Inclusive Semi-leptonic Penguin Decays

Tobias Hurth, Johannes Gutenberg University Mainz

Motivation

- Radiative and semileptonic rare B decayse are highly sensitive probes for new physics
- Exclusive modes are experimentally easier (LHCb), but have larger theoretical uncertainties (issue of unknown power corrections!)
- Inclusive modes require Belle-II for full exploitation (complete angular analysis) but are theoretically very clean
- Inclusive modes allow for crosschecks of recent LHCb anomalies

Theoretical Tools

Theoretical tools for flavour precision observables

Factorization theorems: separating long- and short-distance physics

• Electroweak effective Hamiltonian: $H_{eff} = -\frac{4G_F}{\sqrt{2}} \sum C_i(\mu, M_{heavy}) \mathcal{O}_i(\mu)$

• $\mu^2 \approx M_{New}^2 >> M_W^2$: 'new physics' effects: $C_i^{SM}(M_W) + C_i^{New}(M_W)$

How to compute the hadronic matrix elements $\mathcal{O}_i(\mu = m_b)$?

Inclusive modes $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$

How to compute the hadronic matrix elements $\mathcal{O}_i(\mu=m_b)$?

Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{parton} \gamma), \quad \Delta^{nonpert.} \sim \Lambda_{QCD}^2 / m_b^2$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant) Chay, Georgi, Grinstein 1990

Inclusive modes $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$

How to compute the hadronic matrix elements $\mathcal{O}_i(\mu = m_b)$?

Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{parton} \gamma), \quad \Delta^{nonpert.} \sim \Lambda_{QCD}^2 / m_b^2$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)

An old story:

– If one goes beyond the leading operator $(\mathcal{O}_7, \mathcal{O}_9)$: breakdown of local expansion

A new dedicated analysis:

naive estimate of non-local matrix elements leads to 5% uncertainty.

Benzke, Lee, Neubert, Paz, arXiv:1003.5012

Analysis in $B \to X_s \ell \ell$ in this talk; Benzke, Fickinger, Hurth, Turczyk

Exclusive modes $B \to K^{(*)}\ell\ell$

QCD-improved factorization: BBNS 1999

$$\mathcal{T}_a^{(i)} = C_a^{(i)} \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K^*} + O(\Lambda/m_b)$$

(Soft-collinear effective theory)

- Separation of perturbative hard kernels from process-independent nonperturbative functions like form factors
- Relations between formfactors in large-energy limit
- Limitation: insufficient information on power-suppressed Λ/m_b terms (breakdown of factorization: 'endpoint divergences')

Difference between exclusive and inclusive $b \to s\gamma$, $\ell\ell$ modes:

Inclusive

 Λ^2/m_b^2 corrections can be calculated for the leading operators in the local OPE .

 Λ/m_b corrections to the subleading operators correspond to nonlocal matrix elements and can be estimated!

Exclusive

No theory of Λ/mb corrections at all within QCD factorization formula (in the low- q^2 region); these corrections can only be "guesstimated"!

Crosscheck of LHCb anomalies with inclusive modes

Hurth, Mahmoudi, Neshatpour, arXiv:1410.4545

if SM deviations in R_K and $P_{\mathbf{5}}^{'}$ persist until Belle-II

If NP then the effect of C_9 and C_9' are large enough to be checked at Belle-II with theoretically clean modes.

Hurth, Mahmoudi, arXiv:1312.5267 Experimental extrapolation by Kevin Flood

Inclusive modes

Experiment

"Latest" Belle measurement of branching ratio is based on less than 30% of the total luminosity

Belle hep-ex/0503044 (!!!) (based $152 \times 10^6 B\bar{B}$ events)

Integrated luminosity of B factories

New Babar analysis on dilepton spectrum arXiv:1312.3664 New Belle analysis on AFB arXiv:1402.7134

