"Masurements of $\Delta m_{d,s}$ and $\Delta \Gamma_d$ at LHCb"

Stefania Vecchi

on behalf of the LHCb collaboration

INFN Ferrara, Italy

CKM 2016 - Mumbai, November 28th-December 2nd 2016

Outline

- lacksquare Physics introduction on $B^0_{d/s}-ar{B}^0_{d/s}$ mixing: why measuring Δm_d , Δm_s and $\Delta \Gamma_d$
- How to measure $\Delta m_{d/s}$
 - lacktriangle LHCb most precise measurement of Δm_d
 - LHCb most precise measurement of Δm_s
- How to measure $\Delta\Gamma_d$
 - LHCb measurement of $\Delta\Gamma_d$ ($\Delta\Gamma_s$ covered by G.Cowan's Talk)
- Implications of the measurements to the Standard Model and to possible New Physics scenarios
- Conclusions

$B_{d/s}^0 - \bar{B}_{d/s}^0$ oscillations: Physics motivations

In the Standard Model $B_{d/s}^0 - \bar{B}_{d/s}^0$ mix through the box diagrams

The two mass eigenstates B_H and B_L have:

$$\Delta m_q \propto m_W^2 m_{B_q} \hat{\mathcal{B}}_{B_q} f_{B_q}^2 (V_{tq}^* V_{tb})^2 \qquad q = d, s$$

$$\Delta \Gamma_q \propto \\ m_b^2 m_{B_q} \hat{\mathcal{B}}_{B_q} f_{B_q}^2 \left((V_{tq}^* V_{tb})^2 + V_{tq}^* V_{tb} V_{cq}^* V_{cb} \mathcal{O}(m_c^2/m_b^2) + (V_{cq}^* V_{cb})^2 \mathcal{O}(m_c^4/m_b^4) \right)$$

Current WA: [HFAG Summer 2016]

$$\Delta m_d = 0.5065 \pm 0.0016 \pm 0.0011 \text{ ps}^{-1}$$

$$\Delta m_s = 17.757 \pm 0.020 \pm 0.007 \ ps^{-1}$$

$$\Delta \Gamma_d / \Gamma_d = (-0.2 \pm 1.0) \times 10^{-2}$$

constrain the apex $(\bar{
ho}, \bar{\eta})$ of the CKM unitarity triangle

 $lackbox{ }\hat{\mathcal{B}}_{B_q}f_{B_q}^2$ uncertainties limit the precision of V_{CKM}

Some of the theoretical uncertainties cancel in the ratio:

■
$$\xi = 1.268 \pm 0.063$$
 Lattice QCD, PDG2016→[FNAL&MILC: arXiv:1205.7013]
= 1.206 ± 0.019 new calculation [FNAL&MILC: arXiv:1602.03560]

$B_{d/s}^0 - \bar{B}_{d/s}^0$ oscillations: measurement of $\Delta m_{d/s}$

Best precision is achieved by measuring the time-dependent mixing asymmetry in flavour-specific decays:

The average statistical significance is:

$$S \sim \sqrt{N/2} f_{sig} \sqrt{\epsilon_{tag} (1 - 2\omega)^2} e^{-(\Delta m_q \sigma_t)^2/2}$$

Experimental key-factors fully addressed by LHCb:

- Signal yield and background suppression: $\sqrt{N/2} f_{sig}$
 - large $\sigma_{\bar{b}b}$
 - $\mathcal{L}^{int} = 3 \text{ fb}^{-1} \text{ in Run1 (2 fb}^{-1} \text{ in Run2, so far)}$
 - efficient trigger and reconstruction
 - tracking: impact parameter, momentum, mass resolutions
 - **p** particle identification: $(\mu/\pi/K/p)$
- Flavour tagging: $\sqrt{\epsilon_{tag}(1-2\omega)^2} = 3-6\%$
 - Opposite-side (OS e, µ, K, Vertex, Charm)
 - Same-side (SS: π , p and K)
- Decay time resolution: $e^{-(\Delta m_q \sigma_t)^2/2}$
 - excellent vertexing $\sigma_t \sim 45 55$ fs

 Δm_d was first measured at DESY by ARGUS [Phys.Lett. B192 (1987) 245-252] then at Cornell, LEP then at B-Factories.

