

Standard Model Physics with CMS Detector

Shashi Dugad for TIFR-CMS-A Group

Annual DHEP Meeting 7-8 April 2016

- Hardware contributions
 - Upgrade of Outer Hadron Calorimeter
 - Embedded DAQ system for radiation monitors in HF region
 - CMS Upgrade (HGCAL and Tracker)
- Standard Model Physics (Poster presentation tomorrow)
 - Measurement of t-channel single top quark inclusive cross section (CMS-PAS-TOP-16-003)
 - Study of ratio of W⁺+jets/W⁻+jets ratio as function of p_t
 - Search for exotic Z charmonium like states

Ctifr Upgrade of HO Detector with SiPM

- Validation of SiPM for CMS environment
 - Testbeam studies, stability, radiation hardness, magnetic field immunity and saturation effects
- Fabrication of 160 SiPM Control Boards at CRL, Ooty
 - Each board has 18 Channels
 - Control boards provides generates bias voltage for, each channel monitors current, temperature etc.
 - Entire production and quality control of 160 boards d to be carried in India
- Quality Control of Control Boards and SiPM Boards
- (160+160) at CRL, Ooty, India:
 - Setting up stand-alone DAQ system for Control and SiPM boards
 - Development of software for QC Data Analysis
 - Generating QC report for each board
- Installation and Commissioning:
 - Removal of 132 Readout Modules, Assembly of Readout Modules
 QC and burn-in test at CERN, Installation of 132 Readout Modules
- Project Leaders for Fabrication:
 - Jim Freeman (FNAL) and Shashi Dugad (TIFR)
 - Funded by TIFR, FNAL, DESY
- TIFR SiPM Group

HO Readout Module Assembly

SiPM Control Board

SiPM Mounting Board

tifr Upgrade of HO Detector with SiPM - Results

QC Results of HO Hardware

HO Response to muons, pions at Test-Beam

HFRADMON:

Data Acquisition System for HF Radiation Monitors at CMS

- Long term monitoring of the absorbed dose and neutron flux to estimate the expected degradation of fibers, electronics, PMTs and to measure the shielding efficiency.
- ✓ State of the art, high speed FPGA design with Ethernet communication
- Complete in-house design, fabrication and testing; complete design cycle completed in 6 months
- ✓ Successful first prototype: Installed at CERN P5, operational 24x7
- Highly flexible design, usability in SiPM development program and many more applications

System for a radiation monitoring in the CMS HF area

Interface and ADC board

tifr Interface and ADC board Firmware

Firmware for Spartan-6 FPGA

- Complete code written in Verilog
- In-house development of UDP soft-IP core
- ✓ 16, 32-bit high speed async counters
- Two internal counters for precise calibration of time-base
- I²C Master controller for ADC board readout
- ✓ 32-bit checksum generation to check data integrity
- Internal and External Interlock Logic (Emergency stop)
- Detector status display with online fault monitoring logic
- Timestamp with 1ms 48-bit free running counter

✓ Firmware has been written in embedded C

Firmware for PIC Microcontroller

- Microcontroller acts as I²C master as well as slave; controls on-board peripherals as a I²C Master and responds to data read query from Interface board as I²C slave
- The I²C address of slave is programmed in firmware and can be any 7-bit number
- This allows for connecting many ADC boards together on common I²C bus
- All analog channels (16 V, 16 I, temperature etc) sampled at programmable interval
- Online detector health monitoring and LED display
- ✓ 16-bit sampling event counter

CMS Endcap calorimetry

Sampling Calorimeter

- Active Element: Scintillator
- Absorber: Brass
- Photo-readout Element: Hybrid Photo Diode
- Performance of detector degrading due to radiation damage of scintillators
- Existing Endcap scintillator based calorimeter to be replaced with silicon+scintillator based calorimeter
- Scintillators to be readout by SiPM

Next Generation Calorimeter at LHC

Components of HGCAL

Integrated sampling Silicon ECAL + Silicon HCAL + Backing Scintillator Calorimeters

- Sensors (Silicon/ Scintillator)
- Mechanics
- Front End Electronics
- Back End Electronics
- Trigger Generation
- Simulation

Phase 2: 2024-2026

tifr

TDR expected: Jun 2017

Exploring the feasibility to host one of the five assembly centers that would design, prototype and build ~2000 TB2S modules

