Rare B decays at ATLAS

Adrian Bevan (on the behalf of the ATLAS Collaboration)

Outline

- Physics motivation: $B_{s,d} \to \mu^+ \mu^-$
- ATLAS experiment and data samples
- Analysis:
 - Overview
 - Trigger
 - Event Selection
 - Backgrounds (and suppression)
 - Signal Fit Result
 - Normalisation mode: $B^{\pm} \rightarrow J/\psi K^{\pm}$
 - Branching Fraction Calculation
 - Systematic Errors
 - Result

See the following paper for more details:

CERN-EP-2016-064

Eur. Phys. J. C76 (2016) no.9, 513

Summary

PHYSICS MOTIVATION: $B_{s,d} \to \mu^+ \mu^-$

$$B_{s,d} \to \mu^+ \mu^-$$

- Rare decays: excellent probes for new physics (NP).
- Suppressed standard model (SM) decays like FCNCs can exhibit large effects beating against small NP amplitudes.

SM rate is theoretically well known:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$

$$\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$
 Bobeth et al., PRL 112 (2014) 101801 (arXiv:1311.0903)

NP can enhance or suppress this rate.

$$B_{s,d} \to \mu^+ \mu^-$$

- Rare decays: excellent probes for new physics (NP).
- Suppressed standard model (SM) decays like FCNCs can exhibit large effects beating against small NP amplitudes.

SM rate is theoretically well known:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$

$$\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$
Bobeth et al., PRL 112 (2014) 101801 (arXiv:1311.0903)

NP can enhance or suppress this rate.

ATLAS EXPERIMENT AND DATA SAMPLES

CKM 2016 TIFR

The ATLAS Detector

Trigger:

- 3-levels
- Reduces rate from 40MHz to 400Hz

Hadronic Calorimeter:

- Coverage: $|\eta| < 5$
- Fe/Scintillator tiles (central)
- Cu/W-LAr (forward)
- Trigger, Jet and MET measurement.

$$\frac{\sigma(E)}{E} \sim \frac{50\%}{\sqrt{E}} \oplus 0.03$$

Muon spectrometer: (MS)

- Coverage: $|\eta| < 2.7$
- Air core toroids (0.5T)
- Gas-based muon chambers
- Provides muon trigger
- $\sigma(p)/p \sim 10\%$

Inner detector: (ID)

- Coverage: $|\eta| < 2.5$
- Solenoid B = 2T

Semiconductor tracker

• Si Pixels, microstrips, and TRT straw tracker system.

$$\frac{\sigma(p_T)}{p_T} \sim 3.8 \times 10^{-4} p_T (GeV) \oplus 0.015$$

LAr Calorimeter:

- Pb-LAr accordion structure
- e/ γ trigger, identification and measurement.

$$\frac{\sigma(E)}{E} \sim \frac{10\%}{\sqrt{E}}$$

Data samples

 Excellent LHC (& ATLAS) performance during Run 1 data sample: 4.57 fb⁻¹ at 7 TeV; 20.4 fb⁻¹ at 8 TeV

This result uses the full Run 1 data sample & supersedes the previous ATLAS result.

Run 2 at the LHC is continuing.

ATLAS has been upgraded with an inner pixel layer (IBL) during the shutdown: will improve background suppression for Run 2 update of this analysis.

ANALYSIS

CKM 2016 TIFR

Overview

- Signal:
 - Select signal di-muon events from data.
 - Extract yield using an un-binned extended maximumlikelihood fit to the data.
 - Use control samples to understand background suppression BDT and other crosschecks.
- Normalise signal to $B^{\pm} \to J/\psi K^{\pm}$.
 - Requires knowledge of decay constants f_s/f_d and f_u/f_d.
 - Use the ATLAS result for f_s/f_d and assume Isospin:

$$f_s/f_d = 0.240 \pm 0.020$$
ATLAS Collaboration, PRL 115 (2015) 262001 (arXiv:1507.08925)

• Check normalisation mode against $B^{\pm} \to J/\psi \pi^{\pm}$.