Previous LHCb measurements used data samples of increasing size of different "flavour specific" hadronic and semileptonic B_d decays [LHCb: Phys. Lett. B709 (2012) 177, Phys. Lett. B719 (2013) 318, Eur. Phys. J. C73 (2013) 2655]

Latest LHCb measurement exploits the full Run1 data sample (3 fb⁻¹) \rightarrow most precise determination of Δm_d [LHCb: Eur. Phys. J. C76 (2016) 412]

- Uses semileptonic $\mathsf{B}^0_\mathsf{d} \to \mathsf{D}^{(*)-} \mu^+ \nu_\mu \mathsf{X}$ decays
 - large branching ratios ($\mathcal{B} \sim 2-5\%$)
- Event reconstruction & selection:
 - reconstruct D*^ \to $\bar{\rm D}^0(\to {\rm K}^+\pi^-)\pi^-$ and ${\rm D}^-\to {\rm K}^+\pi^-\pi^-$ decays
 - $D^{(*)} \mu^+$ from a common vertex (displaced from PV)
 - \blacksquare missing neutrino: cannot apply mass or kinematic cuts to the B_d , only to D^0, D^{*-} or ${\color{red}D^-}$
 - lacksquare vetoes on mis-ID J/ψ , Λ_c

Background:

- Combinatorial
- D⁰ from B decays
- $B^+ \to D^{(*)-} \mu^+ \pi^+ \nu_{\mu}$

$${\sf B}^+ o {\sf D}^{(*)-} \mu^+ \pi^+ \nu_\mu$$
 background:

- it is expected to be 10% and 13%, BUT its B is known with a precision of 10% [PDG2016]
- its fraction is correlated with the fit value of Δm_d
- → need to suppress it to reduce the systematic uncertainty

MVA classifier was developed to discriminate such background from the signal:

- inputs:
 - geometrical and kinematical info on the B candidate $(D^{(*)-}\mu^+)$
 - isolation info on additional tracks reconstructed in a cone around the B candidate direction
- training:
 - on MC samples of signal $B^0 \to D^{*-}\mu^+\nu_\mu$ and $B^+ \to D^{*-}\mu^+\pi^+\nu_\mu$
- output (BDT):
 - used both as selection cut (suppression of 70%) and to evaluate on data the remaining fraction (→3% and 6%)

Event reconstruction suffers from the missing neutrino:

B_d momenta & decay time are corrected by a k-factor determined on MC:

$$t = \frac{M_{B^0} \cdot L}{p_{D(^*)_{\mu}} \cdot c/k(m_B)} \quad \text{with } k(m_B) = \langle p_{D(^*)_{\mu}}/p_{B^0}^{\text{true}} \rangle$$

→ limited time resolution

Flavour Tagging:

- lacktriangle determine $q_{
 m mix}$ from the tagging decision&the charge of the μ $(q_{
 m mix}=\pm 1)$
- lacksquare Split in four categories of increasing mistag ω to gain sensitivity
- Tagging power: $\varepsilon \mathcal{D}^2 \sim 2.3\text{-}2.6\%$

Fit stratergy:

- fit the $m_{D^-}/m_{D^0}\&\delta m=m_{D^*-}-m_{D^0}$ distributions: disentangle ${\cal S}$ ignal+ ${\cal B}^+$ (sWeights) from other backgrounds (combinatorial + D^0 from B)
- perform an sFit to the weighted distribution of the decay time:

$$\begin{split} \mathcal{P}(t,q_{\mathrm{mix}}) &= (1-f_{B^+})\mathcal{S}(t,q_{\mathrm{mix}}) + f_{B^+}\mathcal{B}^+(t,q_{\mathrm{mix}}) \\ \mathcal{S}(t,q_{\mathrm{mix}}) &\propto a(t) \left[e^{-t/\tau} \left(1 + q_{\mathrm{mix}} (1-2\omega) \cos(\frac{\Delta m_d}{t} t) \otimes R(L) \otimes F(k) \right) \right] \end{split}$$

- lacksquare time acceptance a(t), f_{B^+} and ω extracted from fit to data
- \blacksquare convolution with resolution functions from MC R(L), F(k)

Assuptions: $\Delta\Gamma_d = 0$, |q/p| = 1

Results: [LHCb: Eur. Phys. J. C76 (2016) 412]

