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From Laplace operator the fractional derivative

Classically we have £ {f’(t)} =sF(s)— 1(0) where L {f(t)} = F(s)
Say for case of RHS if we have s“F(s)— f(0) for 0 < a <1
Then we relate to £ {/“ ()} =s“F(s)= f(0) as - th derivative of £( ¢)

For & - negative we have @ — order integration i.e. with a = -p
{0} =s"F(s)

So there is possibility that we have in between operations for integration & differentiation,
like half, one third etc D * 7 (¢) D% f(t) D'*f(1) D Xf(1)

We are having thus fractional Laplace variables like s s g7 ete

Assume presently that we have fractional differentiation and integration then how can we use
the corresponding fractional Laplace variable g% ?



CFE for approximation of fractional semi differential Laplace operator

CFE is Continued Fraction Expansion

CFE is defined as following

def 1

1+ x)* =

l -«

1+ () (a +1)

- (&) (ax = 1)

X

1 - (ﬁ)(a - 2)

1+ () (a +2)

1+ ....

For obtaining rational approximation of \/; putinCFE x =s—1 and a = +

552 +10s + 1

CFE for four number term approximation for/s is /s ~ 23 +10s + 5
Ky S

Here we have got approximation for half-differentiation in Laplace domain-is implementable

We can have a transfer function of a filter to realize fractional Laplace variable



CFE for approximation of fractional semi differential Laplace Operator
for various number of terms

S.No | No. of terms in CFE | Rational approximation for
approximation

1 2 3s +1
s+ 3
2 4 5524+ 105 + 1
s +10s + 5
3 6 7s>+35s%+21s +1

s>+ 21s? +35s+7

4 8 11s° +165s* + 462s>+330s%+55s +1
s+ 555 +330s° +462s*>+165s +11

CFE gives approximation for fractional Laplace operator in terms of ratio of rational polynomials.

The above is semi-differentiation operator. The semi-integration operator will be reciprocal of
the above ratio.

Makes way to have fractional order analog and digital circuits & systems



We make use of the fractional Laplace variables to make controller

ki
Com (s) =k, +—=+kys Upp (1) =k, e(t)+k,D'e(t) + k,D's(t)

Cropmp ($) = kp + il + deﬁ Upopp (1) = kpg(t) + kD “e(t)+ deﬁg(t)
S

a

a >0 g >0
r %
Yy
ySp <+§ i) € Fractional Controller u Plant —>
C(s) G (s)
y_ i Set-point r . Load disturbance
sp °
< - Error v . Measurement Noise
U : Controller output Yy Out-put

We have a fractional order PID (FO-PID)system called as P1“D”



Observe robust control

We observe iso-damping for uncertain plant G (s)

Plant with gai taint G (s) .
ant wi aln uncertain =
© Y s+ 28w s + s’

kel0.2,5.0]

y(¢)

[:] |
02 4 6 8 10 12 14 16 18 20

Enhanced robustness /

Functional Fractional Calculus



Digital FO-PID for DC Motor Speed Control hardware

Circuit Systems & Process Springer DOI 10.1007/s00034-016-0262-2:2016

Courtesy: BRNS funded joint project of VNIT Nagpur and BARC to develop industrial digital fractional
order PID.



Controller output u ( t) for PID and Fractional PID

Controller
PID / FO-PID

Crp(s)=k, +£+ k,s
s

k.
Cropp (8) = kp +S—;+ kdsﬂ

a >0 £ >0

r (t) : set point sinusoidal
c (t) : position of the levitated ball
u(t) : out-put of controller

We note that Mag-Lev is inherent unstable unit



Control effort in case of PID control

Courtesy: BRNS funded joint project of VNIT Nagpur and BARC to develop digital fractional
order controller for industrial applications.



Control effort in case of Fractional Order PID Controls

Voltage to coil u (¢)

Ball position

Courtesy: BRNS funded joint project of VNIT Nagpur and BARC to develop digital fractional
order controller for industrial applications.



Why this control effort less? and its repercussion-a conjecture

To do the same job-that is to position the floating ball and slowly making its position follow
sinusoidal command the output of the controller in case of first case is fluctuating severely.

The reason is that fractional derivatives and fractional integrals are having inherent memory

This memory in the systems works to govern the ball position based on its previous experience-
therefore these fractional differentiation and integration gives an ideal filtering action.

Whereas the classical differentiation is a point property-does not therefore has memory, and acts

instantly with no previous experience. Thus in the first case the maneuvering signal is going very
high instantaneously and in the next moment going very low again and again-lot of effort?

So we can see fractional calculus based system does the control action with a lesser effort than
the conventional classical calculus based controllers, therefore are better efficient.

Can we say Fuel Efficient Controls?



Liouville’s Postulation

In parallel to classical approach Joseph Liouville postulated exponential approach

Negative values of & represent integrations (anti-derivative) and we can even extend this to
allow complex values of or ¢ even to a continuous distribution of this order in some interval.

/) 4@ @ s g jb[,{(a)

dx dx? dx“+i?

S,
dx“

In a way this generalizes notion of integration and differentiation to arbitrary order!



Liouvelli’s class of functions and approach

Any function expressible as a sum of exponential functions can then be differentiated in the same
way.

d“cos(x)  d” [e"+e ™| ()" +(-i)"e ™
dx“ dx“ 2

(eiag)(eix)+ (e_iag)(e_ix) olliras) | milxras)

:cos(x+a§)

i/ \ & o~ , d“ cos(x ”
Since (+i)* = (ei%) = ¢ ' we have the nice result T)=COS(X+0!7)

Is it so simple ?



