Coherence of $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ and consequences for the determination of ϕ_3

Resmi P K1, Jim Libby1, Sneha Malde2, Guy Wilkinson2

1. Indian Institute of Technology Madras
2. University of Oxford

CKM 2016

December 1, 2016

Acknowledgement: CLEO-c colleagues.
Outline

- Introduction
- CLEO-c and quantum correlation
- Calculation of CP content F_+
- Extraction of c_i and s_i
- CPV sensitivity
- Summary
Introduction
Current best results for CKM angles

- $\phi_1 = 21.5^{+0.8}_{-0.7}$ deg.
- $\phi_2 = 85.4^{+4.0}_{-3.8}$ deg.
- $\phi_3 = 73.2^{+6.3}_{-7.0}$ deg.

Recent results from LHCb

- $\phi_3 = 72.2^{+6.8}_{-7.3}$ deg. [2]

2. [arXiv:1611.03076v1 [hep-ex]]
- Determine ϕ_3 via interference between $B^- \to D^0 K^-$ and $B^- \to \bar{D}^0 K^-$.

The above two amplitudes are related by

$$\frac{A(B^- \to \bar{D}^0 K^-)}{A(B^- \to D^0 K^-)} = r_B e^{i(\delta_B - \phi_3)}$$

$$r_B = \left| \frac{A(B^- \to \bar{D}^0 K^-)}{A(B^- \to D^0 K^-)} \right|, \delta_B = \delta(B^- \to \bar{D}^0 K^-) - \delta(B^- \to D^0 K^-).$$

No loop contribution ⇒ clean way to measure ϕ_3.
\(\phi_3 \) measurements - different methods

- **Gronau - London - Wyler (GLW) method** [3]
 - Modes with known CP content \((F_+)\) [4] can be used along with CP eigenstates.

- **Giri - Grossman - Soffer - Zupan (GGSZ) method** [5]
 - Binned Dalitz plot analysis of multibody \(D \) final states like \(K_S^0 \pi^+ \pi^- \), \(K_S^0 K^+ K^- \), \(K_S^0 \pi^+ \pi^- \pi^0 \).
 - For the decay \(B^- \rightarrow D(K_S^0 h^+ h^-) K^- \)
 \[
 \Gamma_i^- = K_i + r_B^2 \bar{K}_i + 2\sqrt{K_i \bar{K}_i} (c_i x_- + s_i y_-),
 \]
 and for \(B^+ \rightarrow D(K_S^0 h^+ h^-) K^+ \),
 \[
 \Gamma_i^+ = \bar{K}_i + r_B^2 K_i + 2\sqrt{K_i \bar{K}_i} (c_i x_+ - s_i y_+).
 \]
 - \(x_\pm = r_B \cos(\delta_B \pm \phi_3) \); \(y_\pm = r_B \sin(\delta_B \pm \phi_3) \).
 - \(c_i, s_i \) - cos and sin of the strong phase difference between \(D^0 \) and \(\bar{D}^0 \) averaged over the region of phase space.

Figure: A typical Dalitz plot binning for a three body \(D \) decay.

Motivation

- Information on the D decay is required to determine x, y.
- Quantum correlated $D\bar{D}$ mesons produced in e^+e^- collisions at an energy corresponding to $\Psi(3770)$ at CLEO-c can be used.
- A D decay mode not yet used is $K_S^0\pi^+\pi^-\pi^0$.
- The decay $D^0 \rightarrow K_S^0\pi^+\pi^-\pi^0$ has a relatively large branching fraction of 5.2% which is almost twice that of $K_S^0\pi^+\pi^-$ [6].
- Interesting resonance substructure.
 - $K_S^0\omega$ - CP eigenstate - GLW like.
 - $K^-\pi^+\pi^0$ - Cabibbo-favored state (CF) - ADS like.
- As powerful as $K_S^0\pi^+\pi^-$ in the determination of ϕ_3?