Mode	2011 sample Δm_d [ns ⁻¹]	2012 sample Δm_d [ns ⁻¹]	Total sample Δm_d [ns ⁻¹]
$ \begin{array}{c} B_d^0 \to D^- \mu^+ \nu_\mu X \\ B_d^0 \to D^{*-} \mu^+ \nu_\mu X \end{array} $	506.2 ± 5.1 497.5 ± 6.1	505.2 ± 3.1 508.3 ± 4.0	$505.5 \pm 2.7 \pm 1.1$ $504.4 \pm 3.4 \pm 1.0$
combination			505.0±2.1±1.0

Systematic uncertainties:

	$D^- \mu^+ u_{\mu} \ [m ns^{-1}]$		$D^{*-}\mu^{+}\nu_{\mu} [ns^{-1}]$	
Source of uncertainty	Uncorrelated	Correlated	Uncorrelated	Correlated
B ⁺ background	0.4	0.1	0.4	_
Other backgrounds	-	0.5	-	-
k-factor distribution	0.4	0.5	0.3	0.6
Other fit-related	0.5	0.4	0.3	0.5
Total	0.8	0.8	0.6	0.8

Most precise measurement, dominates the average.

 $\Delta m_{\rm S}$ was first measured by CDF in 2006: $\Delta m_{\rm S} = 17.77 \pm 0.10 \pm 0.07~{
m ps}^{-1}$ [CDF: Phys.Rev.Lett. 97 (2006) 242003]

Previous LHCb measurements used partial Run1 data samples of "flavour specific" $B_s^0 \to D_s^-(3)\pi^+$ decays [LHCb: Phys. Lett. B709 (2012) 177], and semileptonic B_s^0 decays [LHCb: Eur. Phys. J. C73 (2013) 2655]

The most precise LHCb measurement exploits 1 $\rm fb^{-1}$ of Run1 data sample [LHCb: New J. Phys. 15 (2013) 053021]

- \blacksquare Uses $B_s^0 \to D_s^- \pi^+$ decays \sim 34000 signal events
 - hadronic flavour specific decay with the largest \mathcal{B} (\sim 0.3%)
- Event selection: reconstruct D_s^- in 5 fully reconstructed decay modes: $\phi \pi$, K^*K , $(KK\pi)_{nonres}$, $K\pi\pi$ and 3π
 - MVA selection for an optimal discrimination of signal from background

Fit strategy:

 perform a simultaneous fit of the 5 data samples of all contributions

$$\mathcal{P}(\mathbf{m}, t, \sigma_t, \mathbf{q}, \eta) = \mathcal{P}_{\mathbf{m}}(\mathbf{m}) \mathcal{P}_{t, \mathbf{q}}(t, \mathbf{q} | \sigma_t, \eta) \mathcal{P}_{\sigma_t}(\sigma_t) \mathcal{P}_{\eta}(\eta)$$

$$\mathcal{P} = f_{\text{sig}} \mathcal{S} + \sum_i f_{\text{bk}\sigma}^i \mathcal{B}_i$$

$$\mathcal{P}_m(m)$$
 mainly discriminate signal from background contributions

- $\mathbb{P}_{t,q}(t,q|\sigma_t,\eta)$:
 - Use per-event decay time resolution model $\langle \sigma_t \rangle \sim$ 44 fs $(\mathcal{P}_{\sigma_*}(\sigma_t))$, calibrated on data using prompt $D_s \& \pi$
 - Use per-event OS and SSK combined tagging decision and mistag: $\varepsilon \mathcal{D}^2 = 3.5 \pm 0.5\%$ ($\mathcal{P}_{\eta}(\eta)$)

Result:
$$\Delta m_s = 17.768 \pm 0.023 \pm 0.006 \text{ ps}^{-1}$$

Most precise measurement to date.