Fractional order differentiator and integrator circuit realized

Liouville’s exponential approach allows us to simply write d“ cos(x)

dx“
Thus the generalized differential operator simply shifts the phase of the cosine function and
likewise the sine function by a x (90)°, that is in proportion to the order of the differentiation.
For differentiation the process advances the phase, needless to say the integration makes the
phase lagged. We test by giving a sinusoid at the input of the circuit and measure the output
and record the phase lag or lead, depending on the fractional order.

:cos(x+a%)

Armditue
o

Time(Sec) -3

Output of fractional order differentiator circuit for 2 order

Courtesy: BRNS funded joint project of VNIT Nagpur and BARC to develop analog fractional
order PID.



Generalized Factorial to Gamma Function

Factorial is for positive Integer number is

nl= { : n=0 I(x) 10

(n-1)!(n) n>20 5

Euler’s Gamma function T 0
F(a)=]?e_tt“_ldt Re[a]>0 -
) -10

F'(a +1)=a (F'(a)) -15 ¢,

This gives analytic continuity to negative axis

We write thus a!=T(a+1)

Some values are following

0 2 4
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3 f

-4

=&

-

-

Plot of reciprocal of Gamma Function



Euler formula repeated differentiation

This is exactly what we would expect based on a straightforward interpolation of the derivatives
of a power of x . Recalling that the first few (whole) derivatives of x™ are

3..m
=m(m-1)x""?%; %jx3 =m(m—-1)(m—-2)x"">
X

2
dx” mo . dox”

dx?

Thus we expect to find that the general form of the n-th derivative of x” is

d"x" m !

= X
dx” (m — n)!

Replacing the integer n  with the general value @ , and using the gamma function to express
the factorial, this suggests that the a fractional derivative of x " is simply

d“x"  m! ma  L(m+1) e
dx*  (m—-a)! I'(m—-a+1) ,
Euler’s formula
d"’x o
dx'? T (1-1+1) r(3) s
d"?[1] 0! 0 x 1

dx">  T(0-1+1) r() Jzx Half derivative of constant as non-zero !



Use of Euler’s formula

Now, since analytic functions can be expanded into power series f(x) = Zkakxk we can
use Euler formula, applying it term by term to determine the fractional derivatives of all such
functions. Furthermore, applying this formula with negative values of & gives a plausible
expression fog the fractional- integral of a power of x . For example, to find the whole
integral of * we set m =3 and then compute via Euler formula as

d“x” '(m+1)

dx* T(m-a+1)

d~'x* 31 ey 3 .6 1,
-1 X = X =——X =—X

dx r(3-(-1)+1) I(5) 24 4

Note that the above integration is valid only if the initial point be zero, else initial value is
subtracted. The unification of these two operations makes it even less surprising that

generalized differentiation is non-local, just as is integration-has memory history hereditary




Fractional Derivative of Exponential Function is not Exponential !!

We previously proposed that the general &@- th derivative of ¢ " issimply, a“e* and yet

if we expand the exponential functione™ into a power series

2 3
e”:1+a—x+a x2+a x4+
1! 2 ! 3!
and apply Euler formula to determine the half-derivative, term by term, we get (not at all

what we postulated earlier!) Liouville’s postulate , that is following

d”z(e’“): 1 ( 4 8 , 16 4+"‘j

l+2x 4+ —x2 + —x°* + x
dx''? I x 3 15 105

! X X
Here we have D “e” # e

1 Derivative of e¢*

Was Liouville wrong or is there a contradiction?

Kindergarten of Fractional Calculus



Most fundamental approach

To get a clearer idea of the ambiguity in the concept of a generalized derivative, it’s useful to
examine a few other approaches, and compare them with the exponential approach of Liouville.

The most fundamental approach may be to begin with the basic definition of the whole derivative
of a function

d f(x) _ i f(x) = [(x-2)

dx gl 0 fos

Repeating n -times of this operation leads to a binomial series of following type

) i 1_2 (—l)f(’;jf(x— Jj€)

dx” evo g" 1=
Note that "C,=0 J>n thus summation above ends at »

Generalizing the binomial coefficients to real numbers we get a formula

: e
d f(x):lirn 1 Z (— 1)’ '(a +1)

X — Jj¢
dx“ svo g% Jj!'T'(ax +1 - ) S J€)

Kindergarten of Fractional Calculus



Non-locality of Generalized differ-integration

d” fi(x) _ .. L{;OJ_ i I'a +1) .
R JZ_O ) e

Thus, the generalized derivative is a non-local operation, just as is integration.

This can be seen from the factor f(x—je) inthe summation formula, showing that as j

ranges from zeroto (x—x,)/€ the argument of f ranges from x down to zero (or the start
point of origination of function).

The fractional differ-integration is having memory

J ()

X X

Kindergarten of Fractional Calculus



Fractional Derivatives Require Lower & Upper Limit like Integration !

Consider the two anti-differentiations (integrations) shown below

X 4 4 X
X X
Iu3du= - = Ie”du:ex—eXO
4 4
Xg Xo
The first integral shows that when we say x” is the derivative of 4 /4 we are implicitly

assuming x, = 0 , which is consistent with our derivation of equation .

a Lx/sJ _
d f(x)zlimLZ(—l)f LD e e Xy =0
dx* V0 g% = JjiT(a+1- )

However, the second integral shows that, by saying e* is the derivative of e* , we are implicitly
assuming X, = —%

df(x) . 1 &, o T(a+])
dx? 805“;( b Jji(a +1- )

f(x—je)
We represent the operation with lower and higher terminals as:
Lo f(x) ( Dif(x) L DIf(x)  (Dyf(x)  Dof(x)

For any arbitrary o € R . .
Kindergarten of Fractional Calculus



Repeated integration approach

ddj(x) ﬁf(u Ydu, dul—j(x F (u)du d” f(x)