CLEO-c and quantum correlation
Quantum correlated \(D \) mesons at CLEO-c

- \(\Psi \rightarrow D\bar{D} \) are produced coherently in the \(C = -1 \) state.

\[
\frac{\left(|D\rangle |\bar{D}\rangle - |\bar{D}\rangle |D\rangle \right)}{\sqrt{2}}
\]

- If \(\Psi(3770) \) decays into two states \(F \) and \(G \), then decay rate (\(\Gamma \)) depends on their CP eigenvalue.

- \(F = \text{CP even (odd)} \), \(G = \text{CP odd (even)} \) \(\Rightarrow \) two-fold enhancement.
- \(F = \text{CP even (odd)} \), \(G = \text{CP even (odd)} \) \(\Rightarrow \) zero.
- \(\Gamma \) changes with \(F \) or \(G \) being quasi CP states \((\pi^+ \pi^- \pi^0) \) or self conjugate states \((K^0_S \pi^+ \pi^-) \).

Figure: CLEO-c detector.
A total of 818 pb\(^{-1}\) data collected at the CLEO-c - \(D\bar{D}\) pairs from the \(\Psi(3770)\).

One of the \(D\) mesons reconstructed to \(K_S^0\pi^+\pi^-\pi^0\) (signal) and the other one to any other channel (tag).

Fully reconstructed modes -
\(M_{bc}\) and \(\Delta E\).

Partially reconstructed modes - missing mass technique.

<table>
<thead>
<tr>
<th>Type</th>
<th>mode</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP even tags</td>
<td>(K^+K^-)</td>
<td>200.7 ± 14.2</td>
</tr>
<tr>
<td></td>
<td>(\pi^+\pi^-)</td>
<td>91.45 ± 9.59</td>
</tr>
<tr>
<td></td>
<td>(K_S^0\pi^0\pi^0)</td>
<td>106.3 ± 10.9</td>
</tr>
<tr>
<td></td>
<td>(K_L^0\pi^0)</td>
<td>357.3 ± 20.2</td>
</tr>
<tr>
<td></td>
<td>(K_L^0\omega)</td>
<td>162.1 ± 13.7</td>
</tr>
<tr>
<td>CP odd tags</td>
<td>(K_S^0\pi^0)</td>
<td>93.97 ± 9.84</td>
</tr>
<tr>
<td></td>
<td>(K_S^0\eta)</td>
<td>11.64 ± 3.68</td>
</tr>
<tr>
<td></td>
<td>(K_S^0\eta')</td>
<td>7 ± 3</td>
</tr>
<tr>
<td>Quasi CP tags</td>
<td>(\pi^+\pi^-\pi^0)</td>
<td>428.8 ± 21.7</td>
</tr>
<tr>
<td>Self conjugate tags</td>
<td>(K_S^0\pi^+\pi^-)</td>
<td>504.8 ± 23.3</td>
</tr>
<tr>
<td></td>
<td>(K_L^0\pi^+\pi^-)</td>
<td>864.1 ± 46.1</td>
</tr>
<tr>
<td></td>
<td>(K_S^0\pi^+\pi^-\pi^0)</td>
<td>176.4 ± 14.8</td>
</tr>
<tr>
<td>Flavour tag</td>
<td>(K^{\pm}\ell^+\nu)</td>
<td>1010 ± 32</td>
</tr>
</tbody>
</table>

Figure: \(M^2_{\text{miss}}\) plot for \(K_L^0\pi^0\) tag for the data sample.
Calculation of F_+
The double tagged yield for the signal and tag

\[M(S|T) = 2N_{D \bar{D}} \times BF(S) \times BF(T) \times \epsilon(S|T) \times [1 - \lambda_{CP}(2F_+ - 1)]. \]

The single tag yield

\[S(T) = 2N_{D \bar{D}} \times BF(T) \times \epsilon(T). \]

If we assume \(\epsilon(S|T) = \epsilon(S)\epsilon(T) \), then we get \(N^+ \) for CP odd tag and \(N^- \) for CP even tag as follows:

\[N^\pm = \frac{M(S|T)}{S(T)} = BF(S) \times \epsilon(S) \times [1 - \lambda_{CP}(2F_+ - 1)]. \]

From these, we can calculate \(F_+ \) as

\[F_+ = \frac{N^+}{N^+ + N^-}; \quad F_+ = 1 \Rightarrow \text{CP even, } F_+ = 0 \Rightarrow \text{CP odd.} \]
Calculation of $F_+ - \text{CP tags}$

- The CP odd and CP even tags are used to evaluate N^+ and N^- respectively.