Systematic uncertainties

Source	Uncertainty $[ps^{-1}]$
z-scale	0.004
Momentum scale	0.004
Decay time bias	0.001
Total	0.006

More recently LHCb determined Δm_s also in the analysis of $B_s^0 \to J/\psi K^+ K^-$ for ϕ_s and $\Delta \Gamma_s$ measurements: $\Delta m_s = 17.711^{+0.055}_{-0.057} \pm 0.011~\mathrm{ps}^{-1}$ [LHCb: Phys. Rev. Lett. 114 (2015) 041801] (see also G.Cowan's Talk)

$B_q^0 - \bar{B}_q^0$ oscillations: Measurement of $\Delta \Gamma_q$

The decay rates of B_L and B_H to a given final state f can be different, therefore:

$$\begin{split} &\Gamma(B_q^0(t) \to f) \propto e^{-\Gamma_q t} \left[\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma}^f \sinh(\Delta \Gamma_q t/2) + A_{CP}^{dir,f} \cos(\Delta m_q t) + A_{CP}^{mix} \sin(\Delta m_q t) \right] \\ &\Gamma(\bar{B}_q^0(t) \to f) \propto e^{-\Gamma_q t} \left[\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma}^f \sinh(\Delta \Gamma_q t/2) - A_{CP}^{dir,f} \cos(\Delta m_q t) - A_{CP}^{mix} \sin(\Delta m_q t) \right] \\ &\text{assuming } |q/p| = 1 \end{split}$$

The untagged rate: $\Gamma(B_q^0(t) \to f) \propto \mathrm{e}^{-\Gamma_q t} \left[\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma}^f \sinh(\Delta \Gamma_q t/2) \right]$ assuming production asymmetry $A_P = 0$

The effective lifetime $au_{B_q^0 o f}^{
m eff}$ depends on $y_q = 2\Delta \Gamma_q \cdot \Gamma_q$:

$$au_{\mathcal{B}_q^0 o f}^{ ext{eff}} = rac{1}{\Gamma_q} rac{1}{1 - y_q^2} \left[rac{1 + 2 A_{\Delta\Gamma}^f y_q + y_q^2}{1 + A_{\Delta\Gamma}^f y_q}
ight]$$

 $\Delta\Gamma_q$ can be measured by comparing $au_{B_q^0 o f}^{
m eff}$ in different decay channels (different $A_{\Delta\Gamma}^f$)

For example: [T.Gershon, J. Phys. G 38:015007, 2011]

- $lacksquare A_{\Delta\Gamma}^f = 0$ for flavour specific decays
- $A_{\Delta\Gamma}^f = \cos 2\beta$ for $B_d \to J/\psi K_S^0$

Strategy: measure effective lifetime $au_{\mathcal{B}_d^0}^{\mathrm{eff}}$ using

$$lacksquare$$
 $B^0_d o J/\psi K^{*0}$ (flavour specific)

■
$$B_d^0 \rightarrow J/\psi K_s^0$$
 (CP eigenstate)

Selection:

- Run1 data sample (1 fb⁻¹)
- minimize any decay time biasing selection cuts

Fit strategy:

fit the distributions of time and invariant mass:

$$\mathcal{P}(\textbf{m},t) = f_{\mathrm{sig}} \mathcal{S}(\textbf{m},t) + \sum_{i} f_{\mathrm{bkg}}^{i} \mathcal{B}_{i}(\textbf{m},t)$$

■ time resolution $\sigma_t \sim$ 45, 65 fs

Effective lifetime results:

$$au_{B_d^0 o J/\psi K_s^*}^{
m eff} = 1.524 \pm 0.006 \pm 0.004$$
 ps $au_{B_d^0 o J/\psi K_s^0}^{
m eff} = 1.499 \pm 0.013 \pm 0.005$ ps

$$\tau_{B_q^0 \to f}^{\mathrm{eff}} = \frac{1}{\Gamma_q} \frac{1}{1 - y_q^2} \left[\frac{1 + 2A_{\Delta\Gamma}^f y_q + y_q^2}{1 + A_{\Delta\Gamma}^f y_q} \right]$$

- $A_{\Delta\Gamma}^f = 0$ for flavour specific decays
- $A_{\Delta\Gamma}^f = \cos 2\beta \text{ for } B_d \to J/\psi K_S^0$

we measure:

$$\Gamma_d = 0.656 \pm 0.003 \pm 0.002 \text{ ps}^{-1}$$

 $\Delta \Gamma_d = -0.029 \pm 0.016 \pm 0.007 \text{ ps}^{-1}$

[LHCb: JHEP 04 (2014) 114]