S R [t
000 219

d f(x) _ EII ............. “].1 f(u,)du, du, ,.....du, = ! ;f( —u)" ' f(u)du

1 -
__r(n)l(x—u) f(u)du

Thus we have Cauchy’s expression for repeated integrals which is

X Uy
0

H ............. { f(u)du du_....du, = (_1)‘

Uy

I(x —u)"'f(u)du

which we can express using the gamma function instead of factorials, for fractional order @ as

d‘“f_(x) D (x 17 _u)*'f(u)dy This is Riemann fractional integral formula.
dx ¢ I'(a)

0

Kindergarten of Fractional Calculus



lllustration of semi-integration by Riemann formula
Now let us do semi integration of \/;, take then a=1/2

% Put
OD;I/Z\/; _ J‘

u=0;

we get the same answer as from Euler formula

+

CE)

r (++++1)

L
2

xé_

—1/2 /277 _
0 I) x [ X ] -

and apply Riemann formula

w=2xil gy =(1)(cos0)do

0=—-m/2 u=x; O0=+r/2
+7/2 9 X+xsin @
D [\/;]: 1 J‘ ( ) cos )( )
5 —7/2 \/XT— sin’ @
1 +r/2 (% (COSQ)(XH{SIH&)

+7/2
— dg x+xsinf ) _
TOER
1

(%) (ﬂ?)

=—X

do
F(% ;}[/z \/1 sin” @
1

O=+7/2
O=—rm/2

x0 __ xcosf

1
roL

Rigorous indeed

'(m +1)

m+«a

'(m + a +1)




Riemann-Liouvelli and Caputo Fractional Derivative

Riemann fractional integral formula is

d_a_f_g.x): -a X 1 f(x_u)alf(u)du

dx o I (a)

There are two different ways in which this formula might be applied. For example, if we wish to
find the (7/3)-rd (#=7/3)derivative of a function (i.e. d"’*f(x)/dx’? ), we could begin by
differentiating the function three whole times (taking nearest integer say m just greater than#
that is m =3 ), and then apply the above formulawith o = (m - x) = (3-(3))= %

to “deduct” two thirdsi.e. @ =2/3 of a anti-differentiation

DIf@]=.02 ™) @=3-(3)  Caputo 1967
DUf0]=.D | M| a=m-u

By Caputo we get fractional derivative of constant as zero-but f needs be differentiable

Alternatively we could begin by applying the above formula with @ = 2/3 and then differentiate
the resulting function three whole times ( ;s = 3 ).

“D[f0]= [ D] a=3-(2)
drf Riemann-Liouville 1872
“pr[f]= [0 w]  ammeu

Kindergarten of Fractional Calculus



Integral Representation of RL and Caputo Derivative

Caputo Derivative
f(a)(x)=D_(l_a)(D“)f(x)) O<a<l m =1

1

DU = m T

[(x=»)"rP0ndy, 0<a<l

Riemann- Liouville fractional derivative

f(a)(x)=D(l)(D_“_“)f(x)) 0<ac<l m=1

1 d
(1-a) dx

aDif(x)=F Lx(x—y)_a f(»dy, 0<ax<l



Riemann-Lioville (RL) & Caputo pros and cons !!

Although these two definitions give the same result in many circumstances especially when the

— o0

start point of the process is at or value of function at start point is zero.

They are not entirely equivalent, because (for example) the half-derivative of a constant
is zero by the Caputo, whereas the RL gives for the half-derivative of a constant the result
given previously as Euler formula.

The function requires to be differentiable for Caputo fractional derivative while the function
need not be differentiable for RL fractional derivative

The relation between RL and Caputo is
a _C a (x_a)_a
D[ f(0)]= DY [f(0)]+ f(a)—r(l_a)
DI[f(0)]= . DI[f(x)= f(a)]

O<ac<l

Kindergarten of Fractional Calculus



Fractional Derivatives of exponential function with lower terminal

We have for exponential function derivative with start point *o = ¢  as

S

DZ |:eC—cx ]

__c ~ (7/* (—a,—c(x—a))) This is obtained via RL formula
(x—a)
1 + x X * % def X~ X _ a —
ODf[e‘ ]:i—%y —é—,ix) 4 (a,x)zr(a)joe’t 'dt

*

/4 is Tricomi’s incomplete Gamma function

For start point as X, = —0

o [ecx:| ) d l:ecx:| B ocF

o ) [d(x+ )] (x+ o) 7 (mac(xr o)

e M] o=y
y—>© y

=e“ lim| ¢“ i iing) (a.cy) =c%“ lim y (£a.2) cy=z
Y= (Cy)a >0 %

- c“e""[l——szrz_a) (1—“7“+0<22>)j

We have got Liouvelli’s postulate
Kindergarten of Fractional Calculus



Fractional derivative of non-differentiable function

0
DAL (0]= 04[]+ b]

_ PG peen gy, x|
F(h+1-14) r{-+)
b -
- T (= :
(2)+F(é)|X|

If we offset the constant then we get
DAL= £ ]= D F| (Jix]+b)-b]
- T (3)= (2)

we get fractional derivative value at the non-differentiable points



Characterizing non-differentiable points of ECG graph

We have done studies on two normal ECG graphs and ten ECG graphs of LVH patients, by finding fractional
derivative (of half order), phase transition values at non-differentiable points, leads.

The values of P.T. of normal ECG leads for different non-differentiable points are low but it increases abruptly f
or LVH patients

This type of study is not reported elsewhere. This method is a new method we are reporting for the first
time-could be an aid for differential diagnostics in medical science.

