“Measurements of $\Delta m_{d,s}$ and $\Delta \Gamma_d$ at LHCb”

Stefania Vecchi

on behalf of the LHCb collaboration

INFN Ferrara, Italy

CKM 2016 - Mumbai, November 28th-December 2nd 2016
Physics introduction on $B_d^0 - \bar{B}_d^0$ mixing: why measuring Δm_d, Δm_s and $\Delta \Gamma_d$

How to measure $\Delta m_d/s$
- LHCb most precise measurement of Δm_d
- LHCb most precise measurement of Δm_s

How to measure $\Delta \Gamma_d$
- LHCb measurement of $\Delta \Gamma_d$ ($\Delta \Gamma_s$ covered by G.Cowan’s Talk)

Implications of the measurements to the Standard Model and to possible New Physics scenarios

Conclusions
In the Standard Model \(B^0_{d/s} - \bar{B}^0_{d/s} \) mix through the box diagrams.

The two mass eigenstates \(B_H \) and \(B_L \) have:

- \(\Delta m_q \propto m^2_w m_{B_q} B_{B_q} f_{B_q}^2 (V^*_t V_{tb})^2 \quad q = d, s \)
- \(\Delta \Gamma_q \propto m^2_b m_{B_q} B_{B_q} f_{B_q}^2 ((V^*_t V_{tb})^2 + V^*_t V_{tb} V^*_c V_{cb} \mathcal{O}(m^2_c/m^2_b) + (V^*_c V_{cb})^2 \mathcal{O}(m^4_c/m^4_b)) \)

Current WA: [HFAG Summer 2016]

- \(\Delta m_d = 0.5065 \pm 0.0016 \pm 0.0011 \) ps\(^{-1}\)
- \(\Delta m_s = 17.757 \pm 0.020 \pm 0.007 \) ps\(^{-1}\)
- \(\Delta \Gamma_d/\Gamma_d = (-0.2 \pm 1.0) \times 10^{-2} \)

constrain the apex \((\bar{\rho}, \bar{\eta})\) of the CKM unitarity triangle

\(\hat{B}_{B_q} f_{B_q}^2 \) uncertainties limit the precision of \(V_{CKM} \)

Some of the theoretical uncertainties cancel in the ratio:

- \(\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \times \xi^2 \times \frac{|V_{ts}|^2}{|V_{td}|^2} \)
- \(\xi = 1.268 \pm 0.063 \) Lattice QCD, PDG2016 → [FNAL&MILC: arXiv:1205.7013]
 \(\Rightarrow 1.206 \pm 0.019 \) new calculation [FNAL&MILC: arXiv:1602.03560]
$B^0_{d/s} - \bar{B}^0_{d/s}$ oscillations: measurement of $\Delta m_{d/s}$

Best precision is achieved by measuring the time-dependent mixing asymmetry in \textit{flavour-specific} decays:

$$A_{\text{mix}}(t) = \frac{\Gamma_{\bar{B}^0_q \rightarrow \bar{f}(t)} - \Gamma_{B^0_q \rightarrow f(t)}}{\Gamma_{\bar{B}^0_q \rightarrow \bar{f}(t)} + \Gamma_{B^0_q \rightarrow f(t)}} \sim \cos(\Delta m_q t) \implies A_{\text{mix}}(t) \propto (1 - 2\omega) e^{-(\Delta m_q \sigma_t)^2/2} \cos(\Delta m_q t)$$

assuming no CPV in mixing and $\Delta \Gamma_q = 0$

The average statistical significance is:

$$S \sim \sqrt{\frac{N}{2}} f_{\text{sig}} \sqrt{\epsilon_{\text{tag}} (1 - 2\omega)^2} e^{-(\Delta m_q \sigma_t)^2/2}$$

Experimental key-factors fully addressed by LHCb:

- Signal yield and background suppression: $\sqrt{N/2} f_{\text{sig}}$
 - large σ_{bb}
 - $L^{\text{int}} = 3$ fb$^{-1}$ in Run1 (2 fb$^{-1}$ in Run2, so far)
 - efficient trigger and reconstruction
 - tracking: impact parameter, momentum, mass resolutions
 - particle identification: ($\mu/\pi/K/p$)

- Flavour tagging: $\sqrt{\epsilon_{\text{tag}} (1 - 2\omega)^2} = 3 - 6\%$
 - Opposite-side (OS e, μ, K, Vertex, Charm)
 - Same-side (SS: π, p and K)

- Decay time resolution: $e^{-(\Delta m_q \sigma_t)^2/2}$
 - excellent vertexing $\sigma_t \sim 45 - 55$ fs
Δm_d was first measured at DESY by ARGUS [Phys.Lett. B192 (1987) 245-252] then at Cornell, LEP then at B-Factories.

