

Interplay between the top quark and the Higgs boson - LHC + Tevatron

Jelena Jovićević - TRIUMF, Canada on behalf of **ATLAS, CMS, CDF** and **D0** collaborations

CKM Unitarity Triangle 2016, Mumbai, India

Two big discoveries

Top quark 2nd of March 1995 - CDF & D0

Higgs boson 4th of July 2012 - ATLAS & CMS

Two big discoveries

Top quark 2nd of March 1995 - CDF & D0

- Top quark properties well measured at CDF and D0 at 1.96TeV;
- Complementary measurements by ATLAS and CMS at 7, 8, 13 TeV;

Please see dedicated talks at the conference!

Higgs boson 4th of July 2012 - ATLAS & CMS

 Measurements of the Higgs boson properties at ATLAS and CMS showed no deviation from SM at the current precision.

Need more data to pin down Quarks its nature completely.

EXCITING era for particle physics!

Outline

Interplay between the Higgs and top masses

- Most precise Higgs boson mass measurement:
- Top mass measurement covered in dedicated talk by Oleg Brandt (WG 6);
- Constraints from the current mass measurements.

Higgs-top Yukawa coupling measurement

 Most precise coupling measurement - LHC Run I ATLAS+CMS combination and importance of individual channels.

ttH production measurement

- Most sensitive channel to directly probe Higgs-top-Yukawa coupling;
- $H \rightarrow bb, H \rightarrow WW/ZZ/TT. H \rightarrow \gamma\gamma$ considered;

tH production measurement

• Direct test of sign and magnitude of Higgs-top-Yukawa coupling.

Search for BSM charged Higgs bosons within top sector

Higgs boson mass and top quark mass interplay

Higgs mass - ATLAS+CMS Runl

• Measured using $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ channels <u>Phys. Rev. Lett. 114, 191803</u>

Constraints from Higgs and top masses

- The top mass, the W mass, and the Higgs mass are related through radiative corrections;
 - Before the Higgs boson discovery, the indirect constraint on its mass was based on direct top quark and W boson mass measurements at Tevatron and LEP, and requirement for the consistency of the electroweak theory as a quantum field theory.
- Where do we stand now?

Future precise measurements of the m(H), m(W), m(t) could unveil a discrepancy that might lead to the discovery of new physics

Stability of the EW vacuum

Do we live in the stable vacuum?

Jelena Jovicevic - CKM 2016, Mumbai, India

TRIUMF

Constraints from Higgs and top masses

- The top mass, the W mass, and the Higgs mass are related through radiative corrections;
 - Before the Higgs boson discovery, the indirect constraint on its mass was based on direct top quark and W boson mass measurements at Tevatron and LEP, and requirement for the consistency of the electroweak theory as a quantum field theory.
- Where do we stand now?

Consistency check of the SM (top-W-Higgs)

the discovery of new physics

Do we live in the stable vacuum?

Jelena Jovicevic - CKM 2016, Mumbai, India

TRIUME

Stability of the EW vacuum

8

Higgs-top Yukawa coupling

RIUMF

Higgs couplings measurement

- Most precise constraints on Higgs couplings performed through parametrisation of all accessible production and decay modes, ATLAS+CMS Run I - <u>JHEP 08 (2016) 045</u>
- Measured signal strength μ , $\mu = \sigma/\sigma_{SM}$ in individual production and decay modes;

Jelena Jovicevic - CKM 2016, Mumbai, India

Hunting the Higgs-top Yukawa coupling

Sensitive to y_t^2

Direct measurement

Indirect constraints:

• **Direct** measurement **in ttH** production

- loops in **ggF** and $H \rightarrow \gamma\gamma$ vertices;
 - assuming only SM particles contributing to the loops.

 tH production: interference between top-mediated and W-mediated diagrams;

Sensitive to y_t

- $H \rightarrow \gamma \gamma$: interference between top quark and W boson in the loop;
- ZH production and H->Zγ: interference between top quark and W-boson contribution in the loop.