Trigger

- Use a di-muon signature in the MS to form triggers for these decays.
- 2011 data: $p_T(\mu) > 4 \, GeV$
- 2012 data:
 - The $p_T(\mu) > 4 \, GeV$ line was pre-scaled.
 - Secondary trigger lines were used to retain signal efficiency; using tighter P_T or |η| constraints.

 T_1 : "higher threshold" trigger with $p_T > 6$ GeV and > 4 GeV respectively for the two muons;

 T_2 : "barrel" trigger with $p_T > 4$ GeV for both muon candidates and at least one of them with $|\eta| < 1.05$ (and T_1 requirement not satisfied);

 T_3 : basic di-muon trigger with $p_T > 4$ GeV for both muon candidates (and T_1 , T_2 requirements not satisfied).

Event Selection

µ±: Tracks using ID and MS information

$$p_T(\mu) > 4 \, \text{GeV}$$
$$|\eta| < 2.5$$

■ B: $P_T(B) > 8 \, GeV$ $|\eta| < 2.5$ $m_{\mu\mu} \in [4766, 5966] \, GeV$

- Primary Vertex (PV):
 - Reconstructed using tracks not associated with secondary vertex.
 - Project B 3-vector back to collision axis.
 - Minimise (in z) POCA to PV_i.

- Extraction of limit or branching fraction (\mathcal{B}) depends critically on our understanding of the background...
 - Combinatoric events:
 - Pairs of independent muons selected from the event that pass the reconstruction.
 - Partially Reconstructed decays (PRD):

$$B^0_{(s)} \to \mu^+ \mu^- X$$

The system X is not reconstructed; accumulates on the low mass sideband.

 $\begin{array}{c} {\bf Peaking\ background:} \\ B^0_{(s)} \to hh' \end{array}$

$$B^0_{(s)} \to hh'$$

Mis-id the hadron ($h'=\pi$, K) as a μ pair.

Partially Reconstructed Decays:

Same Vertex (SV):

μ pair from same vertex; e.g.

$$b \to s\mu^+\mu^-, qJ/\psi$$

Same Side (SS):

from decay cascades; e.g.

$$b \to c\mu\nu \to s(d)\mu\mu\nu\overline{\nu}$$

Semi-leptonic:

with hadron mis-id as μ ; e.g.

$$B \to h\mu\nu, \Lambda_b \to p\mu\nu$$

B_c:

e.g.
$$B_c \to J/\psi \mu \nu \to 3\mu \nu$$

- Several competing contributions:
 - Dominated by same side (SS) background.
 - Feeds into the signal region from low mass side.

• Two-body decays: $B^0_{(s)} \to hh'$

- Dangerous background that can mimic signal.
- Use fake μ BDT to suppress this contribution.
 - • μ fake rate sub-per-mille
- Negligible contribution from

$$\Lambda_b \to p\pi$$

- Poor separation between B_d and B_s mesons.
- Expect 1.0±0.4 events of hh' background.

Use a boosted decision tree (BDT) using 15 variables for combinatoric background suppression: (see backup for details)

- Use $B^\pm \to J/\psi K^\pm$ and $B_s \to J/\psi \phi$ control samples to validate data/MC agreement.
 - Data/MC difference accounted for as systematic error.
- Split the data into bins of equal expected signal yield (increasing purity).

Signal Fit Result

• Fitted signal yields are $N(B_s)=16\pm12$, $N(B_d)=-11\pm9$ events.

Normalisation Mode: $B^{\pm} \to J/\psi K^{\pm}$ PATLAS

4 component fit:

$$B^{\pm} \to J/\psi K^{\pm}$$

 $B^{\pm} \to J/\psi \pi^{\pm}$

Combinatoric background

Partially reconstructed decays

Category	$N_{J/\psi K^+}$
T_1	$46860 \pm 290 \pm 280$
T_2	$5200\pm\ 84\pm\ 100$
T_3	$2512 \pm 91 \pm 42$
2011	$95900 \pm 420 \pm 1100$

Validated by computing the ratio:

$$\rho_{\pi/K} = \frac{\mathcal{B}(B^+ \to J/\psi \pi^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = 0.035 \pm 0.003 \pm 0.012$$

c.f. PDG average of 0.040±0.004.