Module assembly and testing in addition to sensor qualification and precision mechanics will be a pan-India contribution

An expanded view of a TB2S module

- 2S module spacers made in Mumbai:
 - Main bridge
 - Readout hybrid
 - Stump bridge
- Three spacers first made in AI3075 and later in AI-CF
- New design spacers were fabricated at 'supertools dies' using wire EDM
- CMM measurements done at TIFR found the spacers well within tolerances

First-trial spacers

R&D efforts on module prototyping

First manually assembled module

- Motivated by our experience with Belle II SVD, we are embarking another ambitious project i.e., phase-II CMS tracker
- Efforts on mechanics (various spacers) have been largely successful
- Now getting into prototype R&D

Single Top @ LHC

- •Single top is produced in pp collision @ LHC via 3 modes, namely
- → t-channel (left), tW-channel (middle), s-channel (right)
- •Single top quark production is one of the important electroweak processes @ LHC
- → direct probe to the charged current interaction via Wtb coupling
- -> allows measurement of $|V_{tb}|$, study of top quark polarization
- → sensitive to b-quark PDF
- sensitive to new physics like charged Higgs (H[±]) interaction, anomalous couplings(FCNC), 4th generation etc.

Trigger:

✓ Events having at least 1 isolated muon with $p_T > 20$ GeV are selected by dedicated trigger

QCD Rejection:

 $\rightarrow m_T^W > 50 \text{ GeV}$

- Events are categorized as N-jet-M-tag (NjMt)
- Analysis performed on 2.3 fb⁻¹ data collected by CMS in 2015 with 25ns bunch spacing

Event yield after all selection

Pre - Fit Plots

07/04/16 Process	µ+	µ⁻
Top (tt [–] & tW)	7048±13	7056±13
W/Z + Jets	3039±102	2399±90
QCD	241±12	219±11
Single top t- Channel	1539±13	977±10
Total Expected	11867±159	10651±143
Data	11877	11017

- Event yields in 2J1T after all selection and correction factors
- QCD yield is estimated from data
- Yields of all other process are taken from simulation

י א

MultiVariate Analysis

Pre - Fit
Plots

Rank	Variable	Description	
1	light quark $ \eta $	Absolute value of the pseudorapidity of the	
		light-quark jet	
2	top quark mass	Invariant mass of the top quark reconstructed	
		from muon, neutrino, and b-tagged jet	
3	dijet mass	Invariant mass of the two selected jets	
4	transverse W boson mass	Transverse mass of the W boson, calculated from	
		the muon momentum and the \vec{p}_{T}	
5	jet- $p_{\rm T}$ sum	Scalar sum of the transverse momenta of the two jets	
6	$\cos \theta^*$	Cosine of the angle between the muon and the	
		light-quark jet in the rest frame of the top quark	
7	hardest jet mass	Invariant mass of the jet with the largest	
		transverse momentum	
8	ΔR (light quark, b quark)	Difference in <i>R</i> between the light-quark jet and	
		the b-tagged jet.	
9	light quark <i>p</i> _T	Transverse momentum of the light-quark jet	
10	light quark mass	Invariant mass of the light-quark jet	
11	W boson $ \eta $	Absolute value of the pseudorapidity of	
		the reconstructed W boson	

Experimental uncertainties are of 2 categories:
JES, JER, b-tagging, lepton reconstruction and trigger etc. ± 5.5%
pile-up (-0.2 / +0.1 %), MC statistics (± 2.8%)

•Total experimental uncertainty : ± 6.2%

Theoretical uncertainties are evaluated using pseudo-experiments
 Generator modelling: ± 9.2%

➡ Q² scale: -6.9 / +8.7%

➡ PDF: re-weighted templates derived from 102 sets of NNPDF (-3.0 / +2.6 %)

• top p_T re-weighting : ± 0.1%

•Total theoretical uncertainty: - 12.1/ +12.6 %

Luminosity uncertainty: ±2.7 %

$\sigma_{t-ch} = N_s / \{\epsilon. \mathcal{B}(t \rightarrow b l \nu). L_{lnt}\}$