Courtesy :Dept. Appl. Mathematics Calcutta Univ. BRNS Funded Project: Characterization of
unreachable (Holderian) functions via Local Fractional Derivative and Deviation of function



RL Derivative to get L'Hopital’s answer

In 1695, 30 Sept. L'Hospital asked Leibniz what if we putn='"%in D" [x ] is date of birth of FC
Leibniz replied an apparent paradox may lead to useful consequences

To illustrate the use of these RL-Caputo definitions we will determine the half-derivative of x
as L'Hopital requested. Using the RL formula, we first apply half of an integration to this
function using equation Riemann integration formula with a=1/2 , giving

) r(lé)[—%xm #2x]= (1;) 4x33/2
_ 3\%)&/2

Then we apply one whole differentiation to give the net result of a half-derivative
d'*x d ((4x°"° \/7
= = 2 —
dx'’? dx [ 3T ) T

So ,D”[x]=2/% viaRLformula




Caputo Derivative to get L'Hopital’s answer

In this case the Caputo gives the same result. Choose m =1 then differentiate the function
f(x)=Xx oncetohave f(x)=1 ,then do the semi-integration of this that is.

D11 =T(M)x"? /T (3)= 2=

_ d(x
CODlx/Z[x]Z ODxl/Zl: ( )j|
dx

_ -1/2 _ ' (1) 0+(+) _ X
= D / 07 = — 7 —2|/—
0 p [ x ] F(;)x

So  §D’[x]=2./* via Caputo formula

RL and Caputo gave same answer here since value of function at start point of fractional
differ-integration in this case starts at zero is zero, i.e.atx =0, f(x)=0



Fractional derivativesof f ( X ) = X forordersO, ¥4, ....., %2

Observe how derivatives approach f'( x ) = 1, but each derivative passes through origin



Fractional derivativesof f ( X )= 1 forordersO, ¥4, ....., %2

Observe that the derivatives converge to f ( x ) = 0 except for an asymptote at x = 0



Expressing fractional impedance via Curie relaxation law

As in di-electric relaxation, the relaxation of current to an impressed constant voltage stress U, i.e.a step
voltage applied at ¢+ = 0 , to an initial uncharged system the current is by following law

i(t) = hUtO"‘ t>0 0 < a <1 Thisis Curie law 1889

[

We now get Transfer Function of a capacitor via Laplace Transform

U
I(s)= 2L {i(t)t= <L 0
_4 O R
5 . n ' n _
Slope = & Use Laplace pair e <~ t"and n!=T(1+n)
logi(z) ¢ 'l-«a I'l-a U
Toget ](S):UO ( _a+1) — ( _a) 0
h,s h,s s
7
8 logt —> Note that the voltage excitation is a constant step input at
time zero
-1 0 1 2 U
Current vs time. At = 0 a voltage of 100V is B u, t>90 Laplace is U(s) = 0
connected to a 0.47 uF capacitor with u(r) = 0 t <0 S
metalized paper dielectric gives o = 0.86
1 (- (-
For unit step we have H(s) = (s) = ( _a) = ( a)s“ =C,_s"
U (s) h,s * h,
Ca:F(l—a') Z(S):U(S): 1
h, I(s) C,s”
1
Z(w) =

C, (io)"



Indicates fractional derivative in current-voltage expression

We have just expressed impedance in Laplace domain for capacitor as
U(s) 1
I(s) C_ s°

Z(s) = 0 < g <1 Fractional order impedance

Unit of fractional capacity ¢, is F/s'"* inthis new relation !

This gives current-voltage expression for capacitor as

U(s) 1
I(s) C,s°

I(s)=(C,s“)U(s)=C, (s°U (s))

0<a <1

Z (s) =

d t
As we have for zero initial condition § (F(S)) =9 (K {f(t)}) < (];( )

we generalize to fractional order derivative and write .« (F(5)=s*(£{/(0)}) & d” /()

de”
Our new-capacitor expressionis . ,\ _ du (1) D @
i(t)=C, —— u(t) = = joz(r)(dr)
d(u(t))

Contrary to classical expression i(t) = C

|
P u(t) = FIOZ(T)(dT)



The charging time is memorized

We charge a ultra-capacitor to maximum limit voltage and keep for time 7 on float charge,
then it is kept under open-circuit. The self-discharge plot is depending on T’

25 -

1.875
9
0h]
)]
T
=)
> —— 4 hr holding
1:25 5 —— 8 hrholding
16 hr holding
1 -
0.9375 -
tH ! L ! o EEER
100 1000 10000
Time (s)

Courtesy: BRNS Funded joint Project CMET Thrissur-BARC Development of CAG Super-capacitors and
application in electronics circuits



Self discharge with memory via fractional derivative for supercapacitor

A capacitor is charged fromtime -7 to ¢ withaconstantvoltage Ub; the chargingcurrentis

L)=C. d“U,| _ [F(l—a)] d“U,| _ F(l—a)[ Us _,_ (_T))aj
de” | . h, de” | . h, I'l-a)
:L O<ax<l t+7)>0 -a
h (t+T)* Using FD of constanti.e. D“C =C (;“(‘l‘i)a)

At ¢ =0 itis keptin open-circuit; there will be self discharge thus a discharge current will appear depending
on decaying of the terminal voltage u ( ¢)

t t

d“u(?)
de”

CT(1-a) d“u()
- h dr®

0 [24

id (t) = Ca

0
We combine the charge and self discharge together and write £ () +i,(£)=0

Uy T-a)du@) _
h (t+T)" h dr“

a

0

Do fractional integration of order @ for above expression, to write the following

-a UO r(l_a) _ _
D, {MHT)“} ; [u(®)-U,]=0

a

We apply the formula for fractional integration i.e. D [f(t)] _ 1 J-z f(x)dx to get
o F(e) 0 (t-2)"



