Electronics, trigger and data acquisition systems for the INO ICAL experiment

B.Satyanarayana

For and on behalf of the INO/ICAL Electronics team

S.Aniruddhan¹, A.Behere², N.Chandrachoodan¹, V.B.Chandratre², Chitra¹, D.Das², V.M.Datar³, S.R.Joshi³, S.D.Kalmani³, T.Kasbekar², P.Kaur³, H.Kolla², N.Krishnapura¹, A.Lokapure³, G.Majumder³, A.Manna², S.Mohanan², S.Moitra², N.K.Mondal³, P.Nagaraj³, P.Nair², S.Padmini², Pathaleswar³, A.Prabhakar¹, M.Punna², K.C.Ravindran³, M.N.Saraf³, B.Satyanarayana³, R.R.Shinde³, S.Sikder², D.Sil³, M.Sukhwani², M.Thomas⁴, S.S.Upadhya³, P.Verma³, E.Yuvaraj³

¹Indian Institute of Technology Madras, IIT P.O., Chennai, 600036
 ²Bhabha Atomic Research Centre, Trombay, Mumbai, 400085
 ³Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005
 ⁴Electronics Corporation of India Limited, Veer Savarkar Marg, Mumbai, 400028

Please visit posters for details

- Analog Front End Solutions for ICAL RPCs
 Front End Data Acquisition and Control Module for ICAL RPCs
- Global Services and Calibration for the INO ICAL Electronics
- Multilevel and Configurable Trigger System for INO-ICAL Experiment
 INO-ICAL: Network Scheme for Distributed Data Processing

ICAL and its Engineering Module

Some facts and figures

Parameter	ICAL	ICAL-EM		
No. of modules	3	1		
Module dimensions	16.2m × 16m × 14.5m	8m × 8m x 2m		
Detector dimensions	49m × 16m × 14.5m	8m × 8m x 2m (89:1)		
No. of layers	150	20		
Iron plate thickness	56mm	56mm		
Gap for RPC trays	40mm	40mm		
Magnetic field	1.3Tesla	1.3Tesla		
RPC dimensions	1,950mm × 1,910mm × 24mm	1,950mm × 1,910mm × 24mm		
Readout strip pitch	30mm	30mm		
No. of RPCs/Road/Layer	8	4		
No. of Roads/Layer/Module	8	4		
No. of RPC units/Layer	192	16		
No. of RPC units	28,800 (107,266m ²)	320 (1,192m ²) (90:1)		
No. of readout strips	3,686,400	40,960 (90:1)		

B.Satyanarayana

DHEP Annual Talks

April 8, 2016

4

Challenges of ICAL electronics

- Large number of electronic data readout channels. This necessitates large scale integration and/or multiplexing of electronics.
- Large dimensions of one unit of RPC. This has bearing on the way the signals from the detector are routed to the front-end electronic units.
- Large dimensions of the ICAL detector. Disparate distances (i.e. delays of signals in cables) of RPCs from the backend requires elaborate calibration procedures for global signals.
- Road structure for the mounting of RPCs. This necessarily imposes constraint that signals from both X & Y planes of the RPC unit, along with other service and power supply lines are brought out only from the transverse direction of the detector.
- About 25cm gap is available between the face of the detector and the service trolleys. Any installations on the face of the detector have to be designed with this consideration.
- About 40mm gap between iron layers is available for the RPC detector. Thickness
 of the RPC holding tray, thickness of tray sliding track, tolerances of the iron
 plate thickness, height of the on detector high voltage module, analog and digital
 front-end modules, routing of cables and all other service lines must fit in this gap.
- Effect of fringe magnetic field on the performance.
- Low power consumption per channel (25mW/channel \rightarrow 100KW/detector)
- Long service life of electronics, component spares availability/replaceability is major a concern.

