CP asymmetries in D decays to two pseudoscalars

Ulrich Nierste
Karlsruhe Institute of Technology
Institute for Theoretical Particle Physics

9th International Workshop on the CKM Unitarity Triangle (CKM2016)
Mumbai, 28 November 2016
D decays to two pseudoscalars

I discuss hadronic two-body weak decays of D^+, D^0, D^+_s mesons.

$D^+ \sim c\bar{d}, \quad D^0 \sim c\bar{u}, \quad D^+_s \sim c\bar{s},$

Examples: $D^+ \rightarrow \bar{K}^0\pi^+, \quad D^0 \rightarrow \pi^+\pi^-, \quad D^+ \rightarrow K^0\pi^+.$

Decays are classified in terms of powers of the Wolfenstein parameter

$$\lambda \simeq |V_{us}| \simeq |V_{cd}| \simeq 0.22.$$

Amplitude $A \propto \left\{ \begin{array}{ll}
\lambda^0 & \text{Cabibbo-favoured} \\
\lambda^1 & \text{singly Cabibbo-suppressed} \\
\lambda^2 & \text{doubly Cabibbo-suppressed}
\end{array} \right.$$

Ulrich Nierste (TTP)
In the SCS amplitudes three CKM structures appear:

\[\lambda_d = V_{cd}^* V_{ud}, \quad \lambda_s = V_{cs}^* V_{us}, \quad \lambda_b = V_{cb}^* V_{ub} \]

and CKM unitarity \(\lambda_d + \lambda_s + \lambda_b = 0 \) is invoked to eliminate one of these.

Commonly used

\[A^{SCS} \equiv \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_b \]

with

\[\lambda_{sd} = \frac{\lambda_s - \lambda_d}{2} \quad \text{and} \quad -\frac{\lambda_b}{2} = \frac{\lambda_s + \lambda_d}{2} \]
In the SCS amplitudes three CKM structures appear:
\[\lambda_d = V_{cd}^* V_{ud}, \quad \lambda_s = V_{cs}^* V_{us}, \quad \lambda_b = V_{cb}^* V_{ub} \]
and CKM unitarity \(\lambda_d + \lambda_s + \lambda_b = 0 \) is invoked to eliminate one of these.

Commonly used
\[A^{SCS} \equiv \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_b \]
with
\[\lambda_{sd} = \frac{\lambda_s - \lambda_d}{2} \quad \text{and} \quad -\frac{\lambda_b}{2} = \frac{\lambda_s + \lambda_d}{2} \]

In view of \(|\lambda_b|/|\lambda_{sd}| \sim 10^{-3} \) only \(A_{sd} \) is relevant for branching ratios.

Penguin loop contributions to \(A_{sd} \) are GIM-suppressed (naively: \(\propto (m_s^2 - m_d^2)/m_c^2 \)).
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but

. . . are useful to test the calculational framework and
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but

. . . are useful to test the calculational framework and

. . . experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but

. . . are useful to test the calculational framework and

. . . experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but

. . . are useful to test the calculational framework and

. . . experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

. . . are proportional to $\text{Im} \frac{\lambda_b}{\lambda_{sd}} = -6 \cdot 10^{-4}$ in the Standard Model
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but

. . . are useful to test the calculational framework and

. . . experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

. . . are proportional to $\text{Im} \frac{\lambda_b}{\lambda_{sd}} = -6 \cdot 10^{-4}$ in the Standard Model

. . . and probe new physics in flavour transitions of up-type quarks,
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but

. . . are useful to test the calculational framework and

. . . experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

. . . are proportional to $\text{Im} \frac{\lambda_b}{\lambda_{sd}} = -6 \cdot 10^{-4}$ in the Standard Model

. . . and probe new physics in flavour transitions of up-type quarks,

. . . are very difficult to predict in the Standard Model,
Branching ratios of hadronic charm decays . . .