Complete angular analysis of inclusive $B \to X_s \ell \ell$

Huber, Hurth, Lunghi, arXiv:1503.04849

"Latest" Belle measurement of branching ratio is based on less than 30% of the total luminosity

$$\frac{d^2\Gamma}{dq^2 dz} = \frac{3}{8} \left[(1+z^2) H_T(q^2) + 2z H_A(q^2) + 2(1-z^2) H_L(q^2) \right] \qquad (z = \cos \theta_\ell)$$

$$\frac{d\Gamma}{dq^2} = H_T(q^2) + H_L(q^2) \qquad \qquad \frac{dA_{FB}}{dq^2} = 3/4 H_A(q^2)$$

- Phenomenological analysis to NNLO QCD and NLO QED for all angular observables
- Electromagnetic effects due to energetic photons are large and calculated analytically and crosschecked against Monte Carlo generator events

Large logs $log(mb/m_{\ell})$ different for muon and electron!

Complete angular analysis of inclusive $B \to X_s \ell \ell$

Huber, Hurth, Lunghi, arXiv:1503.04849

"Latest" Belle measurement of branching ratio is based on less than 30% of the total luminosity

$$\frac{d^2\Gamma}{dq^2 dz} = \frac{3}{8} \left[(1+z^2) H_T(q^2) + 2z H_A(q^2) + 2(1-z^2) H_L(q^2) \right] \qquad (z = \cos \theta_\ell)$$

$$\frac{d\Gamma}{dq^2} = H_T(q^2) + H_L(q^2) \qquad \qquad \frac{dA_{FB}}{dq^2} = 3/4 H_A(q^2)$$

- Phenomenological analysis to NNLO QCD and NLO QED for all angular observables
- On-shell- $c\bar{c}$ -resonances \Rightarrow cuts in dlepton mass spectrum necessary : $1\text{GeV}^2 < q^2 < 6\text{GeV}^2 \text{ and } 14.4\text{GeV}^2 < q^2 \Rightarrow \text{ perturbative contributions dominant}$ $\frac{d}{d\bar{s}}BR(\bar{B} \to X_s l^+ l^-) \times 10^{-5}$

$$\hat{s} = q^2/m_b^2$$

Results

Low-
$$q^2$$
 (1 $GeV^2 < q^2 < 6GeV^2$)

$$BR(B \to X_s ee) = (1.67 \pm 0.10) \, 10^{-6}$$

$$BR(B \to X_s \mu \mu) = (1.62 \pm 0.09) \, 10^{-6}$$

Babar: $BR(B \to X_s \ell \ell) =$

=
$$(1.60 (+0.41-0.39)_{stat}(+0.17-0.13)_{syst}(\pm 0.18)_{mod}) 10^{-6}$$

good agreement with SM

Results

High-
$$q^2$$
, Theory: $q^2 > 14.4 GeV^2$, Babar: $q^2 > 14.2 GeV^2$

$$BR(B \to X_s ee) = (0.220 \pm 0.070) \, 10^{-6}$$

$$BR(B \to X_s \mu \mu) = (0.253 \pm 0.070) \, 10^{-6}$$

Babar:
$$BR(B \to X_s \ell \ell) =$$

$$(0.57 (+0.16 - 0.15)_{stat}(+0.03 - 0.02)_{syst}) 10^{-6}$$

 2σ higher than SM

Significant higher values predicted in Greub et al. due to missing power and QED corrections and different cut Greub, Pilipp, Schupbach, arXiv:0810.4077

(but perfect agreement if we use their prescriptions)

Further refinement

Normalization to semileptonic $B\to X_u\ell\nu$ decay rate with the same cut reduces the impact of $1/m_b$ corrections in the high- q^2 region significantly. Ligeti, Tackmann arXiv:0707.1694

Theory prediction for ratio

$$R(s_0)_{ee} = (2.25 \pm 0.31) \, 10^{-3}$$

$$R(s_0)_{\mu\mu} = (2.62 \pm 0.30) \, 10^{-3}$$

Largest source of error are CKM elements (V_{ub})

Note: Additional O(5%) uncertainty due to nonlocal power corrections $O(\alpha_s \Lambda/m_b)$

