Search for SUSY in jets+ MET final state

Bibhuprasad Mahakud, Tata inst. India

7th April 2016

Outline

- Introduction
- Analysis Strategy
- Background Estimation
- Results and Interpretation

Documentation

Notes:

AN-15-003 or SUS-15-002

PAS Twiki <u>https://twiki.cern.</u> <u>ch/twiki/bin/viewauth/CMS/PhysicsResultsSUS15002</u>

CADI link:

<u>Cadi link</u>

Submitted to PLB

Introduction ... signal models

- Amongst possible SUSY processes gluino pair production has largest cross section
- Large increase in cross section from 8TeV to 13 TeV
- Fully hadronic analysis targeting pair production of gluinos in the final state of jets + MET
- Signal models targeted are

Introduction ... search variables

- Final state comprises jets, b-jets, missing energy and high transverse momentum
- So the search variables are H_T, H_T^{miss} (MHT), N_{jets}, N_{b-jets} defined as follows

Visible energy $H_{\rm T} = \sum_{\rm jets} |\vec{p}_{\rm T}|$

Energy of undetected particles

MHT =
$$H_T = \left| - \sum_{j \in ts} \vec{p}_T \right|$$

Missing energy

Analysis Strategy . . . Baseline for bkg rejection

- H_T > 500 GeV
- H_T^{miss} > 200 GeV
- N_{jets} >= 4 , because signal models has minimum 4 jets
- N_{b-jets} > = 0, motivated by signal models
 ΔΦ(jet_i, H_T^{miss}) > (0.5, 0.5, 0.3, 0.3) for i =1 to 4 to reject QCD
- electron and muon veto, because we are doing all hadronic search
- Isolated track veto, rejects W/top events that fails lepton veto

Analysis Strategy .. binning

3 (N_{jets}) X 4 (N_{b-jets}) X 6 (HT/MHT) = 72 bins total

- $N_{jet}: 4-6, 7-8, \ge 9;$
 - $N_{\text{b-jet}}$: 0, 1, 2, \geq 3;
 - $H_{\rm T}$: 500-800, 800-1200, \geq 1200 GeV;
 - $H_{\rm T}^{\rm miss}$: 200–500, 500–750, \geq 750 GeV.

diagram: Jack Bradmiller feld

Introduction . . . to backgrounds

Background estimation methods are very important

In this analysis ,

• W+jets/ top back ground : Enters search region when one of the lepton is either out of acceptance,

not reconstructed or not isolated

- Z (to neutrino) + jets back ground: irreducible
- QCD background: because it has Fake MET

because jet energy is mismeasured,

 $\Delta \Phi(\text{jet}, H_T^{\text{miss}})$ will be small for QCD events

Z to invisible background estimation -Hybrid

- For N_{b-jets} = 0 use photon +jets method, 18 bins = 6 (HT/MHT) x 4 (Njet) For N_{b-jets} > 0 use extrapolation factors from ZII control sample

Photon +Jets Method:

$$N_{Zvv}^{Prediction} = R_{Z/\gamma} * N_{Y+jets}^{data}$$

more accurately

 $N_{Zvv}^{Prediction} = R_{Z/v} * DR * Purity * N_{Y+iets}$ data

DR is the Ratio of $R_{z/y}$ calculated in Data and MC or DR = $R_{z/y}$ (data) / $R_{z/y}$ (MC)

Z to invisible (explain bin)background ...using

Photon + jets

Data/MC in search variabes (control region)

Photon Purity(add bigger font for y)

QCD gives this : contamination(NON Prompt)

• $\sigma_{_{i\eta i\eta}}$ distribution in the right

distinguishes between prompt and no prompt

Charged Isolation Side Band and SR

Ich-Side Band Region	
2.67 Ich-Signal Region	
(0,0)	0.0107

Sigma leta leta behaviour, prompt, Barrel

Sigma leta leta behaviour, non prompt, barrel

Purity Fits

- Red dotted : Prompt pdf
- Green dotted: non prompt pdf
- Blue : F = Prompt*f+(1-f)*nonPrompt
- Black dots are Data