![Graph showing N^+ values for the CP odd tags. The yellow region shows the average value.](image)

Figure: N^+ values for the CP odd tags. The yellow region shows the average value.

![Graph showing N^- values for the CP even tags. The yellow region shows the average value.](image)

Figure: N^- values for the CP even tags. The yellow region shows the average value.

Note: The x-axis scale for N^+ is much smaller than that of N^-.

- The value of F_+ is obtained to be 0.240 ± 0.021, i.e. $K_S^{0} \pi^+ \pi^- \pi^0$ is significantly CP odd.
Calculation of $F_+ - \pi^+\pi^-\pi^0$ tag

- F_+ for $\pi^+\pi^-\pi^0 = 0.973 \pm 0.017$ [7].

- Define $N^{\pi^+\pi^-\pi^0}$ as the ratio of double tagged events and $\pi^+\pi^-\pi^0$ single tag events

\[
N^{\pi^+\pi^-\pi^0} = \frac{M(K_S^0 K^{+}\pi^+\pi^-\pi^0 | \pi^+\pi^-\pi^0)}{S(\pi^+\pi^-\pi^0)}.
\]

- Then with N^+ from CP tags, we can get

\[
F_{K_S^0 K^{+}\pi^+\pi^-\pi^0} = \frac{N^+ F_+^{\pi^+\pi^-\pi^0}}{N^{\pi^+\pi^-\pi^0} - N^+ + 2N^+ F_+^{\pi^+\pi^-\pi^0}}.
\]

- With CP and $\pi^+\pi^-\pi^0$ tags, F_+ is 0.244 ± 0.021.

Calculation of $F_+ - K^0_S \pi^+\pi^-$ and $K^0_L \pi^+\pi^-$ tags

- The $K^0_S \pi^+\pi^-$ and $K^0_L \pi^+\pi^-$ Dalitz plots are binned according to Equal δ_D BABAR 2008 scheme [8].

Figure: $D^0 \rightarrow K^0_S \pi^+\pi^-$ Dalitz plot.

$$Y_{i}^{K^0_S \pi^+\pi^-} = h_{K^0_S \pi^+\pi^-} (K_i^{K^0_S \pi^+\pi^-} + K_{-i}^{K^0_S \pi^+\pi^-} - 2c_i \sqrt{K_i^{K^0_S \pi^+\pi^-} K_{-i}^{K^0_S \pi^+\pi^-}} (2F_+^{K^0_S \pi^+\pi^- \pi^0} - 1)).$$

$$Y_{i}^{K^0_L \pi^+\pi^-} = h_{K^0_L \pi^+\pi^-} (K_i^{K^0_L \pi^+\pi^-} + K_{-i}^{K^0_L \pi^+\pi^-} + 2c_i \sqrt{K_i^{K^0_L \pi^+\pi^-} K_{-i}^{K^0_L \pi^+\pi^-}} (2F_+^{K^0_S \pi^+\pi^- \pi^0} - 1)).$$

B. Aubert et al. (BaBar collaboration), Phys. Rev. D 78, 034023 (2008).
Calculation of $F_+ - K^0_S\pi^+\pi^-$ and $K^0_L\pi^+\pi^-$ tags

- Fit with 64 observables; $\frac{\chi^2}{\text{DoF}} = 1.3$.

Figure : The predicted and measured yields for $K^0_S\pi^+\pi^-$ (left) and $K^0_L\pi^+\pi^-$ (right).

- F_+ is found to be 0.265 ± 0.029.
- With all the three methods, the average F_+ is 0.246 ± 0.018.
Extraction of c_i and s_i
Binning $K_S^0 \pi^+ \pi^- \pi^0$ phase space

- $N_{\text{bins}} > 4 \Rightarrow \phi_3$ extraction in $B^\pm \rightarrow DK^\pm$ data in GGSZ framework - requires c_i, s_i, K_i and \bar{K}_i.