Constraints on Wilson coefficients C_9/C_9^{SM} and $C_{10}/C_{10}^{\text{SM}}$

$$R_i = rac{C_i(\mu_0)}{C_i^{ ext{SM}}(\mu_0)}$$

that we obtain at 95% C.L. from present experimental data (red low q^2 , green high q^2)

that we will obtain at 95% C.L. from $50ab^{-1}$ data at Belle-II (yellow)

Subleading contributions in $B \to X_s \ell^+ \ell^-$

• On-shell- $c\bar{c}$ -resonances \Rightarrow cuts in dlepton mass spectrum necessary : $1\text{GeV}^2 < q^2 < 6\text{GeV}^2$ and $14.4\text{GeV}^2 < q^2$ \Rightarrow perturbative contributions dominant $\frac{d}{d\bar{s}}BR(\bar{B}\to X_s l^+ l^-)\times 10^{-5}$

- Hadronic invariant-mass cut is imposed in order to eliminate the background like $b \to c \ (\to se^+\nu)e^-\bar{\nu} = b \to se^+e^- + \text{missing energy}$
 - * Babar,Belle: $m_X < 1.8 \, \mathrm{or} \, 2.0 \, GeV$
 - * high- q^2 region not affected by this cut
 - * kinematics: X_s is jetlike and $m_X^2 \leq m_b \Lambda_{QCD} \; \Rightarrow$ shape function region
 - * SCET analysis: universality of jet and shape functions found: the 10-30% reduction of the dilepton mass spectrum can be accurately computed using the $\bar{B} \to X_s \gamma$ shape function

5% additional uncertainty for 2.0 GeV cut due to subleading shape functions Lee, Stewart hep-ph/0511334

Lee, Ligeti, Stewart, Tackmann hep-ph/0512191

Lee, Tackmann arXiv:0812.0001 (effect of subleading shape functions)

Bell, Beneke, Huber, Li arXiv:1007.3758 (NNLO matching QCD → SCET)

Subleading power factorization in $B \to X_s \ell^+ \ell^-$

Benzke, Fickinger, Hurth, Turczyk, to appear

Hadronic cut

Additional cut in X_s necessary to reduce background affects only low- q^2 region.

Hadronic invariant $m_X^2 < 1.8(2.0) GeV^2$, jet-like $X_s E_X \sim \mathcal{O}(m_b)$

Multiscale problem → SCET

$$M_B^2 \sim m_b^2 \gg m_X^2 \sim \Lambda_{\rm QCD} m_b \gg \Lambda_{\rm QCD}^2$$

$$m_X^2 = P_X^2 = (M_B - n \cdot q)(M_B - \bar{n} \cdot q)$$

Scaling
$$\lambda = \Lambda_{\rm QCD}/m_b$$

Kinematics

B meson rest frame

$$q = p_B - p_X$$
 $2 m_B E_X = m_B^2 + M_X^2 - q^2$
 X_s system is jet-like with $E_X \sim m_B$ and $m_X^2 \ll E_X^2$

two light-cone components $p_X^- p_X^+ = m_X^2$

$$\bar{n}p_X = p_X^- = E_X + |\vec{p}_X| \sim \mathcal{O}(m_B)$$

 $np_X = p_X^+ = E_X - |\vec{p}_X| \sim \mathcal{O}(\Lambda_{QCD})$

$$q^+ = nq = m_B - p_X^+$$
 $q^- = \bar{n}q = m_B - p_X^-$

$$M_{x} = [0.5, 1.6, 2] \text{ GeV [Black, Blue, Red]}$$

$$Upper \text{ lines }: P_{X}^{-}, \text{ lower lines }: P_{X}^{+}$$

$$p_{X}^{-}/+3$$

$$GeV 2$$

$$q^{2} \text{ GeV}^{2}$$

 $\lambda = \Lambda_{\rm QCD}/m_b$ $m_X^2 \sim \lambda \Rightarrow m_b - n \cdot q \sim \lambda$

For $q^2 < 6GeV^2$ the scaling of np_X and $\bar{n}p_X$ implies $\bar{n}q$ is of order λ , means q anti-hard-collinear (just kinematics).