 $\sigma_{t-ch.,t} = 141.5 \pm 6.7 \text{ (stat.)} \pm 9.4 \text{ (exp.)} ^{+19.3}_{-19.6} \text{ (theo.)} \pm 3.8 \text{ (lumi.)} \text{ pb} = 141.5 ^{+22.8}_{-23.0} \text{ pb},$

 $\sigma_{t-ch.,\bar{t}} = 81.0 \pm 6.2 \text{ (stat.)} \pm 8.1 \text{ (exp.)} ^{+10.9}_{-10.9} \text{ (theo.)} \pm 2.2 \text{ (lumi.)} \text{ pb} = 81.0 ^{+15.1}_{-15.1} \text{ pb}.$

 $\sigma_{t-ch.} = 227.8 \pm 9.1 \,(\text{stat.}) \pm 14.0 \,(\text{exp.}) \,{}^{+28.7}_{-27.7} \,(\text{theo.}) \pm 6.2 \,(\text{lumi.}) \,\text{pb} = 227.8 \,{}^{+33.7}_{-33.0} \,\text{pb}$

 $R_{t-ch.} = 1.75 \pm 0.16 \text{ (stat.)} \pm 0.21 \text{ (syst.)}.$

Result

$$|f_{LV}V_{tb}| = 1.02 \pm 0.07(exp.) \pm 0.02(theo.)$$

Study of Ratio of W⁺+jets/W⁻+jets to probe Parton Distribution Functions

The low pT bosons are mainly produced by the quark contents of the protons

<i>W</i> ⁺	<i>W</i> ⁻	Z ⁰	W ^{±}
иđ	$\overline{u}d$	иū	иđ

(b) W

Whereas for high pT bosons, the gluons determine the Initial state, contributing to roughly 50% of the total W production

W ⁺	<i>W</i> ⁻	Z ⁰	$W^{\{\pm\}}$
ug	dg	ug	ug

arXiv:1304.2424v1 Malik and Watt

Four interesting high pT boson ratios

- > When we take the ratios of
- > the differential cross-sections
- as a function of pT
- distributions of the bosons,
- > we get these four distributions

₩+ ₩-	$\frac{W^+}{Z^0}$	$\frac{W^-}{Z^0}$	$\frac{W^{\{\pm\}}}{Z^0}$
$rac{u}{d}$ Must Increase	Moderate Change	$rac{d}{u}$ Must Decrease	Moderate Change

- This ratio varies approximately
- by 30-40%
- Furthermore, this pT dependent
- ratio can be used as a
- comlementary distribution
- alongside with the η deptendent
- W-charge asymmetry to constrain
- the PDFs

arXiv:1304.2424v1 Malik and Watt

(tifr

Madgraph + Pythia with cteq6l1 as a PDF is used to evaluate SignalMC and backgrounds except the QCD background (only LO level calculations are considered) <u>Event Selection</u> μpt>25GeV |μη|<2.1 MET>25GeV Jetpt>30GeV |Jetη|<2.4 MT>50GeV

• SignalMC : W(-> $\mu\nu$)+Njets where N>=0,1,2,3 etc

• Background :

Event Selection and Backgrounds

Unfolding Distributions

Unfolding techniques are used to eliminate systamatics effects due to Imperfection in detector and obtain unfolded distribution at True level

Response Matrix

Unfolded Wpt distribution

Ratios

The gen level (W⁺/W⁻)pt plot scaled with different PDFsets for inclusive 0, 1 and 2 jets

Inclusive 0 jet

Inclusive 1 jet

Inclusive 2 jets

tifr Search for exotic Z charmonium like states at CMS

- Charged Z charmonium-like states $|c\bar{c}d\bar{u}\rangle$ are particularly interesting as candidates for tetra-quark states with an exotic quark content :
- Discovery of the Z(4430)[±] in the ψ'π spectrum in the decay B⁰ → ψ'
 Kπ by Belle (2007)
- LHCb confirmed this state recently (2014)
- Belle have observed this and other similar exotic resonances in J/ψπ invariant mass spectrum like the Z(4200)[±]
- BESIII has observed some other related resonances
- CMS has the potentialities to look within it's data for the presence of such states by searching exclusively in the $B^0 \rightarrow J/\psi$ (or ψ ') K π with $J/\psi \rightarrow \mu^+\mu^-$

tifr

Cut based Signal Optimization for Muonia2012ABCD

- MuChi2/NDF <3
- Mu Strip hits > 5
- Mu Pixel hits >0
- Mu Dz <20 cm
- Mu Dxy <0.3 cm
- B0Vtx_CL > 0.09
- B0CosAlphaPV > 0.9985
- B0CTauPV/B0CTauPVE > 9.0
- $MuMuVtx_CL > 0.02$
- jpsip4.DeltaR(track) < 1.0
- trackChi2/NDF < 7.0
- track Strip hits > 10
- track Pixel hits >0
- B0 Pt > 8 GeV
- track pt > 0.45 GeV
- Jpsi reconstructed mass PDG mass < 0.12 GeV