Latest LHCb measurement exploits the full Run1 data sample (3 fb$^{-1}$) → most precise determination of Δm_d [LHCb: Eur. Phys. J. C76 (2016) 412]

- Uses semileptonic $B_d^0 \rightarrow D(\ast)^- \mu^+ \nu_\mu X$ decays
 - large branching ratios ($B \sim 2-5\%$)
- Event reconstruction & selection:
 - reconstruct $D^{*-} \rightarrow \bar{D}^0 (\rightarrow K^+ \pi^-) \pi^-$ and $D^- \rightarrow K^+ \pi^- \pi^-$ decays
 - $D^{(\ast)^-} \mu^+$ from a common vertex (displaced from PV)
 - missing neutrino: cannot apply mass or kinematic cuts to the B_d, only to D^0, D^{\ast^-} or D^-
 - vetoes on mis-ID J/ψ, Λ_c

Background:
- Combinatorial
- D^0 from B decays
- $B^+ \rightarrow D^{(\ast)^-} \mu^+ \pi^+ \nu_\mu$

Stefania Vecchi on behalf of the LHCb collaboration

"Measurements of $\Delta m_{d,s}$ and $\Delta \Gamma_d$ at LHCb"
$B^0_d - \bar{B}^0_d$ oscillations: Measurement of Δm_d at LHCb

$B^+ \rightarrow D(*)^- \mu^+ \pi^+ \nu_\mu$ background:
- it is expected to be 10% and 13%, BUT its B is known with a precision of 10% [PDG2016]
- its fraction is correlated with the fit value of Δm_d

→ need to suppress it to reduce the systematic uncertainty

MVA classifier was developed to discriminate such background from the signal:
- inputs:
 - geometrical and kinematical info on the B candidate ($D(*)^- \mu^+$)
 - isolation info on additional tracks reconstructed in a cone around the B candidate direction
- training:
 - on MC samples of signal $B^0 \rightarrow D^*- \mu^+ \nu_\mu$ and $B^+ \rightarrow D^*^- \mu^+ \pi^+ \nu_\mu$
- output (BDT):
 - used both as selection cut (suppression of 70%) and to evaluate on data the remaining fraction ($\rightarrow 3\%$ and 6%)
$B_d^0 - \bar{B}_d^0$ oscillations: Measurement of Δm_d at LHCb

Event reconstruction suffers from the missing neutrino:

- B_d momenta & decay time are corrected by a k-factor determined on MC:

\[
t = \frac{M_{B^0} \cdot L}{p_{D(*)\mu} \cdot c / k(m_B)} \quad \text{with} \quad k(m_B) = \langle p_{D(*)\mu} / p_{B^0}^{\text{true}} \rangle
\]

→ limited time resolution

Flavour Tagging:

- determine q_{mix} from the tagging decision & the charge of the μ ($q_{\text{mix}} = \pm 1$)
- Split in four categories of increasing mistag ω to gain sensitivity
- Tagging power: $\varepsilon D^2 \sim 2.3$-2.6%
$B^0_d - \bar{B}^0_d$ oscillations: Measurement of Δm_d at LHCb

Fit strategy:

- fit the $m_{D^-}/m_{D^0} & \delta m = m_{D^*} - m_{D^0}$ distributions: disentangle Signal + B^+_s (sWeights) from other backgrounds (combinatorial + B^0 from B)
- perform an sFit to the weighted distribution of the decay time:
 \[\mathcal{P}(t, q_{\text{mix}}) = (1 - f_{B^+}) S(t, q_{\text{mix}}) + f_{B^+} \beta^+(t, q_{\text{mix}}) \]
 \[S(t, q_{\text{mix}}) \propto a(t) \left[e^{-t/\tau} (1 + q_{\text{mix}})(1 - 2\omega) \cos(\Delta m_d t) \right] \otimes R(L) \otimes F(k) \]
- time acceptance $a(t)$, f_{B^+} and ω extracted from fit to data
- convolution with resolution functions from MC $R(L), F(k)$