Scaling

Stewart and Lee assume $\bar{n}q$ to be order 1, means q is hard. This problematic assumption implies a different matching of SCET/QCD.

Shapefunction region

Local OPE breaks down for $m_X^2 \sim \lambda$:

Resummation of leading contributions into a shape function.

(scaling of $\bar{n}q$ does not matter here; zero in case of $B \to X_s \gamma$)

Factorization theorem $d\Gamma \sim H \cdot J \otimes S$

The hard function H and the jet function J are perturbative quantities.

The shape function S is a non-perturbative non-local HQET matrix element. (universality of the shape function, uncertainties due to subleading shape functions)

Calculation at subleading power

Example of **direct** photon contribution which factorizes

 $d\Gamma \sim H \cdot j \otimes S$

Example of **resolved** photon contribution (double-resolved) which factorizes

Shape function is non-local in two light-cone directions. It survives $M_X \to 1$ limit (irreducible uncertainty).

Interference of Q_8 and Q_8

$$\frac{d\Gamma^{\mathrm{res}}}{dn \cdot q \, d\bar{n} \cdot q} \sim \frac{e_{s}^{2} \alpha_{s}}{m_{b}} \int d\omega \, \delta(\omega + p_{+}) \int \frac{d\omega_{1}}{\omega_{1} + \bar{n} \cdot q + i\varepsilon} \int \frac{d\omega_{2}}{\omega_{2} + \bar{n} \cdot q - i\varepsilon} g_{88}(\omega, \omega_{1}, \omega_{2})$$

$$g_{88}(\omega, \omega_{1}, \omega_{2}) = \frac{1}{M_{B}} \langle \bar{B} | \bar{h}(\mathbf{tn}) \dots s(\mathbf{tn} + \mathbf{u}\bar{\mathbf{n}}) \bar{s}(\mathbf{r}\bar{\mathbf{n}}) \dots h(\mathbf{0}) | \bar{B} \rangle_{\mathrm{F.T.}}$$

Interference of Q_1 and Q_7

$$\begin{split} \frac{d\Gamma^{\mathrm{res}}}{dn \cdot q \, d\bar{n} \cdot q} \sim & \frac{1}{m_b} \int d\omega \, \delta(\omega + p_+) \int \frac{d\omega_1}{\omega_1 + i\varepsilon} \\ & \frac{1}{\omega_1} \left[\bar{n} \cdot q \left(F \left(\frac{m_c^2}{n \cdot q \bar{n} \cdot q} \right) - 1 \right) - (\bar{n} \cdot q + \omega_1) \left(F \left(\frac{m_c^2}{n \cdot q (\bar{n} \cdot q + \omega_1)} \right) - 1 \right) \right. \\ & \left. + \bar{n} \cdot q \left(G \left(\frac{m_c^2}{n \cdot q \bar{n} \cdot q} \right) - G \left(\frac{m_c^2}{n \cdot q (\bar{n} \cdot q + \omega_1)} \right) \right) \right] g_{17}(\omega, \omega_1) \\ g_{17}(\omega, \omega_1) = & \int \frac{dr}{2\pi} e^{-i\omega_1 r} \int \frac{dt}{2\pi} e^{-i\omega t} \frac{1}{M_B} \langle \bar{B} | \bar{h}(tn) \dots G_s^{\alpha\beta}(r\bar{n}) \dots h(0) | \bar{B} \rangle \end{split}$$

Expansion for $m_c \sim m_b$ leads to Voloshin term in the total rate $(-\lambda_2/m_c^2)$, the terms stays non-local for $m_c < m_b$.

Factorization formula

In the $m_X^2 \sim \lambda$ and $q^2 \sim \lambda$ region we have the following factorization formula

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes S_i$$
$$+ \frac{1}{m_b} \sum_{i} H \cdot J \otimes S_i \otimes \bar{J} + \frac{1}{m_b} \sum_{i} H \cdot J \otimes S_i \otimes \bar{J} \otimes \bar{J} + \mathcal{O}\left(\frac{1}{m_b^2}\right)$$

Numerical evaluation (work in progress)

Similar subleading shape functions as in $B \to X_s \gamma$

Use vacuum insertion approximation, PT invariance,....