Design inputs to electronics

- RPC strip's characteristic impedance: 50±3Ω. Strip capacitance (1m): ~60pF. Signal coupling: DC
- RPC signal's rise time is of the order of 500-800ps. Therefore, we will need a resolution of about 200ps for the timing devices used for recording RPC signal arrival times w.r.t to ICAL trigger.
- The opening width of the amplified signals is of the order of 25nSecs. The minimum width of the RPC pulse over the threshold in the avalanche mode is as low as a few ns. This is an important input for the front-end electronics design.
- Mean strip pulse amplitude: ~0.6pC. The amplifier in the avalanche mode preferably should have a fixed gain in the range 100-200 depending on the noise levels obtainable and hence the minimum discriminator levels settable.
- Discriminator overhead (ratio of average peak pulse height to discriminator level) of 3-4 is preferable for reliable performance. Variable (but common) threshold in the range of ±10 to ±50mV for the discriminators should be supported.
- Timing measurement: 200ps (LC), multi-hit, both edges

RPC strip rate considerations

- RPC strip signal rates mainly contributed by the surrounding low energy activities such as stray radioactivity, local electrical discharges, dark currents of the detector and other electrical/electronic disturbances.
- For a given RPC, installed at particular location, operating at a particular high voltage, and a gas mixture, the average counting rate or *noise rate* is fairly constant and is in fact commonly used to monitor the stability of the above mentioned RPC operating parameters.
- One of the main background tasks (while not collecting event data) of the ICAL DAQ system is to sequentially monitor individual strip rates of all the RPCs in the detector, with a reasonable (of the order of 1 hour cycle time for a strip) frequency.
- Average RPC strip rate is ~200Hz (on surface).
- The noise rate has consequences on the design of trigger system. The threshold of the trigger system is such that it shouldn't generate triggers due to chance coincidence of noise rates.
- Event rate is ~10Hz (nominal)

Functions of ICAL electronics

- Signal pickup and analog front-end
- Strip hit latch
- Pulse shapers, timing units
- Background noise rate monitor
- Digital front-end and controller
- Data network interface and architecture
- Multilevel trigger system
- Backend data concentrators
- Event building, data storage systems
- On-line data quality monitors
- Slow control and monitoring
 - Gas, magnet, power supplies
 - Ambient parameters
 - Safety and interlocks
- Voice and video communications
- Remote access to detector sub-systems and data

First sketch of ICAL electronics

Components of ICAL electronics

- Analog Front-end based on Anusparsh ASIC
 Digital Front-end (RPCDAQ) using a TDC ASIC
- Trigger System
- Global services, calibration and synchronisation
- Network and backend hardware
- Backend software
- Power supplies
- Electronics integration

B.Satyanarayana

DHEP Annual Talks

RPC and its readout components

HMC preamps for ICAL test stands

BMC1595 (Negative In – Negative Out)

BMC1596 (Positive In – Positive Out)

WO2

BMC1598 (Negative In – Dual Out)

BMC1513 (Negative In – Negative Out)

- **¥ Input & Output impedance: 50**Ω
- Nominal gain: 10
- Rise time: ~1.2 ns
- Bandwidth: 350MHz
- Package: 22-pin DIP
- Power Supply : ± 6V
- Power Consumption: 110mW

B.Satyanarayana

DHEP Annual Talks

Transimpedance AFE ASICs

♦ Process: AMSc35b4c3 (0.35µm) CMOS) by IMEC, Belgium Input dynamic range: 18fC(1μA)-1.36pC(80μA) Input impedance: 45Ω @350MHz ♦ Amplifier gain: 8mV/µA ✤ 3-dB Bandwidth: 274MHz ♦ Rise time: 1.2ns ✤ Comparator's sensitivity: 2mV ♦ LVDS drive: 4mA ✤Power per channel: ~20mW Package: CLCC(48/68-pin) Chip area: 13mm²

k current gain

B.Satyanarayana

April 8, 2016

12375

13

Voltage amplifier ASICs

- An 8-channel AFE board using two, 4-channel preamplifier and one, 8-channel discriminator ASICs designed, fabricated and extensively tested on RPC test stands at BARC and TIFR.
- Horizontal mounting in the RPC tray agreed upon for the Engineering Module as the board dimension couldn't reduced below 200mm × 45mm.
- Small volume order for the ASIC chipset in QFN package and boards produced.
- Chip packing options, board manufacturer development, automatic assembly lines and test equipment are being planned.