 Several trigger lines are used for this analysis; these are accounted for via:

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = N_{d(s)} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \times \frac{f_u}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

- where $\mathcal{D}_{\mathrm{norm}} = \sum_{k} N_{J/\psi K^{+}}^{k} \alpha_{k} \left(\frac{\varepsilon_{\mu^{+}\mu^{-}}}{\varepsilon_{J/\psi K^{\pm}}} \right)_{k}$. $f_{s}/f_{d} = 0.240 \pm 0.020 \,\, \mathrm{and} \,\, f_{u}/f_{d} = 1$ ε_{i} are efficiencies for signal/normalisation α_{k} are trigger/luminosity weight factors
- lacksquare and the N_i are yields obtained from the fits.

 Several trigger lines are used for this analysis; these are accounted for via:

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = N_{d(s)} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \times \frac{f_u}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

where
$$\mathcal{D}_{\rm norm} = \sum_k N_{J/\psi K^+}^k \alpha_k \left(\frac{\varepsilon_{\mu^+\mu^-}}{\varepsilon_{J/\psi K^\pm}}\right)_k$$
.
$$f_s/f_d = 0.240 \pm 0.020 \text{ and } f_u/f_d = 1$$

 $arepsilon_i$ are efficiencies for signal/normalisation

 α_k are trigger/luminosity weight factors

• and the N_i are yields obtained from the fits.

 Several trigger lines are used for this analysis; these are accounted for via:

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = N_{d(s)} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \times \frac{f_u}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

- where $\mathcal{D}_{\text{norm}} = \sum_{k} N_{J/\psi K}^{k} \left[\alpha_{k} \left(\frac{\varepsilon_{\mu^{+}\mu^{-}}}{\varepsilon_{J/\psi K^{\pm}}} \right)_{k} \right].$ $f_{s}/f_{d} = 0.240 \pm 0.020 \text{ and } f_{u}/f_{d} = 1$ ε_{i} are efficiencies for signal/normalisation α_{k} are trigger/luminosity weight factors
- and the N_i are yields obtained from the fits.

 Several trigger lines are used for this analysis; these are accounted for via:

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = N_{d(s)} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \times \boxed{\frac{f_u}{f_{d(s)}}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

where
$$\mathcal{D}_{\text{norm}} = \sum_{k} N_{J/\psi K^+}^k \alpha_k \left(\frac{\varepsilon_{\mu^+\mu^-}}{\varepsilon_{J/\psi K^\pm}}\right)_k$$
.
$$f_s/f_d = 0.240 \pm 0.020 \text{ and } f_u/f_d = 1$$

 $arepsilon_i$ are efficiencies for signal/normalisation

 α_k are trigger/luminosity weight factors

• and the N_i are yields obtained from the fits.

Recall that the ATLAS f_s/f_d analysis matches the fiducial selection for this search.

 Several trigger lines are used for this analysis; these are accounted for via:

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = N_{d(s)} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \times \frac{f_u}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}}$$

- where $\mathcal{D}_{\text{norm}} = \sum_{k} N_{J/\psi K^+}^k \alpha_k \left(\frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^\pm}} \right)_k$. $f_s/f_d = 0.240 \pm 0.020$ and $f_u/f_d = 1$ ε_i are efficiencies for signal/normalisation α_k are trigger/luminosity weight factors
- and the N_i are yields obtained from the fits.

$$\mathcal{B}(B_d \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$$
 $\mathcal{B}(B_s \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$
(@ 95% C.L.)
 $\mathcal{B}(B_s \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$

Systematic Errors

- Statistically limited measurement.
- Main systematic contribution from continuum BDT.