Power corrections in the inclusive mode

- For q anti-hard-collinear we have identified a new type of subleading power corrections.
- In the resolved contributions the photon couples to light partons instead of connecting directly to the effective weak-interaction vertex.
- ullet They constitute an irreducible uncertainty because they survive the $M_X o 1$ limit.
- If q was hard then these resolved contributions would not exist

 M_X cut effects in the low- q^2 region with q^2 anti-hard-collinear (work in progress)

Extra

Semileptonic Penguin Decays

Based on

Huber, Hurth, Lunghi arXiv:1503.0449

Inclusive $B \to X_s \ell^+ \ell^-$: Complete angular analysis and a thorough study of collinear photons

Benzke, Fickinger, Hurth, Turczyk to appear

Subleading power factorization in $B \to X_s \ell^+ \ell^-$

Hurth, Mahmoudi, Neshatpour arXiv:1603.00865

On the anomalies in the latest LHCb data

Alllowed regions

$low-q^2$

Red: q^2 = [1,5,6] GeV² [Dotted, Solid, Dashed] Black: M_x = [0.495,1.25,2] GeV [Dotted, Solid, Dashed]

Blue: anti -hard -collinear component scaling

Benzke, Fickinger, Hurth, Turczyk, to appear

$high-q^2$

Red: $q^2 = [15,17,22] \text{ GeV}^2$ [Dotted, Solid, Dashed]

Black: $M_x = [0.495, 1.25, 2]$ GeV [Dotted, Solid, Dashed]

Blue: hard component scaling

Within integrated branching ratio the resonances J/ψ and ψ' exceed the perturbative contributions by two orders of magnitude.

Quark-hadron duality violated in $\bar{B} \to X_s \ell^+ \ell^-$? BBNS, arXiv:0902.4446

Within integrated branching ratio the resonances J/ψ and ψ' exceed the perturbative contributions by two orders of magnitude.

The rate $l_1 \rightarrow l_2 e^+ e^-$ (a) is connected to the integral over $|\Pi(q^2)|^2$ for which global duality is NOT expected to hold.

In contrast the inclusive hadronic rate $l_1 \to l_2 X$ (b) corresponds to the imaginary part of the correlator $\Pi(q^2)$.

- Collinear Photons give rise to log-enhanced QED corrections $lpha_{
 m em} \log(m_b^2/m_\ell^2)$
- Higher powers of z in double differential decay width
 - Definition of H_i ? Sensitivity for QED observables?

We use Legendre poynomials for H_T and H_L and Sign(z) for H_A

We can construct QED sensitive observables (vanish in absence of QED) by Legendre projectors $P_3(z)$ or $P_4(z)$: 10^{-8}

- Collinear Photons give rise to log-enhanced QED corrections $\alpha_{
 m em} \log(m_b^2/m_\ell^2)$
- Higher powers of z in double differential decay width
 - Definition of H_i ? Sensitivity for QED observables?
- Size of logs depend on experimental set-up

$$q^2 = (p_{\ell^+} + p_{\ell^-})^2$$
 vs. $q^2 = (p_{\ell^+} + p_{\ell^-} + p_{\gamma, \mathrm{coll}})^2$

- We assume no photons are included in the definition of q^2 (di-muon channel at Babar/Belle, di-electron at Belle)
- Babar's di-electron channel: Photons that are emitted in a cone of 35 mrad angular opening are included in q^2

Monte Carlo techniques needed to estimate this effect

$$\frac{\left[\mathcal{B}_{ee}^{\text{low}}\right]_{q=p_{e^{+}}+p_{e^{-}}+p_{\gamma_{\text{coll}}}}}{\left[\mathcal{B}_{ee}^{\text{low}}\right]_{q=p_{e^{+}}+p_{e^{-}}}}-1=1.65\%$$

$$\frac{\left[\mathcal{B}_{ee}^{\text{high}}\right]_{q=p_{e^{+}}+p_{e^{-}}+p_{\gamma_{\text{coll}}}}}{\left[\mathcal{B}_{ee}^{\text{high}}\right]_{q=p_{e^{+}}+p_{e^{-}}}}-1=-6.8\%$$