B.Satyanarayana

DHEP Annual Talks

April 8, 2016

14

Performance comparison

Preamplifier Solutions	Total Events	Threshold	Efficiency (%)	Noise Rate (Hz)	
НМС	1073	-20mV	92	55	
Anusparsh v3	10673	25mV	90	33	
NINO ALICE Board (Diff Driver Gain 1)	5997	10fC	91	43	
NINO ALICE Board (Diff Driver Gain 1.5)	666	10fC	91	189	
NINO 8 channel Preamp Board (Diff Driver Gain 1)	1634	80fC	92	45	

DFE module – the workhorse

- Unshaped, digitized, LVDS RPC signals from 128 strips (64x + 64y)
- 16 analog RPC signals, each signal is a summed or multiplexed output of 8 RPC amplified signals.
- Global trigger
- TDC calibration signals
- TCP/IP connection to backend for command and data transfer

Soft-core processor

B.Satyanarayana

April 8, 2016

ICAL TDC specifications

Parameter	Specification
Number of channels	8 or 16
Least count	200ps
Dynamic range	2µs (essential), 32µs (desirable)
Number of bits	14 (essential), 18 (desirable)
Туре	Common stop
Hits	Single hit (essential), multi hit (desirable)
Double hit resolution	5-10ns
Readout buffer size	128 words (maximum)
Signal and control inputs	LVDS and LVTTL respectively
DNL/INL	100ps (typical)
Power rail	3.0 to 3.6V (suggested)
Control and readout interface	SPI (essential), SPI + parallel (desirable)

ASIC based TDC device

Principle

- Two fine TDCs to measure start/stop distance to clock edge (T₁, T₂)
- Coarse TDC to count the number of clocks between start and stop (T₃)
- TDC output = $T_3 + T_1 T_2$
- Specifications
 - 19 bit parallel output
 - Clock period, T_c = 4ns
 - Fine TDC interval, $T_c/32 = 125$ ps
 - Coarse TDC output: 14 bits
 - Fine TDC output: 5 bits
 - Coarse TDC interval: 2¹⁴ * T_c = 65.536ms

Resolution	:	$125\mathrm{ps}$
Range	:	$65.536\mu\mathrm{s}$
Reference Frequency	:	$10\mathrm{MHz}$
Voltage Supply	:	1.2V
Technology	:	UMC130 ($130 \mathrm{nm}$ process)
No: of Channels	:	16 STARTs (hits), 1 STOP (trigger)
Chip read out	:	SPI

Zero deadtime between hits across different channels. Time stamp both rising and falling edges.

Overall block diagram

Implementation of fine TDC

B.Satyanarayana

DHEP Annual Talks

April 8, 2016

22

First module of ICAL's DFE

Altera Cyclone 4 HPTDC Wiznet 5300

S/N: 0001

3

Total

ICAL DFEs in the RPC test stand

An RPC with NINO AFEs and a DFE

Integrating in a 2m x 2m RPC at IICHEP next week

B.Satyanarayana

DHEP Annual Talks

April 8, 2016

25

DFE test jig

ICAL trigger scheme

- Insitu trigger generation. Autonomous; shares data bus with readout system
- For ICAL, trigger system is based only on topology of the event; no other measurement data is used
- Huge bank of combinatorial circuits; Programmability is the game, FPGAs, ASICs are the players

Trigger criteria

DHEP Annual Talks

28

Trigger system for ICAL-EM

B.Satyanarayana

April 8, 2016

Calibration and synchronisation

T2-T1=DELAY +RT OFFSET T4-T3=DELAY – RT OFFSET

B.Satyanarayana

Functional blocks of calibration unit

B.Satyanarayana

DHEP Annual Talks

April 8, 2016

31

High voltage power supply

- Output voltage adjustable in the range ± 0-6KV (to generate 0-12KV) with output current up to 2µA.
- HV load regulation: better than 0.1% F.S
- Output ripple/noise voltage: within 200 mV
 (p-p).
- Adjustable HV Ramp rate 10-1000 Volts/ sec, HV on/off control, HV output read back facility.
- HV load current read back facility with a resolution of 5 nA.
- Required LV Input supply: 12V @200mA
 Ambient fringe magnetic field: 500 gauss

April 8, 2016

Overview of ICAL data LAN

Backend hardware

handling ckenc J

Data Concentrator

EventBuilder

- Multithreaded application that receives Evt and Mon data that is pushed from FrontEnd over dedicated TCP streams
 - Keeps alive one TCP sockets stream for each FE-DAQ (RPC), it us estimated that one 12 core Linux server will suffice for 2000 of FEDAQ.
- One thread reads the GlobalTrrigger (UDP) packets and keeps the info in ٠ circular list, thereby automatically enforcing a timeout window