Assumptions: $\Delta \Gamma_d = 0$, $|q/p| = 1$

<table>
<thead>
<tr>
<th>Mode</th>
<th>2011 sample Δm_d [ns$^{-1}$]</th>
<th>2012 sample Δm_d [ns$^{-1}$]</th>
<th>Total sample Δm_d [ns$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_d^0 \to D^- \mu^+ \nu_\mu X$</td>
<td>506.2 ± 5.1</td>
<td>505.2 ± 3.1</td>
<td>505.5 ± 2.7 ± 1.1</td>
</tr>
<tr>
<td>$B_d^0 \to D^{*-} \mu^+ \nu_\mu X$</td>
<td>497.5 ± 6.1</td>
<td>508.3 ± 4.0</td>
<td>504.4 ± 3.4 ± 1.0</td>
</tr>
</tbody>
</table>

Systematic uncertainties:

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>$D^- \mu^+ \nu_\mu$ [ns$^{-1}$]</th>
<th>$D^{*-} \mu^+ \nu_\mu$ [ns$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncorrelated Correlated</td>
<td>Uncorrelated Correlated</td>
</tr>
<tr>
<td>B^+ background</td>
<td>0.4 0.1</td>
<td>0.4 –</td>
</tr>
<tr>
<td>Other backgrounds</td>
<td>– 0.5</td>
<td>– –</td>
</tr>
<tr>
<td>k-factor distribution</td>
<td>0.4 0.5</td>
<td>0.3 0.6</td>
</tr>
<tr>
<td>Other fit-related</td>
<td>0.5 0.4</td>
<td>0.3 0.5</td>
</tr>
<tr>
<td>Total</td>
<td>0.8 0.8</td>
<td>0.6 0.8</td>
</tr>
</tbody>
</table>

Most precise measurement, dominates the average.
$B_s^0 - \bar{B}_s^0$ oscillations: Measurement of Δm_s at LHCb

Δm_s was first measured by CDF in 2006: $\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$ [CDF: Phys.Rev.Lett. 97 (2006) 242003]

Previous LHCb measurements used partial Run1 data samples of “flavour specific” $B_s^0 \rightarrow D_s^- (3) \pi^+$ decays [LHCb: Phys. Lett. B709 (2012) 177], and semileptonic B_s^0 decays [LHCb: Eur. Phys. J. C73 (2013) 2655]

The most precise LHCb measurement exploits 1 fb$^{-1}$ of Run1 data sample [LHCb: New J. Phys. 15 (2013) 053021]

- Uses $B_s^0 \rightarrow D_s^- \pi^+$ decays ~ 34000 signal events
 - hadronic flavour specific decay with the largest B ($\sim 0.3\%$)
- Event selection: reconstruct D_s^- in 5 fully reconstructed decay modes: $\phi \pi$, $K^* K$, $(KK\pi)_{nonres}$, $K\pi\pi$ and 3π
 - MVA selection for an optimal discrimination of signal from background
Fit strategy:

- perform a simultaneous fit of the 5 data samples of all contributions
 \[\mathcal{P}(m, t, \sigma_t, q, \eta) = \mathcal{P}_m(m) \mathcal{P}_{t,q}(t, q|\sigma_t, \eta) \mathcal{P}_{\sigma_t}(\sigma_t) \mathcal{P}_\eta(\eta) \]
 \[\mathcal{P} = f_{\text{sig}} S + \sum_i f_{\text{bkg}}^i B_i \]
- \(\mathcal{P}_m(m) \) mainly discriminate signal from background contributions
- \(\mathcal{P}_{t,q}(t, q|\sigma_t, \eta) \):
 - Use per-event decay time resolution model \(\langle \sigma_t \rangle \sim 44 \text{ fs} \) \((\mathcal{P}_{\sigma_t}(\sigma_t)) \), calibrated on data using prompt \(D_s \& \pi \)
 - Use per-event OS and SSK combined tagging decision and mistag: \(\varepsilon D^2 = 3.5\pm0.5\% \) \((\mathcal{P}_\eta(\eta)) \)

Result: \[\Delta m_s = 17.768 \pm 0.023 \pm 0.006 \text{ ps}^{-1} \]

Most precise measurement to date.