$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	$\mathcal{B}(B^0 \to \mu^+ \mu^-)$		
Scale uncertainties			
3.1%	3.1%		
8.3%	0		
5.9%	5.9%		
9%	9%		
6%	0		
16%	11%		
Offset uncertainties			
0.2×10^{-9}	0.7×10^{-10}		
	3.1% 8.3% 5.9% 9% 6% 16%		

Result

ATLAS is consistent with the SM, LHCb and CMS.

Room for NP destructively interfering with the SM.

Summary

- Presented results for the ATLAS search for $B_{s,d} \to \mu^+ \mu^-$ using Run 1 data from the LHC.
- We obtain:

$$\mathcal{B}(B_d \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$$
 $\mathcal{B}(B_s \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$
(@ 95% C.L.)
$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$$

- Compatible with (lower than) the SM (p-value of 0.048).
- Compatible with (lower than) the other LHC experiments.

See the following paper for more details: CERN-EP-2016-064, Eur. Phys. J. C76 (2016) no.9, 513.

27

BACKUP

CKM 2016 TIFR

Fake μ BDT

- Critical aspect of the analysis:
 - Get this wrong and you could fake a signal/destroy your sensitivity to NP.
 - 1. Absolute value of the track rapidity measured in the ID.
 - 2. Ratio q/p (charge over momentum) measured in the MS.
 - 3. Scattering curvature significance: maximum variation of the track curvature between adjacent layers of the ID.
 - 4. χ^2 of the track reconstruction in the MS.
 - 5. Number of hits used to reconstruct the track in the MS.
 - 6. Ratio of the values of q/p measured in the ID and in the MS, corrected for the average energy loss in the calorimeter.
 - 7. χ^2 of the match between the tracks reconstructed in the ID and MS.
 - 8. Energy deposited in the calorimeters along the muon trajectory obtained by combining ID and MS tracks.

Use the following control samples to validate the performance of the fake μ BDT:

$$B^{\pm} \to J/\psi K^{\pm}$$
$$\phi \to K^{+}K^{-}$$

- Fake rate @ 0.09% / 0.04% / < 0.01% for $K / \pi / p$.
- Punch through @ 3% (8%) level for $K(\pi)$.

Continuum BDT

Variables ranked by order of importance in the MVA

Variable	Description
p_T^B	Magnitude of the B candidate transverse momentum \overrightarrow{p}_T^B .
$\chi^2_{\text{PV,DV }xy}$	Significance of the separation $\overrightarrow{\Delta x}$ between production (PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_T \cdot \Sigma_{\overrightarrow{\Delta x}_T}^{-1} \cdot \overrightarrow{\Delta x}_T$, where $\Sigma_{\overrightarrow{\Delta x}_T}$ is the covariance matrix.
ΔR	3-dimensional opening between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + \Delta \eta^2}$
$ \alpha_{2D} $	Absolute value of the angle between \overrightarrow{p}_T^B and $\overrightarrow{\Delta x_T}$ (transverse projection).
L_{xy}	Projection of $\overrightarrow{\Delta x}_T$ along the direction of \overrightarrow{p}_T^B : $(\overrightarrow{\Delta x}_T \cdot \overrightarrow{p}_T^B)/ \overrightarrow{p}_T^B $.
IP_B^{3D}	3-dimensional impact parameter of the B candidate to the associated PV.
$\mathrm{DOCA}_{\mu\mu}$	Distance of closest approach (DOCA) of the two tracks forming the B candidate (3-dimensional).
$\Delta\phi_{\mu\mu}$	Difference in azimuthal angle between the momenta of the two tracks forming the B candidate.
$ d_0 ^{max}$ sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$ d_0 ^{min}$ sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
P_L^{min}	Value of the smaller projection of the momenta of the muon candidates along \overrightarrow{p}_T^B .
<i>I</i> _{0.7}	Isolation variable defined as ratio of $ \vec{p}_T^B $ to the sum of $ \vec{p}_T^B $ and of the transverse momenta of all additional tracks contained within a cone $\Delta R < 0.7$ from the <i>B</i> direction. Only tracks with $p_T > 0.5$ GeV and associated to the same PV as the <i>B</i> candidate are included in the sum.
$DOCA_{xtrk}$	DOCA of the closest additional track to the decay vertex of the B candidate. Tracks associated to a PV different from the B candidate are excluded.
N _{xtrk}	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk},DV}) < 1$. The tracks associated to a PV different from the <i>B</i> candidate are excluded.
$\chi^2_{\mu,xPV}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with a PV different from the one associated to the <i>B</i> candidate.