. . . are “dull” tree-level quantities dominated by a single CKM amplitude

. . . and are therefore insensitive to new physics, but

. . . are useful to test the calculational framework and

. . . experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

. . . are proportional to $\text{Im} \frac{\lambda_b}{\lambda_{sd}} = -6 \cdot 10^{-4}$ in the Standard Model

. . . and probe new physics in flavour transitions of up-type quarks,

. . . are very difficult to predict in the Standard Model,

. . . are not discovered yet!
Goal: Get the most out of the measurements of the branching fractions of
\(D^0 \to K^+K^- \), \(D^0 \to \pi^+\pi^- \), \(D^0 \to K_SK_S \), \(D^0 \to \pi^0\pi^0 \), \(D^+ \to \pi^0\pi^+ \),
\(D^+ \to K_SK^+ \), \(D_S^+ \to K_S\pi^+ \), \(D_S^+ \to K^+\pi^0 \), \(D^0 \to K^-\pi^+ \), \(D^0 \to K_S\pi^0 \),
\(D^0 \to K_L\pi^0 \), \(D^+ \to K_S\pi^+ \), \(D^+ \to K_L\pi^+ \), \(D_S^+ \to K_SK^+ \), \(D^0 \to K^+\pi^- \),
\(D^+ \to K^+\pi^0 \),
and the \(K^+\pi^- \) strong phase difference \(\delta_{K\pi} = 6.45^\circ \pm 10.65^\circ \) to predict branching fractions and CP asymmetries in these decays.

S. Müller, UN, St. Schacht, Phys.Rev.D92(2015) 014004
UN, St. Schacht, Phys.Rev.D92(2015) 054036
Use the approximate SU(3)$_F$ symmetry of QCD: Owing to $m_{u,d,s} \ll \Lambda_{\text{QCD}}$ hadronic amplitudes are approximately invariant under unitary rotations of

\[
\begin{pmatrix}
 u \\
 d \\
 s
\end{pmatrix}
\]

⇒ One can correlate various $D \to K\pi$ decays.

Example: In the limit of exact SU(3)$_F$ symmetry find

\[
\mathcal{B}(D^0 \to \pi^+\pi^-) = \mathcal{B}(D^0 \to K^+K^-).
\]

Data show $\mathcal{O}(30\%)$ SU(3)$_F$ breaking in the decay amplitudes. It is possible to include SU(3)$_F$ breaking to first order (linear breaking) in the decomposition of the decay amplitudes in terms of SU(3)$_F$ representations.
Topological amplitudes

$SU(3)_F$ limit:

- **Tree (T)**
- **Color-suppressed tree (C)**
- **Exchange (E)**
- **Annihilation (A)**
SU(3)_F breaking

Feynman rule from $H_{\text{SU}(3)_F} = (m_s - m_d)\bar{s}s$: dot on s-quark line. Find 14 new topological amplitudes such as

Important:

penguin (P_{break})
Direct CP asymmetries in singly Cabibbo-suppressed decays:

With $\mathcal{A}_{SCS} = \mathcal{A}$ write

$$\mathcal{A} = \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_b,$$

CP-conjugate decay:

$$\overline{\mathcal{A}} = -\lambda_{sd}^* A_{sd} + \frac{\lambda_b^*}{2} A_b.$$

Find

$$a_{CP}^{\text{dir}} = \frac{|\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2} = \frac{\text{Im} \lambda_b}{|\mathcal{A}|} \text{Im} \frac{A_b}{A_{sd}} |A_{sd}|.$$

Recall: $|\mathcal{A}|$ is fixed from measured branching ratios.

\Rightarrow need A_b and the phase of A_{sd} to predict a_{CP}^{dir}.
The theory community has delivered a perfect service to the experimental colleagues:
Predict CP asymmetries in D decays

The theory community has delivered a perfect service to the experimental colleagues: Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both
The theory community has delivered a **perfect service** to the experimental colleagues: **Every measurement** hinting at some non-zero CP asymmetry was **successfully postdicted** offering interpretations both

- within the **Standard Model**
- and
- as evidence for **new physics**!
CP asymmetries

Generic problem: For **CP asymmetries** we need A_b which involves **new hadronic quantities** which do not appear in A_{sd} and are therefore not constrained by branching fractions.