U, J- 1 dxl_ N F(l_a)u(t)—r(l_a)UO _ 0
h, (o) (T+x)* (t—x)"° h, h,
Rearranging the above, we write U, ¢ dx

u(t)=U,

T(@)(-a) J (T +x)*(t — x)"“

0

Put 7T+x=7 dx=dr sofor x=0 r=7Tand x=¢t =T+t Wehavethus

u(t)=U,

UO TJ—i—t dT UO T+t

_ —=U, - | F(r)dr
re)Yl'l-«) & t“(T+t—-7)"“ Na)l'dd-—oa)

T T

T+t T+t

T+t 9
Now we break _[T F(r)dr as j F(r)dr = jF(T)dT 4 j F(r)dr and call the second term as Z (¢)
T 0

T
We write in terms of convolution of two functions with substitution 7 +¢t=7

T+t T+t dr t dr 1 . 1
0= -([ Flo)dz = -([ t(T+t—1)"™ _!)‘T“(t_—r)l_“ _(t_“j (t”’j

Using Laplace pair ¢ <> =52 wewrite £{Z(t)}=Z(s)=C {t“" } x L {t‘““")} as

F(ca+) T (-(1-a)+1) _T(-o)(a)

S—a+1 S[—(l—a)+1]

Z(s)=

S
Extracting 7 (¢) by inverse Laplace of obtained 7 (s) we get

7 =L'{Z ()} =L {TA-a)(a) (1)} =T(1-a)(a)

We used Laplace pair 1 ¢« L



T+t T+t

Using just derived expression i.e. .fo F(r)dzr = JO —dr=T(-a)'(a)

% (T+t—
expression for open circuit voltage u(¢) as follows '
u(t)=U, - Y, TthF(r)dr+j)‘F(r)dr
" Tld-o)(a)| 3 )
U, U, ‘
“U T iCor@ >[ (=@ 5 gy | £
0 U,
N F(l—a)l“(a)l " T(l-a )r(a)jF(T)dT
_ U, j dr
CT(-a)T(a)) t(T+t—1)""
T
Therefore u(t) = U, I dr

TFl-a)(a)yc“(T+t-7)"

we write the

is the voltage over open capacitor at self discharge. This function of time, depends on the total

time T the capacitor has been on the voltage source.

In a way this capacitor is memorizing its charging history.

This explanation was possible only by usage of fractional derivative



Where can we find fractional capacitor?

There are fractional order behaviors observed in

1. Insulation studies

2. Di-electric relaxations

3. Super-Capacitors made by Carbon-Aerogel, CNT, Graphine, Acivated Carbon, Conducting
polymer electrodes

4. The studies on gelatin bio-polymers as electrolyte material

Lithium ion batteries

Studies on PMMA material.

Studies with fractal electrodes. etc

N o U



Fractional Order Capacitor

U (s) 1
Z(s) = T(s) = C oo a <1
Impedance Spectroscopy hren
I Nyquist Diagram o
w40 w =2rv
-0.6Q T a):razdian/sec /\a)J«O
v:Hz

(@) =Ry +(iw)™ Ca’1

1
1
I
I
I
I
1
1
1 :
i
-0.4Q : : =a(90%) \
1 .
LE/ Ideal-capacitor
I
1
1
1
[
I
I
I
I
1

/ Practical-capacitor
i Z
e

Self similar repeated structure of
Z(0) = Rpgy + (i@C)" EDLC >

020 . Super-capacitor electrode-rough porous electrode
: 5-Hz
P olo s KHy Fractal nature non-integer dimension
R — Re 7 -1
e . — _
0.1Q 0.20Q 0.3Q 2< df <3 a= (df 1)

<~ Region of constant phase — |
Warburg Region ¢ ~ 0.5

The perfect smooth surface df =2, the exponentis ¢ =1 a pure capacitor (ideal) behavior

In the limit ¢, = 3 the exponent ¢ —» (0.5 result of a porous electrode (it is a 3D case)

Observations on Impedance Spectroscopy of super capacitor and di-electric capacitor-states that they
are non-ideal and fractional order capacitors

The ideal capacitor is only possible with Mercury Electrode. Nyikos and Pajkossy
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Actual observed voltage profile for constant current charge

discharge of fractional capacitor-supercapacitor

Constant Cur.(50 mA) CDC pattern ‘ — AG-25F —— AG-20F AG-10F
2.50
s °% / \ /
Q 1.50
£
§ 1.00
0.50
0.00 ; ; ;
0 2000 4000 6000 8000 10000 12000
Test time (s)

Constant current (50 mA) charge-discharge pattern of 10F, 20 F and 25 F aerogel
supercapacitors, studied by using Super Capacitor Test System

Actual observation records non-linear voltage profile of constant current charging and discharging for
super-capacitor-gives notion that there is fractional order capacity!!

Courtesy: BRNS Funded joint Project CMET Thrissur-BARC Development of CAG Super-capacitors and
application in electronics circuits



Constant voltage charging of fractional capacitor

The figure shows a Low Pass filter where the second impedance is fractional capacitor

Z,(s) v (s)
Z,(s)+Z,(s) g’

)i, 1 Z,(s)==—; O<a<l; Z(s)=R

Vo(s) =

a

t=0 1
. s“C, i k . 1
- Z(s) VO(S)_R+S;C Vuls) =G V() k_RCa
Ve T— | V.()=Vu(t); u(t)=1 for t>0 else u(t)=0
T 4 V.k
ACIR AT Vm(S)=TR Vo(S)Zﬁ
| ) V .k
v,(t) = £ &
s(s” + k)

This is voltage charging equation for the fractional capacitor to a constant DC voltage input

Note that we are dealing with fractional differential equation
y(“)(t)+k(y(t))=k(x(t)) 0 <a <1
y(t) =v,(1) t >0 y(t) =0 t <0
x(t) =v, (1) v, (1) =T, t >0 v, (1) =0 t <0