Z/Gamma Ratio, Double Ratio

b-jet > 0

- Use Z ll data to get the b-jet distributions
- That gives you the probability of N_{b-jets} events from number of 0 b-jets events
- $N(Z \to \nu \overline{\nu})_{N_{jet}, N_{b-jet}}^{H_{T}, H_{T}^{miss}} = N_{Z \to \nu \overline{\nu}} (\gamma + jets)_{N_{jet}, 0}^{H_{T}, H_{T}^{miss}} \cdot \mathcal{F}_{N_{jet}, N_{b-jet}} (Z \to \ell^{+} \ell^{-})$

Extrapolation factors from Z(II)+jets

From Photon+jets in 0 b-tags

Zinvisible prediction

Lot of difference between data driven prediction and simulation

21

W+jets /top - lost lepton bkg ,data driven

- Enters search region when the lepton fails the lepton veto
- Use the MC information to know the probability (\subseteq_{eff}) of happening this
- Take a muon control sample of exactly one isolated muon in Data
- Use $equation_{eff}$ to trace back no of leptons that failed the lepton veto
- For example number of muons that fails the isolation

$$!\text{ISO} = N_{CR} \cdot \frac{1 - \epsilon_{\text{ISO}}}{\epsilon_{\text{ISO}}}$$

Data vs all predicted background : no excess

CMS 2.3 fb⁻¹ (13 TeV) Events $4 \le N_{jet} \le 6$ $7 \le N_{jet} \le 8$ $N_{jet} \ge 9$ 10⁵ N_{b-jet} Data 1 2 ≥ 3 104 Lost Z→vv lepton 10³ Hadronic QCD τ lepton 10² 10 1 10-1 (Obs.-Exp.) Exp. 2 10 20 30 40 50 60 70 Search region bin number

T1qqqq limits

T1bbbb limits

Conclusion

- All the data driven background estimations converged with full data set
- Observation in the signal region is consistent with background predictions
- Limits significantly extended from Run1 with only 2.3 fb-1 of Data
- No observation of excess !

Setting limits

- We use Higgs combination tool to calculate the upper limits
- Its uses a Likelihood ratio as a test statistics $q_{\mu} = -2 \ln \left(\mathcal{L}_{\mu} / \mathcal{L}_{max} \right)$
- For setting limits, we use the LHC-style CLs approach in the Higgs Combine tool i.e. ratio is the ratio of confidence intervals

$$CL_s = \frac{CL_{s+b}}{CL_b}$$

• We will see the results in the next slide

QCD background

- QCD events do not have real missing energy
- But jet energy can be mismeasured
- This results fake MET region
- This fake MET tends to be alligned with jet
- We reject 90% of events using cuts on low $\Delta \phi$

 $\Delta \phi(H_T^{miss}, j_{1,2,3})$

- = Difference of Φ between ith jet and H_T^{miss} vector
- Then we use a control region of events with low Δ Φ
- We use a (high/low) $\Delta \Phi$ ratio to go from control region to signal region

Jet 1

Jet 2

Jet 3

(mismeasured)

Imiss

true energy

W+jets/top - hadronic tau background

- Results from hadronic decay of tau
- Estimation:
- Get a response template from MC that maps gen tau to hadronic tau jet
- Replace gen tau with muon from data after efficieny correction
- Smear the muon control sample from data with that template to estimate the hadronic tau background

Comparison Limit Plot (T1tttt)

T1qqqq

W+jets / top - lost lepton background

- because lepton veto fails
- Estimation method
- Take a single lepton control
- Figure out the probability the efficiencies at each stage of identification
- Take care of control region contamination

$$!Acc = N_{CR} \cdot \frac{1}{\epsilon_{\rm ISO}} \cdot \frac{1}{\epsilon_{\rm Reco}} \cdot \frac{1 - \epsilon_{\rm Acc}}{\epsilon_{\rm Acc}} \quad !Reco = N_{CR} \cdot \frac{1}{\epsilon_{\rm ISO}} \cdot \frac{1 - \epsilon_{\rm Reco}}{\epsilon_{\rm Reco}} \quad !ISO = N_{CR} \cdot \frac{1 - \epsilon_{\rm ISO}}{\epsilon_{\rm ISO}}$$

e1

U

Acceptance

Fail

reconstruction

reconstructed

Fail

Not

isolation

Fail

Not

isolated

Lepton

found!