Purity: S/(S+B) = 60.0%

M_{B⁰} $c0 = -0.21582 \pm 0.0019$ off vents / (60.003333) $c1 = -0.08595 \pm 0.0036$ $c2 = -0.07656 \pm 0.0022$ $frac = 0.811 \pm 0.095$ $m = 5.279123 \pm 0.000048$ $nbkg = 264794 \pm 578$ nsig = 65833 ± 672 $s = 0.0120 \pm 0.0018$ 4000 $s2 = 0.0205 \pm 0.0019$ 2000 5.15 5.2 5.25 5.3 5.35 5.4 5.45 M (GeV/c²)

A Bit more Fine-tuning

(tifr $B_s \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\Phi(\rightarrow K^+K^-)$ contamination

Shashikant Dugad, Annual DHEP Meeting

peak = +/-2sigma(core)
sideband = +/-5 to 7 sigma (core)
no of background events in peak =
34901.8
no of background events in sidebands =
37701.9

Scale factor = 0.9257

Dalitz_sideband

Shashikant Dugad, Annual DHEP Meeting

CMS

- Hardware Activities
 - Expertise developed with HO upgrade, HFRADMON, BELLE-II Silicon upgrade will be very useful in taking bigger challenging activities in HGCAL/Tracker upgrade
- Standard Model Physics (Poster presentation tomorrow)
 - Three analysis are being pursued and progressing well
 - For details on each of these analysis; visit poster gallary today

Sensitivity of different PDFsets

It can be seen that MSTW, MMHT and NNPDF perform well compared to cteq6l, CT10 and HERAPDF

Variables for Calculation of Amplitudes for each K* resonance

- 1. Measured B0 mass from event
- 2. Measured KPi mass from event
- 3. Measured J/Psi (MuMu) mass from event
- 4. Measured J/PsiPi mass from event
- 5. B0 3-momentum (modulus)
- 6. KPi 3-momentum
- 7. Jpsi 3-momentum
- 8. K 3-momentum
- 9. Pi 3-momentum
- 10. Theta K* (K* helicity angle)
- 11. Theta J/psi
- 12. Phi (angle between K^{*} and J/ ψ decay planes)

K tifr Amplitude Analysis Formalism

- The amplitude of the decay $B^0 \rightarrow J/\psi K\pi$ is represented by the sum of Breit-Wigner contributions for several intermediate two-body states
- K*0(800), K*(892), K*(1410), K*0(1430), K*2(1430), K*(1680), K*3(1780), K*0(1950), K*2(1980), K*4(2045)
- The idea is to show that the fit to data where amplitudes of all these resonances add up and interfere is not good enough, a new intermediate resonance $B^0 \rightarrow Z(4430)K$, ($Z(4430) \rightarrow J/\psi\pi$) is needed

Parameter space =
$$\Phi = (M_{K\pi}^2, M_{J/\psi\pi}^2, \theta_{J/\psi}, \varphi).$$

Signal Density Function =
$$S(\Phi) = \sum_{\xi=1,-1} \left| \sum_{K^*} \sum_{\lambda=-1,0,1} A_{\lambda\xi}^{K^*} + \sum_{\lambda'=-1,0,1} A_{\lambda'\xi}^{Z^-} \right|^2$$

$$A_{\lambda\xi}^{K^{*}}(\Phi) = H_{\lambda}^{K^{*}} A^{K^{*}} (M_{K^{-}\pi^{+}}^{2}) d_{\lambda0}^{J(K^{*})}(\theta_{K^{*}}) e^{i\lambda\varphi} d_{\lambda\xi}^{1}(\theta_{\psi'})$$

Shashikant Dugad, Annual DHEP Meeting