Systematic uncertainties	$ au_{B_d^0 o J/\psi K^{*0}}^{ ext{eff}}$ [fs]	$ au_{B_d^0 o J/\psi K_s^0}^{ ext{eff}}$ [fs]	$\Delta\Gamma_d/\Gamma_d$ $\times 10^{-3}$
VELO reconstruction	2.3	0.9	4.1
Simulation sample size	2.3	2.9	6.3
Mass-time correlation	1.8	2.1	4.7
Trigger and selection eff.	1.2	2.0	4.0
Background modelling	0.2	2.2	3.8
Mass modelling	0.2	0.4	0.8
Peaking background	_	0.3	0.5
Effective lifetime bias	_	_	_
B_d production asym.	-	1.1	1.9
LHCb length scale	0.3	0.3	_
Total	3.9	4.9	10.7

 $\Delta\Gamma_d/\Gamma_d = (-4.4 \pm 2.5 \pm 1.1) \times 10^{-2}$

From the measurements to the SM-CKM picture

Measurement	Value	reference
$\Delta m_d [ps^{-1}]$	$0.5050\pm0.0021\pm0.0010$	[LHCb: Eur. Phys. J. C76 (2016) 412]
	0.5064 ± 0.0019	[HFAG Summer 2016]
Δm_s [ps ⁻¹]	17.768±0.023±0.000	[LHCb: New J. Phys. 15 (2013) 053021]
	17.757 ± 0.021	[HFAG Summer 2016]
$\Delta\Gamma_d/\Gamma_d$	$(-4.4\pm2.5\pm1.1)\times10^{-2}$	[LHCb: JHEP 04 (2014) 114]
	$(-0.1\pm1.1\pm0.9)\times10^{-2}$	[ATLAS:JHEP06 (2016) 081]
	$(-0.2\pm1.0)\times10^{-2}$	[HFAG Summer 2016]

Within SM, such measurements constrain

$$\frac{|V_{ts}|^2}{|V_{td}|^2} = 0.2159 \pm 0.0004 (\exp) \pm 0.0107 (lattice)$$
 [PDG2016]

With the latest, improved LatticeQCD calculations

$$\frac{|V_{ts}|^2}{|V_{td}|^2} = 0.2052 \pm 0.0032$$
 [FNAL&MILC: arXiv:1602.03560]:

a tension $(\mathcal{O}(2\sigma))$ arises when comparing $|V_{ts}|, |V_{td}|$ results from mixing measurement with results from tree-processes

From the measurements to possible hints of NP?

Current measurements are compatible with SM in 1.5σ

From the measurements to possible hints of NP?

Conclusions

- LHCb measurements of Δm_d and Δm_s have reached a precision of ‰, and dominate the current World Averages.
- Together with the measurement of $\Delta \Gamma_d$ and $\Delta \Gamma_s$, they provide useful constraints to the CKM parameters $|V_{ts}|$ and $|V_{td}|$ and important tests of the SM.
- The precision of $|V_{ts}|$ and $|V_{td}|$ is currently limited by theoretical uncertainties.
- Latest Lattice QCD calculations allowed a factor \sim 3 of improvement in $|V_{ts}|^2/|V_{td}|^2$ with respect to previous calculations that renewed the interest on $B_q^0 \bar{B}_q^0$ mixing parameters.

Looking forward for further improvements on theoretical computations and on experimental measurements (for prospects at LHCb see talk by V. Chobanova)

BACKUP

Flavour Tagging: identifying the initial B flavour

OS tagging: exploits the properties of the decays of the b-hadron opposite to the signal B [LHCb: Eur. Phys. J. C72 (2012) 2022]

 \blacksquare μ , e $(b \to cl^-\bar{\nu}_l)$, K $(b \to c \to s)$, Q_{vtx} (inclusive secondary vertex reconstruction)

SS tagging: exploits the hadronization process of the signal B, or in the decays of excited states B^{**}

- \blacksquare SS π , SSp [LHCb: LHCb-PAPER-2016-039, arXiv:1610.06019] (tag the B_d) (see also M.Calvi's Talk),
- SSK [LHCb: JINST 11 (2016) P05010] (tag the B_s)

tagging power: $\varepsilon(1-2\omega)^2\sim 3-6\%$ depending on the B decay channel