• Total Lost Leptons =
$$\epsilon_{isotrk} \cdot \sum_{i=e,\mu} \left[\frac{[\epsilon_e^{purity}]}{\epsilon_{m_T}^i} \cdot \left(\epsilon_{singleLep}^{purity} \cdot \left(!Iso^i + !Reco^i + !Acc^i \right) + Lost^{dilep} \right) \right]$$

Cut	Motivation	Impact
MHT > 200, HT > 500	Get to trigger plateau	Trigger ~95% efficient here
4+ jets (30+ GeV, CHS)	Target high-multiplicity SUSY models Save compressed signal with low-pt cut	p _T > 30 GeV cut saves up to 50% more signal w.r.t. cut at 50 GeV
Δφ(jets 1-4, MHT) > (0.5, 0.5, 0.3, 0.3)	Suppress QCD by targeting under- measured jets	Rejects > 90% of QCD Favorable signal eff / real-MET BG eff
e/μ veto (pt > 10 GeV, veto/medium ID, mini iso)	Suppress top/W $\rightarrow \ell_V$	> 95% efficient for hadronic signal
Leptonic track veto (pt > 5 GeV, mt < 100 GeV, <u>track iso</u>)	Reject more top/W $\rightarrow \ell v$ events with lower-pt leptons, leptons failing mini iso	Rejects 30% of lost e/μ events, ~90% of which have 5-10 GeV leptons
Hadronic track veto (p _T > 10 GeV, m _T < 100 GeV, <u>track iso</u>)	Suppress top/W $\rightarrow \tau v \rightarrow$ had+MET	Rejects 30% of hadronic tau BG

Cut flow Signals

Cut	T1tttt	T1tttt	T1bbbb	T1bbbb	T1qqqq	T1qqqq
	(1500, 100)	(1200, 800)	(1500, 100)	(1000, 900)	(1400, 100)	(1000, 800)
Start	141.9	856.4	141.9	3253.8	252.9	3253
$N_{\rm jet} \ge 4$	141.8 (1.00)	854.8 (1.00)	137.3 (0.97)	1624 (0.50)	244.9 (0.97)	2549 (0.78)
$\dot{H_T} > 500 \text{GeV}$	141.7 (1.00)	706.1 (0.83)	137.3 (1.00)	654.8 (0.40)	244.8 (1.00)	1390 (0.55)
$H_{\rm T}^{\rm miss} > 200 { m GeV}$	125.8 (0.89)	311.9 (0.44)	124.2 (0.91)	534.8 (0.82)	221.2 (0.90)	904.1 (0.65)
µ veto	80.49 (0.64)	202.4 (0.65)	123.1 (0.99)	521.3 (0.97)	220.8 (1.00)	902.6 (1.00)
e veto	51.54 (0.64)	135.14 (0.67)	122.0 (0.99)	512.0 (0.98)	218.5 (0.99)	894.9 (0.99)
μ track veto	50.74 (0.98)	129.9 (0.96)	121.5 (1.00)	500.07 (0.98)	217.8 (1.00)	888.9 (0.99)
e track veto	49.32 (0.97)	120.0 (0.92)	119.9 (0.99)	478.8 (0.96)	215.0 (0.99)	868.8 (0.98)
Had. track veto	48.27 (0.98)	112.0 (0.93)	119.4 (1.00)	472.0 (0.99)	213.9 (1.00)	852.2 (0.98)
$\Delta \phi$ cuts	39.08 (0.81)	87.76 (0.78)	95.94 (0.80)	373.1 (0.79)	173.0 (0.81)	699.6 (0.82)
Evt. cleaning	38.18 (0.98)	86.27 (0.98)	94.76 (0.99)	369.0 (0.99)	169.9 (0.98)	690.6 (0.99)
N _{b-iet} bins						
0 CSVM	0.99 (0.03)	2.46 (0.03)	4.52 (0.05)	25.46 (0.07)	115.9 (0.68)	489.3 (0.71)
1 CSVM	5.31 (0.14)	13.75 (0.16)	20.89 (0.22)	110.8 (0.30)	43.59 (0.26)	163.5 (0.24)
2 CSVM	11.55 (0.30)	27.76 (0.32)	34.51 (0.36)	144.4 (0.39)	9.13 (0.05)	32.81 (0.05)
\geq 3 CSVM	20.33 (0.53)	42.30 (0.49)	34.84 (0.37)	88.34 (0.24)	1.38 (0.01)	5.12 (0.01)
					1 1	

Cut flow Bkg

Fable 11: Cutflow and expected yields at 10 fb⁻¹ for SM backgrounds, with the baseline se sections listed in Section 3. The efficiency of each cut, calculated with respect to the previyield.