Integration of electronics in RPC

B.Satyanarayana

DHEP Annual Talks

April 8, 2016

36

Status of ICAL electronics

- Analog Front End ASICs developed, boards fabricated and tested on RPC test stands.
 Ready for production.
- Digital Front End board designed, fabricated and tested on RPC test stand stands. Ready for production. Firmware, processor software, network protocols, data structures are all designed. Design validated on two target FPGAs.
- ♦ / ICAL TDC ASIC. Design of the third and final version ready for submission.
- Global services and calibration module designed, currently under production.
- Trigger scheme validated, most of the boards already produced. To be integrated and tested in the detector stacks.
- High voltage module designed, produced, tested on RPC, will go for production soon.
- Backend DAQ hardware configured, to be purchased.
- Data concentrator and event builder software developed, under testing and bench marking.
- Data quality monitors, data storage solutions under development, will be frozen soon.
- Integration of front-end electronics on the detector tray is being tackled and modelled.
- ◆ so essentially waiting ⊗

Thank you for your attention

BACKUP SLIDES

Dead time of FE software

100 MHz

Event Data Processing Scheme Test with Measurement of event loss percentage at various rates(1 KHz to 10 KHz Random triggers) with Fixed & variable Event size

Random	Event	16 TE)C	10TDC		5 TDC		1 TDC		RandomTDC	
Triggers	Triggers	600 bytes		408 bytes		248 bytes		120 Bytes		Data size	
Mean	Sent	Events	Loss	Events	Loss	Events	Loss	Events	Loss	Events	Loss
Freq	(millions)	Rcvd	(%)	Rcvd	(%)	Rcvd	(%)	Rcvd	(%)	Rcvd	(%)
(KHz)											
5	3	2516125	16.2	2999029	0.1	2999931	0.002	2999971	29 eves	2852114	4.92
10.1	2	1268117	57.8	1886713	37.2	2999516	0.016	2999951	49 eves	1937811	35.5
10.1	3	1200117	07.0	1000710	07.2	2///010	0.010	2////01	47 67 65	1707011	00.0

Random	Event	16 TD	С	Random TDC		
Triggers	Triggers	600 bytes -52		Data size(8	– 548)	
Mean Freq	Sent	Events Loss		Events	Loss	
(KHz)	(millions)	Rcvd	(%)	Rcvd	(%)	
5	3	2720117	9.3	2883408	3.8	
10.1	3	1382499	53.9	2053878	31.5	

NOTE: 1. H/W FIFO used and 2. Wiznet write Cycle time 360ns and 3. Gate opening delay of 5 us

Hardware based Wiznet

	Packet (bytes)	Packet Rate (Hz)	Date Through put MB/s	C.Userslanand/Desktoplingger_packet_rate_monitoring_toftwarelingger_packet_rate_monitoringU U_alid Packet Sizes 18 22 30 46 78 142 270 526 1014 Set Receive Packet Size in Bytes:270 SuccessFully Connected SuccessFully Connected SuccessFully Connected No Of Packets/sec: 1358, Processed msgs: 1358 No Of Packets/sec: 1318, Processed msgs: 14558 No Of Packets/sec: 14358, Processed msgs: 14558 No Of Packets/sec: 14588, Processed msgs: 14588 No Of Packets/sec: 14688, Processed msgs: 14588 No Of Packets/sec: 14688, Processed msgs: 14588 No Of Packets/sec: 14688, Processed msgs: 14568 No Of Packets/sec: 14688, Processed msgs: 14688 No Of Packets/sec: 14688, Processed msgs: 14469
	18	53450	7.6968	No OF Packets/sec: 14349, Processed mags: 14349 No OF Packets/sec: 14643, Processed mags: 14643 No OF Packets/sec: 14638, Processed mags: 146538 No OF Packets/sec: 14246, Processed mags: 14246 No OF Packets/sec: 14486, Processed mags: 14246 No OF Packets/sec: 14486, Processed mags: 14486
	22	51140	9.00064	No OF Pachetr/sec: 14144, Processed mont: 14144
	30	46800	11.232	40
	46	40100	14.7568	30
	78	31200	19.4688	25
	142	22500	25.56	15
	270	14400	31.104	5
\langle	526	8600	36.1888	
	1014	4490	36.42288	04/02/2015 INO Collaboration 2015. Chennai

B.Satyanarayana

DHEP Annual Talks

April 8, 2016

Passive Star Optical Networks

Data network schematic

B.Satyanarayana

DHEP Annual Talks

High Voltage power supply