More recently LHCb determined \(\Delta m_s \) also in the analysis of \(B_s^0 \rightarrow J/\psi K^+ K^- \) for \(\phi_s \) and \(\Delta \Gamma_s \) measurements: \[\Delta m_s = 17.711^{+0.055}_{-0.057} \pm 0.011 \text{ ps}^{-1} \]
(see also G.Cowan’s Talk)
$B^0_q - \bar{B}^0_q$ oscillations: Measurement of $\Delta \Gamma_q$

The decay rates of B_L and B_H to a given final state f can be different, therefore:

$$\Gamma(B^0_q(t) \rightarrow f) \propto e^{-\Gamma_q t} \left[\cosh(\Delta \Gamma_q t/2) + A^f_{\Delta \Gamma} \sinh(\Delta \Gamma_q t/2) + A^{dir,f}_{\text{CP}} \cos(\Delta m_q t) + A^{mix,f}_{\text{CP}} \sin(\Delta m_q t) \right]$$

$$\Gamma(\bar{B}^0_q(t) \rightarrow f) \propto e^{-\Gamma_q t} \left[\cosh(\Delta \Gamma_q t/2) + A^f_{\Delta \Gamma} \sinh(\Delta \Gamma_q t/2) - A^{dir,f}_{\text{CP}} \cos(\Delta m_q t) - A^{mix,f}_{\text{CP}} \sin(\Delta m_q t) \right]$$

assuming $|q/p| = 1$

The untagged rate: $\Gamma(B^0_q(t) \rightarrow f) \propto e^{-\Gamma_q t} \left[\cosh(\Delta \Gamma_q t/2) + A^f_{\Delta \Gamma} \sinh(\Delta \Gamma_q t/2) \right]$

assuming production asymmetry $A_P = 0$

The effective lifetime $\tau^{\text{eff}}_{B^0_q \rightarrow f}$ depends on $y_q = 2 \Delta \Gamma_q \cdot \Gamma_q$:

$$\tau^{\text{eff}}_{B^0_q \rightarrow f} = \frac{1}{\Gamma_q} \frac{1}{1 - y_q^2} \left[\frac{1 + 2 A^f_{\Delta \Gamma} y_q + y_q^2}{1 + A^f_{\Delta \Gamma} y_q} \right]$$

$\Delta \Gamma_q$ can be measured by comparing $\tau^{\text{eff}}_{B^0_q \rightarrow f}$ in different decay channels (different $A^f_{\Delta \Gamma}$)

- $A^f_{\Delta \Gamma} = 0$ for flavour specific decays
- $A^f_{\Delta \Gamma} = \cos 2\beta$ for $B_d \rightarrow J/\psi K^0_S$
\(B_d^0 - \bar{B}_d^0\) oscillations: Measurement of \(\Delta \Gamma_d\) at LHCb

- **Strategy:** measure effective lifetime \(\tau_{B_d^0}^{\text{eff}}\) using
 - \(B_d^0 \to J/\psi K^0\) (flavour specific)
 - \(B_d^0 \to J/\psi K_s^0\) (CP eigenstate)

- **Selection:**
 - Run1 data sample (1 fb\(^{-1}\))
 - minimize any decay time biasing selection cuts

- **Fit strategy:**
 - fit the distributions of **time** and invariant mass:
 \[\mathcal{P}(m, t) = f_{\text{sig}} S(m, t) + \sum_i f_{\text{bkg}}^i B_i(m, t) \]
 - time resolution \(\sigma_t \sim 45, 65\) fs

Stefania Vecchi on behalf of the LHCb collaboration

“Measurements of \(\Delta m_{d,s}\) and \(\Delta \Gamma_d\) at LHCb”
Effective lifetime results:
\[\tau_{\text{eff}}^{B_d^0 \rightarrow J/\psi K^0} = 1.524 \pm 0.006 \pm 0.004 \text{ ps} \]
\[\tau_{\text{eff}}^{B_d^0 \rightarrow J/\psi K^0_s} = 1.499 \pm 0.013 \pm 0.005 \text{ ps} \]

\[\tau_{\text{eff}}^{B_d^0 \rightarrow f} = \frac{1}{\Gamma_f} \frac{1}{1 - y_q^2} \left[\frac{1 + 2A_{\Delta \Gamma}^f y_q + y_q^2}{1 + A_{\Delta \Gamma}^f y_q} \right] \]

