

‖

Display Thread

while(ready == 0);

print results;

Will this program always print the result of the calculation?

Writes overtake each other. The program is wrong on a typical smart phone!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 75

Memory behavior

We usually believe that memory is sequential consistent.

In the concurrent world, threads may not have same view of memory!

Example 1.3

Global init result = 0, ready = 0;

Backend Thread

r = calculate();

result = r;

ready = 1;

‖

Display Thread

while(ready == 0);

print results;

Will this program always print the result of the calculation?

Writes overtake each other. The program is wrong on a typical smart phone!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 76

Memory behavior

We usually believe that memory is sequential consistent.

In the concurrent world, threads may not have same view of memory!

Example 1.3

Global init result = 0, ready = 0;

Backend Thread

r = calculate();

result = r;

ready = 1;

‖

Display Thread

while(ready == 0);

print results;

Will this program always print the result of the calculation?

Writes overtake each other. The program is wrong on a typical smart phone!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 77

Memory behavior

We usually believe that memory is sequential consistent.

In the concurrent world, threads may not have same view of memory!

Example 1.3

Global init result = 0, ready = 0;

Backend Thread

r = calculate();

result = r;

ready = 1;

‖

Display Thread

while(ready == 0);

print results;

Will this program always print the result of the calculation?

Writes overtake each other. The program is wrong on a typical smart phone!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 78

Memory behavior

We usually believe that memory is sequential consistent.

In the concurrent world, threads may not have same view of memory!

Example 1.3

Global init result = 0, ready = 0;

Backend Thread

r = calculate();

result = r;

ready = 1;

‖

Display Thread

while(ready == 0);

print results;

Will this program always print the result of the calculation?

Writes overtake each other. The program is wrong on a typical smart phone!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 79

Memory behavior

We usually believe that memory is sequential consistent.

In the concurrent world, threads may not have same view of memory!

Example 1.3

Global init result = 0, ready = 0;

Backend Thread

r = calculate();

result = r;

ready = 1;

‖

Display Thread

while(ready == 0);

print results;

Will this program always print the result of the calculation?

Writes overtake each other. The program is wrong on a typical smart phone!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 80

Memory behavior

We usually believe that memory is sequential consistent.

In the concurrent world, threads may not have same view of memory!

Example 1.3

Global init result = 0, ready = 0;

Backend Thread

r = calculate();

result = r;

ready = 1;

‖

Display Thread

while(ready == 0);

print results;

Will this program always print the result of the calculation?

Writes overtake each other. The program is wrong on a typical smart phone!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 81

Memory models

Concurrent Program Compiler Machine code

Machine behaviorMemory modelProgrammer

Simple to understand by programmers
but captures all machines

I C++11 publishes such a memory model

I Allows too many behaviors, even if no hardware exhibits them

I Disallows many simple compiler optimizations

I We are working on developing memory models that
I is easy to understand
I allows a good number of compiler optimization
I allows efficient analysis of programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 82

Memory models

Concurrent Program Compiler Machine code

Machine behavior

Memory modelProgrammer

Simple to understand by programmers
but captures all machines

I C++11 publishes such a memory model

I Allows too many behaviors, even if no hardware exhibits them

I Disallows many simple compiler optimizations

I We are working on developing memory models that
I is easy to understand
I allows a good number of compiler optimization
I allows efficient analysis of programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 83

Memory models

Concurrent Program Compiler Machine code

Machine behaviorMemory model

Programmer

Simple to understand by programmers
but captures all machines

I C++11 publishes such a memory model

I Allows too many behaviors, even if no hardware exhibits them

I Disallows many simple compiler optimizations

I We are working on developing memory models that
I is easy to understand
I allows a good number of compiler optimization
I allows efficient analysis of programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 84

Memory models

Concurrent Program Compiler Machine code

Machine behaviorMemory modelProgrammer

Simple to understand by programmers
but captures all machines

I C++11 publishes such a memory model

I Allows too many behaviors, even if no hardware exhibits them

I Disallows many simple compiler optimizations

I We are working on developing memory models that
I is easy to understand
I allows a good number of compiler optimization
I allows efficient analysis of programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 85

Memory models

Concurrent Program Compiler Machine code

Machine behaviorMemory modelProgrammer

Simple to understand by programmers
but captures all machines

I C++11 publishes such a memory model

I Allows too many behaviors, even if no hardware exhibits them

I Disallows many simple compiler optimizations

I We are working on developing memory models that
I is easy to understand
I allows a good number of compiler optimization
I allows efficient analysis of programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 86

Memory models

Concurrent Program Compiler Machine code

Machine behaviorMemory modelProgrammer

Simple to understand by programmers
but captures all machines

I C++11 publishes such a memory model

I Allows too many behaviors, even if no hardware exhibits them

I Disallows many simple compiler optimizations

I We are working on developing memory models that
I is easy to understand
I allows a good number of compiler optimization
I allows efficient analysis of programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna ASET 2016 Ashutosh Gupta TIFR, India 87

Memory models

Concurrent Program Compiler Machine code

Machine behaviorMemory modelProgrammer

Simple to understand by programmers
but captures all machines

I C++11 publishes such a memory model

I Allows too many behaviors, even if no hardware exhibits them

I Disallows many simple compiler optimizations

I We are working on developing memory models that
I is easy to understand
I allows a good number of compiler optimization
I allows efficient analysis of programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