Solution to obtain Laplace inverse from series

B V .k B V .k
VO(S)_ a k o a +1 k
s(s® + k) s 1 “
_Vek |k k2K
a +1 Sa SZa S3a
k k*? k> 1 t"
= Vi a+l _2a+l a1 use w
S S S S '(n+1)
a 2,2« 3.3«
V()= V| =k k)
I'(la +1) ' 2a +1) ' 3a +1)

kta k2t2a k3t3a
=V, 1-]1- + - + ...
T(ex +1) T (2a +1) [ GBa +1)

=V, l_i (—kt®)" ]:VR(l—Ea(—kt“))

ol (ma +1)

-V [t- £ (- 5)]
One parameter Mittag-Leffler (1903)function E_(x)

Ea(x)é Zoo: (x)"

moo Ll (am + 1)

For a =1 wehave E (x)=e¢e"



Solution using Laplace of Mittag-Leffler function

. v ok
volt) = £ {s(s“ N k)}

a-p

l's
Weuse £ {t“?"7'E ") (at”)} = L= for p=0 a=n pB=n+l
’ sT —a

-1
) g i } : . . :
to have Yo { - } _ ¢ Ea,a+1(at ) . With this we obtain the following
s“ —a

V.k
v (t)= L' R =V kt*E —kt”
0() {S(Sa-Fk)} R a,a—H( )
— VR a t
- Et Ea,a+1 (_ RC, )
Two parameter Mittag-Leffler function (1903) E, 5(x) is defined as

Ea,ﬁ(x)zz F(am-l—ﬂ)’ Ea,(a+1)(_kta)zz

me0 mo L (am+a +1)



Graph of decaying Mittag-Leffler function

1 I |
0.5- \ — -
b u=1/4
0=1/2 ;
L o =

Mittag-Leffler function plays role in fractional calculus as exponential function is for
classical calculus-for solution of fractional differential equation



Charge discharge comparison of classical capacitor and

fractional capacitor

For charging voltage of capacitor

— VR
RC,

v, () =V, (1 - E, (— - )) t“E, 4. (— %) For fractional capacitor

a

For o =1 we getthe charging voltage profile of classical ideal capacitor
v, (1) =V, (1 - e_RtC)
For charging current of circuit

a -1

_ V% _ Ve Vi s . a 8
](S)—Z(S)—S(R+ 1 )— R[s“+ ] J usin g L’{Ea(at )}_s“—a

s“C, RC,

i(t) = RR £, (— #) For fractional capacitor

For a =1 Wwe getthe charging current profile of classical ideal capacitor

. Ve -4
i(t) = L 7RC
(1) 2



Fractional order capacitance can be realized by R C distributed network

R 1 K R
The terminal impedance of semi-infinite RC ladderis Z ,(s) =, /— X —7 = K=,—
C s” Js C

The op-amp circuit gives Transfer function as R b

—————————————— Vi(s) Z, R Js
| 22x10°
, , o N047x10° _
<~ Fractional Capacitor T S

Put s =iw toget s =iV
22KQ . _ i
C =047 uF " We write i =¢

m!2) to get l.—12 _ e—i(ﬂ/4)

g gy v

\ The transfer function of the circuit is
" : oF 07—+ V(@) _ g ggp0seitei)
[lor-or AT

A semi-integrator circuit with R C ladder

Functional Fractional Calculus



Square Wave Oscillator with Fractional Capacitor-a fractional oscillator

Vv, output is either v, or v
the saturation voltage +15V

<—7/2 —



Time period of fractional oscillator

From bV to bV

v.(0)=V, (1=, (~45))+ GV )E, (- #
v (3= =y (1 E () 0k, (-5

From bV, to bV

v_(t)=V_ (1 ~E, (-4 ))+ (bV)E, (-#-)

v (5) =0V =V (1-E, (- 525))+ 0V OE, (52

V+
o

- ”(_T) 2
(_7(7) )zz;‘ T(na +1)
VO
5
a=1
bV | NG Voo rmee(-(k)
V. k—T/2—%—1T1/2 —




Fractional oscillator oscillates at higher frequency?

a =1

C=1F, R, =7.8Q R =15Q, fZ%ZO.SSHZ

a=1/2
C.=0.127F/~s, R. =780 R=15Q, f:%:lle

1. Getting about two decades higher frequency? Why?
2. The governing charging discharging function is in fractional order case is Mittag-Leffler

function, where for early times, the rise (or fall) is steeper than exponential function.
3. Depends on @ and noton C.

E, (—1t%)




Fractional Inductor realization

With fractional capacitor implemented in impedance convertor circuit we get fractional inductor

Zzsz‘ P Zaw =5 La
B O<a <l

N —— 1
— =
tosec,
Z.=R.
B
YAV AV “C R R.R
oy = 14345 _ S LI 5=SaLa V(S)=SaLaI(S)
Z.Z, R, ;
a-t
C.RR.R. v(t)=L, i(7)
L, = 2 dt“

2

Antoniou Circuit (1969)



Fractional D-element realization

With fractional capacitor implemented in impedance convertor circuit, we get a ‘capacitor’ of
order (a +1)

A ®
Z — 1 |
1 sC, * = Zag = 1+a1D Ii
S (04
— O<a <l
Z, = 2'
o 3 SaC3
+ |Z4 =R,
Z; =R,
B 7 _ YAVAVA _ R _ 1
A zz, s“T'C,C,R,R, s“''D,,
D, - C]C;R2R4

5

Fractional capacitor with order greater than one



Fractional Inductor with order greater than one realization

g = SOH]LaH
“ =50 ] 0 1
sC B <a <
d Z, =R,
) — ,
— =
tosec,
Zs = R,
B
YAVAVA
7.y = 2 32 = =R, (sC)R,(s“C, )Ry =5""L,.,
24 4