E.g. new **SU(3)** representations or, in our analysis, new topological-amplitudes.

Prominent example:

![Diagram](image)

Penguins P_s and P_d appear in other combinations than $P_{\text{break}} = P_s - P_d$. We also need $P_s + P_d - 2P_b$.

Ulrich Nierste (TTP)
Correlate CP asymmetries

Strategy: Build combinations out of several CP asymmetries containing only those topological amplitudes which can be extracted from the global fit to the branching ratios.

→ sum rules among CP asymmetries.

Our finding: Two sum rules each correlating three direct CP asymmetries in

1. $D^0 \to K^+ K^-$, $D^0 \to \pi^+ \pi^-$, and $D^0 \to \pi^0 \pi^0$, and
2. $D^+ \to \bar{K}^0 K^+$, $D^+_s \to K^0 \pi^+$, and $D^+_s \to K^+ \pi^0$.

Theoretical accuracy of new-physics tests only limited by the assumed size of SU(3)$_F$ breaking; great progress compared to the $O(1000\%)$ spread of past predictions.

Red solid: 95% CL measurement
Red dashed: 68% CL measurement

Present data:
Light blue: 95% CL from global fit
Dark blue dashed: 68% CL from global fit

Future scenario:
assume $\sqrt{50}$ better branching ratios, but $a_{CP}^{\text{dir}}(D^0 \rightarrow K^+K^-)$ as today.

Light green: 95% CL from global fit
Dark green dashed: 68% CL from global fit
$D^0 \rightarrow K_SK_S$

\[\mathcal{A}(D^0 \rightarrow K_SK_S) = \lambda_{sd}A_{sd} - \frac{\lambda_b}{2}A_b. \]

Special feature I:

In the SU(3)$_F$ limit: $A_{sd} = 0$ while $A_b \neq 0$

\Rightarrow suppressed $\mathcal{B}(D^0 \rightarrow K_SK_S) = (1.7 \pm 0.4) \cdot 10^{-4}$

enhanced $a_{CP}^{dir} \propto \text{Im} \frac{A_b}{A_{sd}}$
Special feature II:

\[a_{CP}^{dir}(D^0 \rightarrow K_SK_S) \] receives contributions at tree level, from the (sizable!) exchange diagram:

- **exchange diagram**
- **penguin annihilation diagram**
Result: a_{CP}^{dir} can be large. We find:

$$|a_{CP}^{\text{dir}}(D^0 \rightarrow K_SK_S)| \leq 1.1\% \quad @95\% \text{ C.L.}$$

The CP violation in K^-K^+ mixing is meant to be subtracted.

UN, St. Schacht, Phys.Rev.D92(2015) 054036

Experiment determines

$$A_{CP} = a_{CP}^{\text{dir}} - A_{\Gamma} \frac{\langle t \rangle}{\tau},$$

where $\langle t \rangle$ is the average decay time and τ is the D^0 lifetime.

$$A_{CP}^{\text{CLEO 2001}} = -0.23 \pm 0.19$$

$$A_{CP}^{\text{LHCb 2015}} = -0.029 \pm 0.052 \pm 0.022$$

$$A_{CP}^{\text{Belle 2016}} = -0.0002 \pm 0.0153 \pm 0.0017$$
CP asymmetries in D decays involve topological amplitudes not constrained by fits to branching ratio data. These can be eliminated by forming judicious combinations of several CP asymmetries.

\rightarrow sum rules

The sum rules test the quality of $SU(3)_F$ in penguin amplitudes and/or new physics.

Combine CP asymmetries in $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$, and $D^0 \rightarrow \pi^0\pi^0$ to probe new physics.

Within the Standard Model the direct CP asymmetry in the charm decay in $D^0 \rightarrow K_SK_S$ can be as large as 1.1%. $a^\text{dir}_{CP}(D^0 \rightarrow K_SK_S)$ is dominated by the exchange diagram, which involves no loop suppression. Could $D^0 \rightarrow K_SK_S$ be a discovery channel for charm CP violation?