Dependence on Wilson coefficients

$$H_T(q^2) \propto 2s(1-s)^2 \left[\left| C_9 + \frac{2}{s} C_7 \right|^2 + \left| C_{10} \right|^2 \right]$$
 $H_A(q^2) \propto -4s(1-s)^2 \operatorname{Re} \left[C_{10} \left(C_9 + \frac{2}{s} C_7 \right) \right]$

 H_T suppressed in low- q^2 window

$$H_L(q^2) \propto (1-s)^2 \Big[|C_9 + 2C_7|^2 + |C_{10}|^2 \Big]$$

- Devide low- q^2 bin in two bins (zero of H_A in low- q^2) Lee,Ligeti,Stewart, Tackmann hep-ph/0612156
- Most important input parameters

$$m_b^{1S} = (4.691 \pm 0.037) \text{GeV}, \qquad \overline{m}_c(\overline{m}_c) = (1.275 \pm 0.025) \text{GeV}$$

 $|V_{ts}^* V_{tb}/V_{cb}|^2 = 0.9621 \pm 0.0027, \qquad BR_{b \to c \, e \, \nu}^{exp.} = (10.51 \pm 0.13) \%$

ullet Perturbative expansion (NNLO QCD + NLO QED) $lpha_{ullet}$ $\kappa = lpha_{
m em}/lpha_{ullet}$

$$A = \kappa \left[A_{LO} + \alpha_s A_{NLO} + \alpha_s^2 A_{NNLO} + \mathcal{O}(\alpha_s^3) \right]$$

$$+ \kappa^2 \left[A_{LO}^{em} + \alpha_s A_{NLO}^{em} + \alpha_s^2 A_{NNLO}^{em} + \mathcal{O}(\alpha_s^3) \right] + \mathcal{O}(\kappa^3)$$

$$LO = \alpha_{em}/\alpha_s$$
, $NLO = \alpha_{em}$, $NNLO = \alpha_{em} \alpha_s$

Monte Carlo analysis

Huber, Hurth, Lunghi, arXiv:1503.04849

(event generator EVTGEN, hadronization JETSET, EM radiation PHOTOS)

Further results in units of 10^{-6}

$$\begin{array}{lll} H_L[1,3.5]_{ee} = & 0.64 \pm 0.03 & H_L[1,3.5]_{\mu\mu} = 0.68 \pm 0.04 \\ H_L[3.5,6]_{ee} = & 0.50 \pm 0.03 & H_L[3.5,6]_{\mu\mu} = 0.53 \pm 0.03 \\ H_L[1,6]_{ee} = & 1.13 \pm 0.06 & H_L[1,6]_{\mu\mu} = 1.21 \pm 0.07 \\ H_T[1,3.5]_{ee} = & 0.29 \pm 0.02 & H_T[1,3.5]_{\mu\mu} = 0.21 \pm 0.01 \\ H_T[3.5,6]_{ee} = & 0.24 \pm 0.02 & H_T[3.5,6]_{\mu\mu} = 0.19 \pm 0.02 \\ H_T[1,6]_{ee} = & 0.53 \pm 0.04 & H_T[1,6]_{\mu\mu} = 0.40 \pm 0.03 \\ H_A[1,3.5]_{ee} = & -0.103 \pm 0.005 & H_A[1,3.5]_{\mu\mu} = -0.110 \pm 0.005 \\ H_A[3.5,6]_{ee} = & +0.073 \pm 0.012 & H_A[3.5,6]_{\mu\mu} = +0.067 \pm 0.012 \\ H_A[1,6]_{ee} = & -0.029 \pm 0.016 & H_A[1,6]_{\mu\mu} = & -0.042 \pm 0.016 \end{array}$$

Total error $\mathcal{O}(5-8\%)$. Still dominated by scale uncertainty.