Fractional Order High Pass Filter

R— II | 8 V,(s) The circuit Transfer Function is
1
B
Vin SaCa s Lﬂ G(S) = VO(S)
V. (s)
~ Sa+ﬁ
Sa+ﬂ + Sa (LRﬁ )_|_ (Lﬁlca)
With example values as: g =1 a=0.1, 0.5, 0.9 R=1, L,=1, C,=1

the Bode gain plot is

0dB
a+ f=1.1"
a+ p=1.5
a+ f =1.9—/

Attenuation is 20 (a + f) dB / decade
in stop band-depends on fractional order

10°rad/sec



Calculations going into plotting mod of fractional order transfer
function for a fractional order low pass filter (FOLPF) -for
Bode Gain Magnitude Plot

1 |

(s)= (Lﬁca) ut  s=iw  i=cosZ+isinZ

FOLPF PEYIN 1 p 2 2
S +S E + LﬂT

Denominator s 4 (ﬂ)-l—( Lﬁc) (za))‘”ﬂ +(iw)” ( )+(;)

LyC,

:a)‘“ﬂ(cos @h7 4 isin (“+ﬂ)”)+a) (Li)(cos% +isin%)+L1C
‘B~a

_(L/,c Z 4o Wﬁ)”) in &2 +sin%) =u+iv
use ‘u +iv‘ =Ju'+v  and Lu+iv=tan” (5) simplify to get

ye

‘GFOLPF(CU)‘ (2RLC ‘o S%+2RCaa)“ COS%+2LﬂCaa)a coS (“+ﬂ)” +R2C 2 _2a +Lﬂ2Ca2w2(a+ﬁ) +1)

in (@07 4

. -1 +sin4t
ZGpoppp(@) = tan ( . ((Hﬂ)ﬁj

_1 afr a+p
LﬂC +Lﬁa) COS=-+w COS




Fractional Order Band Pass Filter gives

/ Admittance
I, (s)
a+ <2 Y(s)=—"—"—

in —mm>
.
V ﬁl S L Ve
in s”C — Lp
per 107 s (1) + ()
Yy, = 1 X sin (ﬁzﬁ) @
R+L,0" COS(’?)JF(C;M)COS(”;) Tk T L,C, sin (%)

We observe that the real admittance is a function of frequency !!

: : : , 1
Whereas in classical case the real admittanceis Y, = — at @, =
R L.C,

Int. J. Circ. Theory Appl. (2014): Experimental studies on realization of Fractional Inductors & Fractional Order Band Pass

Filters Courtesy :Dept. of EE IIT Kgp



Fractional Order Band Pass Filter gives better tuning !!

- — II |a+ﬂ£2 R = 1K
R
v 1 s“L, C'F=1.89><10_5
; T P L,=7.2x107°
B <1 P

100

admittance

(S)

Maenitude of absolute

10’ 10° 10° 10! 10’ 10° 10" 10° 10° 10° 10° 10°
Frequency (Hz) Frequency (Hz)
(a) Magnitude of absolute admittance (b) Phase of absolute admittance

Get sharper tuning characteristics and narrower Band-width by choice of fractional orders
Frequency at which the Admittance magnitude is maximum do not coincide with the frequency where
phase Angle is zero.

Int. J. Circ. Theory Appl. (2014): Experimental studies on realization of Fractional Inductors & Fractional Order Band Pass
Filters Courtesy :Dept. of EE IIT Kgp.



Fractional Order Resonance

ﬂl s“L,
$TCy a =1
B <1

L(Oé-i—}}’zf— ___________ _ in

For a=1; [ =1

The phasor diagram is for R-L-C circuit

VL
________ Vin
VL o VC :
VR ’]in i
Vm - VR +(VL _VC)
VC

For a >1; p<I1

Lr, and Cr together contribute to provide
a negative resistance

Effective resistance decreases
Admittance increases
O-factor of fractional resonance circuit with

inductor order greater than one is better
Than normal R-L-C circuit.



Visco-elastic experiments on several starch samples

A snapshot of the film (inner blob) superposed on the photograph of the film photograph of
the film about 2 sec. earlier (outline visible along the periphery) shows the shrinking of the
film-"oscillatory spreading of area (strain) of the starch under Load (stress)’

Spreading of Non-Newtonian & Newtonian Fluids on a Solid Surface under Pressure, J of Phys: Conf Series 319(2011)

Forced Spreading & Rheology of Starch Gel: Viscoelastic modeling with Fractional Calculus : Colloids & Surfaces A :
Physicochemical & Engineering Aspects 407 (2012) 64-70
Courtesy : CMRC Dept. of Phys JU



Area(sq.cm)

Spreading of Newtonian Fluid

o |.25kg

—au 225 kg

Voigt

E I_::-l J=E£+}}‘{{11—E
[

50 60 70 80
Time(sec)

9% 100 110 120

,b’%g(t) +Ee(t) =o(¢)

An area-time plot (castor oil on perspex)

Spreading of Non-Newtonian & Newtonian Fluids on a Solid Surface under Pressure, J of Phys: Conf Series 319(2011)

Forced Spreading & Rheology of Starch Gel: Viscoelastic modeling with Fractional Calculus : Colloids & Surfaces A :
Physicochemical & Engineering Aspects 407 (2012) 64-70

Courtesy : CMRC Dept. of Phys JU



Spreading of Non-Newtonian Fluid-gives a oscillatory spreading

Arrowroot on Glass
Temp:32.2¢ Humidity:70%

4.3 T | T | T T
4.6 —
E 44 S T e |
;. —s | kg
“2" T|m—= 2kg
:% 4.2 — |+—= 3 kg
I 4 kg
a—a 5 kg
4 |
3_3' T T TR ST |
0 0.5 1 1.5 2 2.5 3
Time(sec)
An area-time plot (Arrowroot on Glass))
. . “ 1
The non-Newtonian area-time plot P (t) + Be(t) = ﬁ—a (1) B =E /p

With o =1.1 the integer model gets generalized to fractional differential Equation Fractional
Voigt Model!