- Dividing the 5-D phase space of $K_S^0 \pi^+ \pi^- \pi^0$ - not as trivial as the 2-D phase space of $K_S^0 \pi^+ \pi^- \Rightarrow i$ and $-i$ symmetry non-trivial.

- Amplitude model not available \Rightarrow a proper optimisation difficult.

- Split the phase-space into a series of bins around the resonances and work out partial rates in each.

- Exclusive binning.

Figure: Invariant mass distribution for $\pi^+ \pi^- \pi^0$ (left) and 2-D distribution between the invariant masses of $K_S^0 \pi^-$ and $\pi^+ \pi^0$ (right).
Extraction of c_i and s_i

- For a CP tag, the double tagged yield is given by

\[M_i^{\pm} = h_{CP} \left[K_i + \bar{K}_i \pm 2 \sqrt{K_i \bar{K}_i c_i} \right]. \]

For $\pi^+ \pi^- \pi^0$ tag, the c_i sensitive term is scaled by $(2F_+ - 1)$ rather than 1.

- For $K^0_S \pi^+ \pi^- \pi^0$ double tagged events, the yield is given by

\[M_{ij} = h_{corr} \left[K_i \bar{K}_j + \bar{K}_i K_j - 2 \sqrt{K_i \bar{K}_j \bar{K}_i K_j (c_i c_j + s_i s_j)} \right]. \]

- For $K^0_S \pi^+ \pi^-$ tag

\[M_{i \pm j}^{K_S \pi\pi} = h_{K_S \pi\pi} \left[K_i K_{\mp j}^{K_S \pi\pi} + \bar{K}_i K_{\pm j}^{K_S \pi\pi} - 2 \sqrt{K_i K_{\mp j}^{K_S \pi\pi} \bar{K}_i K_{\pm j}^{K_S \pi\pi} (c_i c_j + s_i s_j)} \right]. \]

- Similarly for $K^0_L \pi^+ \pi^-$ tag,

\[M_{i \pm j}^{K_L \pi\pi} = h_{K_L \pi\pi} \left[K_i K_{\mp j}^{K_L \pi\pi} + \bar{K}_i K_{\pm j}^{K_L \pi\pi} + 2 \sqrt{K_i K_{\mp j}^{K_L \pi\pi} \bar{K}_i K_{\pm j}^{K_L \pi\pi} (c_i c_j + s_i s_j)} \right]. \]
Extraction of c_i and s_i

<table>
<thead>
<tr>
<th>Bin number</th>
<th>Specification</th>
<th>K_i</th>
<th>\bar{K}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$m(\pi^+\pi^-\pi^0) \approx m(\omega)$</td>
<td>0.222 ± 0.019</td>
<td>0.176 ± 0.017</td>
</tr>
<tr>
<td>2</td>
<td>$m(K^0_S\pi^-) \approx m(K^{*-})$ & $m(\pi^+\pi^0) \approx m(\rho^+)$</td>
<td>0.394 ± 0.022</td>
<td>0.190 ± 0.017</td>
</tr>
<tr>
<td>3</td>
<td>$m(K^0_S\pi^+)$ & $m(\pi^-\pi^0) \approx m(\rho^-)$</td>
<td>0.087 ± 0.013</td>
<td>0.316 ± 0.021</td>
</tr>
<tr>
<td>4</td>
<td>$m(K^0_S\pi^-) \approx m(K^{*-})$</td>
<td>0.076 ± 0.012</td>
<td>0.046 ± 0.009</td>
</tr>
<tr>
<td>5</td>
<td>$m(K^0_S\pi^+)$ & $m(K^{*-})$</td>
<td>0.057 ± 0.010</td>
<td>0.065 ± 0.011</td>
</tr>
<tr>
<td>6</td>
<td>$m(K^0_S\pi^0)$ & $m(K^{*-})$</td>
<td>0.059 ± 0.011</td>
<td>0.092 ± 0.013</td>
</tr>
<tr>
<td>7</td>
<td>$m(\pi^+\pi^0) \approx m(\rho^+)$</td>
<td>0.045 ± 0.009</td>
<td>0.045 ± 0.009</td>
</tr>
<tr>
<td>8</td>
<td>Remainder</td>
<td>0.061 ± 0.011</td>
<td>0.070 ± 0.011</td>
</tr>
</tbody>
</table>