Validated using:

$$B^{\pm} \to J/\psi K^{\pm}$$

 $B_s \to J/\psi \phi$

control modes and sidebands.

Data/MC discrepancies do not significantly alter the BDT performance and are accounted for in the systematic error reported.

$$\frac{f_s}{f_d} = \frac{N_{B_s^0}}{N_{B_d^0}} \frac{\mathcal{B}(B_d^0 \to J/\psi K^{*0})}{\mathcal{B}(B_s^0 \to J/\psi \phi)} \frac{\mathcal{B}(K^{*0} \to K^+ \pi^-)}{\mathcal{B}(\phi \to K^+ K^-)} \mathcal{R}_{\text{eff}},$$

ATLAS Collaboration, PRL 115 (2015) 262001 (arXiv:1507.08925)

- ATLAS uses a complementary method to LHCb in order to measure $f_{\rm s}/f_{\rm d}$.
- Use $B_d \to J/\psi K^* \& B_s \to J/\psi \phi$.
- Results are in good agreement with each other.

$$f_s/f_d = 0.240 \pm 0.020$$

CL_s limits

$$\mathcal{B}(B_d \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$$

 $\mathcal{B}(B_s \to \mu^+ \mu^-) < 3.0 \times 10^{-9}$ (@ 95% C.L.)

ATLAS Experiment

Over 3000 Physicists from 177 institutes in 38 countries

Inner Detector (ID) consists of:

Pixel detectors
Semiconductor Tracker (SCT)
Transition radiation tracker (TRT)

Provides:

Precision tracking and vertexing

New for run 2:

Small radius pixel layer (IBL); expect improved d_0 , lifetime resolution etc.

Inner detector: (ID)

- Coverage: $|\eta| < 2.5$
- Solenoid B = 2T
- Si Pixels, microstrips, and TRT straw tracker system.

$$\frac{\sigma(p_T)}{p_T} \sim 3.8 \times 10^{-4} p_T (GeV) \oplus 0.015$$

Calorimeter consists of:

LAr barrel and end-caps
Tile calorimeter

Hadronic Calorimeter:

- Coverage: $|\eta| < 5$
- Fe/Scintillator tiles (central)
- Cu/W-LAr (forward)
- Trigger, Jet and MET measurement.

$$\frac{\sigma(E)}{E} \sim \frac{50\%}{\sqrt{E}} \oplus 0.03$$

LAr Calorimeter:

- Pb-LAr accordion structure
- e/ γ trigger, identification and measurement.

$$\frac{\sigma(E)}{E} \sim \frac{10\%}{\sqrt{E}}$$

Magnet systems consists of:

Solenoid (surrounds the ID; provides B = 2T)

Toroid (embedded in the muon system; provides <B $> \sim 0.5 T)$

Magnet systems consists of:

Solenoid (surrounds the ID; provides B = 2T)

Toroid (embedded in the muon system; provides <B $> \sim 0.5 T)$

Muon system consists of:

RPCs

Monitored Drift tubes
Thin gap chambers
Cathode strip chambers

Provides:

Muon identification Tracking information

Muon spectrometer: (MS)

- Coverage: $|\eta| < 2.7$
- Air core toroids (0.5T)
- Gas-based muon chambers
- Provides muon trigger
- $\sigma(p)/p \sim 10\%$