Cut	tĒ	QCD	Z+jets	W+jets	
Start	8×10^{6}	> 108	6×10^{6}	2×10^{7}	
$N_{\rm jet} >= 4$	6×10^{6}	> 107	8×10^5	2×10^{6}	
$\dot{H_{\rm T}} > 500~{\rm GeV}$	106	$> 10^{7}$	4×10^4	3×10^5	
$H_{\rm T}^{\rm miss} > 200~{ m GeV}$	46204.02	100718.36	10709.43	35208.73	
µ veto	31209.42 (0.68)	100424.34 (1.00)	10693.15 (1.00)	24940.95 (0.71)	
e veto	19116.81 (0.61)	99296.67 (0.99)	10607.60 (0.99)	15240.75 (0.61)	
μ track veto	17698.28 (0.93)	97798.80 (0.98)	10538.85 (0.99)	14456.57 (0.95)	
e track veto	15237.88 (0.86)	93962.19 (0.96)	10272.05 (0.97)	12952.54 (0.90)	
Had. track veto	12201.90 (0.80)	91628.84 (0.98)	10133.97 (0.99)	10553.74 (0.81)	
$\Delta \phi$ cuts	6946.27 (0.57)	9645.15 (0.11)	7543.35 (0.74)	6101.87 (0.58)	
Evt. cleaning	6651.03 (0.96)	4789.70 (0.50)	7477.41 (0.99)	5803.18 (0.95)	
			N _{b-jet} bins		
$N_{b-iet} = 0$	982.01 (0.15)	2494.63 (0.52)	5743.30 (0.77)	4433.89 (0.76)	
$N_{b-iet} = 1$	2839.90 (0.43)	1575.38 (0.33)	1416.57 (0.19)	1158.09 (0.20)	
$N_{b-iet} = 2$	2298.84 (0.35)	466.97 (0.10)	286.99 (0.04)	190.50 (0.03)	
$N_{\text{b-jet}} \ge 3$	530.28 (0.08)	252.71 (0.05)	30.55 (0.00)	20.70 (0.00)	

had tau events in bins

$$N_{\tau_{\rm h}} = \sum_{i}^{N_{\rm CS}^{\mu}} \left(\sum_{j}^{\rm Template bins} \left(P_{\tau_{\rm h}}^{\rm resp} \sum_{k} w_{\rm b-mistag}^{\tau_{\rm h}} \right) \frac{1}{\epsilon_{\rm Trig}^{\mu} \epsilon_{\rm Reco}^{\mu} \epsilon_{\rm ISO}^{\mu}} \frac{1}{\epsilon_{\rm Acc}^{\mu} \epsilon_{\rm m_{T}}^{\mu}} (1 - f_{\tau \to \mu}) (1 - f_{\rm II}) \frac{\mathcal{B}({\rm W} \to \tau_{\rm h} \nu)}{\mathcal{B}({\rm W} \to \mu \nu)} C_{\rm isotrk} \right)$$

Photon control region Data/MC plots

• Good data / mc agreement

cross section

Table 10: MC FullSim samples for signal SMS model points.

Dataset	σ (pb)	$\int \mathcal{L} dt$ (fb ⁻¹)
SMS-T1tttt_mGluino-1500_mLSP-100_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	0.014	7268
SMS-T1tttt_mGluino-1200_mLSP-800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	0.086	1719
SMS-T1bbbb_mGluino-1500_mLSP-100_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	0.014	3708
SMS-T1bbbb_mGluino-1000_mLSP-900_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	0.325	438.5
SMS-T1qqqq_mGluino-1400_mLSP-100_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	0.025	1958
SMS-T1qqqq_mGluino-1000_mLSP-800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	0.325	293.0

Kinematics

Motivation

- Supersymmetry is a beyond Standard model theory that solves many puzzling issues like
- Hierarchy problem
- Gauge coupling unification
- And possible candidate (neutralino) for dark matter

SUSY is a broken symmetry : Expect new particles in ~TeV range !