- The semileptonic tag $K^\pm e^\mp \nu$ is used to calculate K_i and \bar{K}_i, the fraction of decays in each bin.
- The double tagged yields are given to the fitter along with the c_i, s_i, K_i and \bar{K}_i values for $K^0_S\pi^+\pi^-$ and $K^0_L\pi^+\pi^-$ [9] as input.
- Corrected for bin-to-bin migration.

9 J. Libby et al. (CLEO collaboration), Phys. Rev. D 82, 112006 (2010).
c_i and s_i results - preliminary

- The combined fit: 472 observables including different tag yields in each bin; $\frac{\chi^2}{\text{DoF}} = 1.04$.

<table>
<thead>
<tr>
<th>Bin</th>
<th>c_i</th>
<th>s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.12 ± 0.12</td>
<td>0.12 ± 0.17</td>
</tr>
<tr>
<td>2</td>
<td>-0.29 ± 0.07</td>
<td>0.11 ± 0.13</td>
</tr>
<tr>
<td>3</td>
<td>-0.41 ± 0.09</td>
<td>-0.08 ± 0.18</td>
</tr>
<tr>
<td>4</td>
<td>-0.84 ± 0.12</td>
<td>-0.73 ± 0.34</td>
</tr>
<tr>
<td>5</td>
<td>-0.54 ± 0.13</td>
<td>0.65 ± 0.13</td>
</tr>
<tr>
<td>6</td>
<td>-0.22 ± 0.12</td>
<td>1.37 ± 0.22</td>
</tr>
<tr>
<td>7</td>
<td>-0.90 ± 0.16</td>
<td>-0.12 ± 0.40</td>
</tr>
<tr>
<td>8</td>
<td>-0.70 ± 0.14</td>
<td>-0.03 ± 0.44</td>
</tr>
</tbody>
</table>

The uncertainties shown are statistical only.

- $c_i < 0 \Rightarrow \textbf{CP oddness}$ of $K_S^0 \pi^+ \pi^- \pi^0$.
CPV sensitivity and summary
Estimates of ϕ_3 sensitivity with $B^{\pm} \rightarrow D(K_S^0\pi^+\pi^-\pi^0)K^{\pm}$

- Assumed increase in BF compensated by loss of efficiency due to π^0 in final state.
- With 1200 events (Belle sample of $B^{\pm} \rightarrow D(K_S^0\pi^+\pi^-)K^{\pm}$)
 $\sigma_{\phi_3} = 25^\circ - 1000$ pseudo experiments using c_i, s_i, K_i and \bar{K}_i measurements reported.
- Project to a 50 ab^{-1} sample $\sigma_{\phi_3} = 3.5^\circ$.
- Compare to $B^{\pm} \rightarrow D(K_S^0\pi^+\pi^-)K^{\pm}$ $\sigma_{\phi_3} \sim 2^\circ$.

Improvements:
- Optimized binning once a $D^0 \rightarrow K_S^0\pi^+\pi^-\pi^0$ amplitude model developed.
- Finer binning possible with 10 fb^{-1} of BESIII data.
- Caveat: background to be studied.

Figure: ϕ_3 sensitivity with 50 ab^{-1} Belle II sample.
Calculated the CP content F_+ for the decay $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ from CLEO-c data to be 0.246 ± 0.018.

Addition of this mode to quasi-GLW methods to determine ϕ_3.

Extracted the strong phase differences by introducing an eight bin scheme for the $K_S^0 \pi^+ \pi^- \pi^0$ phase space.

Addition to GGSZ formalism to determine ϕ_3.

Sensitivity to ϕ_3 from a 50 ab$^{-1}$ sample, $\sigma_{\phi_3} = 3.5^\circ$.