Spreading of Non-Newtonian & Newtonian Fluids on a Solid Surface under Pressure, J of Phys: Conf Series 319(2011)

Forced Spreading & Rheology of Starch Gel: Viscoelastic modeling with Fractional Calculus : Colloids & Surfaces A :
Physicochemical & Engi ing A 407 (2012) 64-7
ysicochemical & Engineering Aspects 407 (2012) 64-70 Courtesy : CMRC Dept. of Phys JU



Oscillatory Spreading of Non-Newtonian Fluid

o—oZkg

Area{cmz)

| | | | | | |
10 15
Time(sec.)

]
Lh

An area-time plot (Potato starch gel on glass)

Experimental variation in area with time for different values of load for 2.5 concentration

potato starch gel on glass
Spreading of Non-Newtonian & Newtonian Fluids on a Solid Surface under Pressure, J of Phys: Conf Series 319(2011)

Forced Spreading & Rheology of Starch Gel: Viscoelastic modeling with Fractional Calculus : Colloids & Surfaces A :

Physicochemical & Engineering Aspects 407 (2012) 64-70
Courtesy : CMRC Dept. of Phys JU



Effect of loading history on viscoelastic property of a non-Newtonian

fluid: analysis using fractional calculus

fowdiiides & fo¥ G €747

12

Shear strain
=3
1)

=
)

A
0.3 7 4

L 1 T 1
5 10 15 20
Time (sec)

An area-time plot (Potato starch gel spreading )

In this work gelatinized starch is shown to retain the memory of past loading history. It exhibits a visco-
elastic response which does not depend solely on instantaneous conditions. A simple squeeze flow
experiment is performed, where loading is done in two steps with a time lag T seconds between the steps.
The effect on the strain, of varying 1 is reproduced by a visco-elastic model. Complexity is introduced
through Fractional Calculus by incorporating non-integer derivatives in viscosity equations. A strain-
hardening proportional to time lag between two steps is also incorporated. This model reproduces salient
features observed in experiment namely-memory effect, slight initial oscillations in strain as well as long
time solid like response.

Effect of loading history on visco-elastic potato starch gel: Colloids & Surfaces A: Physicochemical & Engineering Aspect

492 (2016) 47-53
Courtesy : CMRC Dept. of Phys JU



Realized active circuit for fractional differ-integration

Rfi1 Rfi2
Rz ,
Rzi2
Rii1 +vce +vee
/P - Rii2
. H + I ) - " B =N
Making the Bode phase plot flat as CPE C -vee ] *
C l -VCC
¢/~ (s —z)(s—z,).. Rfi= Rii Rz
= i Zi Pi Ci
(s=p)s—=p,).. Q TP ) TP
1 2.2537 6.0406 Ip 264.07k 500k 44371k 500k
2 15.955 42.764 Ip 37.30k 50k 62.67k 100k
3 112.95 302.75 680nf 11.21k 20k 18.83k 20k
4 799.65 2143.3 68nF 10.94k 20k 18.39k 20k
5 5661.1 15173 10nF 10.51k 20k 17.64 20k
6 40078 107420 InF 14.85k 20k 24.95k 50k
| |
45 - - - - - - - = == — = — s — —— — |- —— — — — — |
PR RN SN ]
N | B
|

[

oF -

3 4 5
Frequency

-

. Time(Sec) . 2 . cer - -
A new method for getting rational approximatiotfor Fractional Order Differintegrals :Asian j of Controls Vol 18, No 4

Pp 1-18.

Courtesy VNIT-Nagpur Dept of EE



Fractional Order Circuits and Systems Hardwired FO-PID

20110705720k EIeIRM

e

Hardwired Fractional Order PID connected to DC Motor Emulator Circuit

Courtesy VNIT-Nagpur Dept of EE



Coarse graining phenomenon and fractional calculus

In systems involving course grained phenomenon, every thing happens as if the elemental
point is not infinitesimally small (zero) rather it exhibits some thickness, what could be

pictured by using (dx)®  0<a <1 ,instead of dx
As dx{ 0 we will have always  (dx)” > (dx)
In other words we are considering rate of variationas d(f(x)) or d“(f(x))

(dx)” (dx)"

Here we come across fractional derivative and fractional calculus

When media is non-uniform if we shrink the element to zero, then we loose its actual picture
1

divJ £ lim — JendS =V e
V—>0V S

div”J £ 1lim 1— JendS =V7? el
V—>REVV S

REV is Representative Elementary Volume and a non-zero

Concept of fractional divergence Functional Fractional Calculus



What we should ask ourselves

Calculus is as old as three hundred plus years sois fractional calculus

Why we need to have fractional Ca|CU|US ?

The differentiation dd— operation is taking rate per unit (infinitesimal) dx as dx { 0
X

For an element (dx)” defining rate asdx 10 for say 0 < ¢ <1 gives notion of fractional differentiation
Similarly integration with respect to element (dx )a gives notion of fractional integration
Obviously (dx )“ > dx what does it say then ? That is coarse graining-views roughness/non-uniformity
Fractional calculus is extension of the classical calculus
Is there any conjugation or parallel ?
Can we apply to non-differentiable functions?

System dynamics having memory has direct link with fractional calculus

We should revisit the physical units in case we are considering fractional rate while working with
fractional differentials; like F/s"=  instead conventional F-and their physical interpretation.

A paradox of mathematicians now a reality in science & engineering



Still several miles to go to understand

“Which Calculus the Nature obeys ?”

THANKYOU ALL