- \(A_{\Delta \Gamma}^f = 0 \) for flavour specific decays
- \(A_{\Delta \Gamma}^f = \cos 2\beta \) for \(B_d \rightarrow J/\psi K^0_s \)

we measure:
\[\Gamma_d = 0.656 \pm 0.003 \pm 0.002 \text{ ps}^{-1} \]
\[\Delta \Gamma_d = -0.029 \pm 0.016 \pm 0.007 \text{ ps}^{-1} \]

\[\Delta \Gamma_d / \Gamma_d = (-4.4 \pm 2.5 \pm 1.1) \times 10^{-2} \]
From the measurements to the SM-CKM picture

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm_d [ps$^{-1}$]</td>
<td>$0.5050 \pm 0.0021 \pm 0.0010$</td>
<td>[LHCb: Eur. Phys. J. C76 (2016) 412]</td>
</tr>
<tr>
<td></td>
<td>0.5064 ± 0.0019</td>
<td>[HFAG Summer 2016]</td>
</tr>
<tr>
<td>Δm_s [ps$^{-1}$]</td>
<td>$17.768 \pm 0.023 \pm 0.000$</td>
<td>[LHCb: New J. Phys. 15 (2013) 053021]</td>
</tr>
<tr>
<td></td>
<td>17.757 ± 0.021</td>
<td>[HFAG Summer 2016]</td>
</tr>
<tr>
<td>$\Delta \Gamma_d/\Gamma_d$</td>
<td>$(-4.4 \pm 2.5 \pm 1.1) \times 10^{-2}$</td>
<td>[LHCb: JHEP 04 (2014) 114]</td>
</tr>
<tr>
<td></td>
<td>$(-0.1 \pm 1.1 \pm 0.9) \times 10^{-2}$</td>
<td>[ATLAS:JHEP06 (2016) 081]</td>
</tr>
<tr>
<td></td>
<td>$(-0.2 \pm 1.0) \times 10^{-2}$</td>
<td>[HFAG Summer 2016]</td>
</tr>
</tbody>
</table>

Within SM, such measurements constrain

$$\frac{|V_{ts}|^2}{|V_{td}|^2} = 0.2159 \pm 0.0004 (\text{exp}) \pm 0.0107 (\text{lattice}) \text{ [PDG2016]}$$

With the latest, improved LatticeQCD calculations

$$\frac{|V_{ts}|^2}{|V_{td}|^2} = 0.2052 \pm 0.0032 \text{ [FNAL&MILC: arXiv:1602.03560]}$$

a tension ($O(2\sigma)$) arises when comparing $|V_{ts}|, |V_{td}|$ results from mixing measurement with results from tree-processes
From the measurements to possible hints of NP?

Current measurements are compatible with SM in 1.5σ.
From the measurements to possible hints of NP?

Future improvements can reveal NP.
LHCb measurements of Δm_d and Δm_s have reached a precision of $\%$, and dominate the current World Averages.

Together with the measurement of $\Delta \Gamma_d$ and $\Delta \Gamma_s$, they provide useful constraints to the CKM parameters $|V_{ts}|$ and $|V_{td}|$ and important tests of the SM.

The precision of $|V_{ts}|$ and $|V_{td}|$ is currently limited by theoretical uncertainties.

Latest Lattice QCD calculations allowed a factor ~ 3 of improvement in $|V_{ts}|^2/|V_{td}|^2$ with respect to previous calculations that renewed the interest on $B^0_q - \bar{B}^0_q$ mixing parameters.

Looking forward for further improvements on theoretical computations and on experimental measurements (for prospects at LHCb see talk by V. Chobanova)
Flavour Tagging: identifying the initial B flavour

OS tagging: exploits the properties of the decays of the b-hadron opposite to the signal B
 \[\mu, \ e \ (b \to c l^- \bar{\nu}_l), \ K \ (b \to c \to s), \ Q_{vtx} \ \text{(inclusive secondary vertex reconstruction)} \]

SS tagging: exploits the hadronization process of the signal B, or in the decays of excited states B^{**}

 - $SS\pi, \ SSp$ \[\text{[LHCb: LHCb-PAPER-2016-039, arXiv:1610.06019]} \ \text{(tag the } B_d \text{) (see also M.Calvi’s Talk)}, \]
 - SSK \[\text{[LHCb: JINST 11 (2016) P05010]} \ \text{(tag the } B_s \text{)} \]

 tagging power: $\varepsilon(1 - 2\omega)^2 \sim 3 - 6\%$ depending on the B decay channel