Search for deviations - Couplings

Assumptions:

- Observed signal originates from the single resonance;
- **Narrow width** approximation: $(\sigma \cdot BR)(i \rightarrow H \rightarrow f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$
- Parametrise deviations with only coupling strength modifiers {κ_x}.

Procedure:

• Scale SM cross-section and partial $\kappa_i^2 = \frac{\sigma_i}{\kappa_i^2}$ as $\kappa_i^2 = \frac{\Gamma_j}{\kappa_i^2}$ ion of parameters $\{K_x\}_{=}^2 \frac{\kappa_g^2}{\kappa_g^2}$

$$(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \quad \frac{\kappa_g^2}{\kappa}$$

- In case of loop processes κ_x can be expressed as a function of more fundame
- If BSM decays are allowed, scale down all SM decays uniformly.

Tested many scenarios:

- Fermion versus vector boson couplings, up quark VS down quark couplings: also provide constraints on BSM
- Generic model simultaneous fit of all modifiers, etc...

Top Yukawa coupling - ATLAS+CMS Runl

• parameterisation assuming the absence of BSM particles in the loops, $BR_{BSM} = 0$, $\kappa_j > 0$;

 two parameterisations allowing loop couplings, with either
 Kv(w,z) ≤ I or BR_{BSM} = 0;

TRIUMF

Jelena Jovicevic - CKM 2016, Mumbai, India

Eur. Phys. J. C76 (2016) 6

•••• Exp. tH

---- Exp. tH, κ_{ggZH} , κ_{g} , κ_{γ} , $\kappa_{Z\gamma}$

1.5

2

К_t

resolve the loops or not?

• sensitivity to K_t depends $e^{g} \sim \infty$

"Resolved loops" scenario

- only SM particles contribute g months
 to the loop diagrams;
- no new particles that the Higgs boson can decay into (BR_{BSM}=0);
- Resolving ggF & $H \rightarrow \gamma \gamma$ loops pi down κ_t^2 & sgn κ_t .

$$\kappa_t = 0.94 \pm 0.21$$

"No resolved loops" scenario:

- allowing BSM effects to modify indeper
- independent κ-modifier for γγ, gg, and Ζ΄
- still no new particles the Higgs boson can decay into (BR_{BSM}=0)

sensitivity on K_t completely dominated by $t\overline{t}H$ analysig

 $\kappa_t \in [-1.12, -1.00] \cup [0.93, 1.60]$

-2 In Λ(κ,)

18

16

14

12

10F

8

6⊵

-2

-1.5

_1

Jelena Jovicevic - CKM 2016, Mumbai, India

H imptions on the contributions in the loops;

-0.5

- Obs. tH

— Obs. tH,κ_{ggZH}

– Obs. tH,κ_{ggZH},κ_g

Obs. tH, κ_{ggZH} , κ_{g} , κ_{γ} , $\kappa_{Z\gamma}$

0.5

 $\mathbf{0}$

20_____

 $\sqrt{s} = 7 \text{ TeV}, 4.5-4.7 \text{ fb}^{-1}$

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

ATLAS

ttH production

Broad spectrum of analyses covering multiple final states:

- generally combine low BR Higgs decay with high BR $t\bar{t}$ decay and vice-versa;
- tt decay products help selection of signal and the reduction of non-tt backgrounds, but combinatorics increased when attempting to reconstruct the Higgs boson candidate.

Jelena Jovicevic - CKM 2016, Mumbai, India

Experimental challenges

Large variety of final states - good understanding of all reconstructed objects

- electrons / muons: precise (sub % level) energy / momentum calibration, understanding of identification efficiency, trigger rate;
- hadronically decaying taus: energy calibration, controlling rate from misidentified jets and electrons.
- photons: energy calibration, precise identification, direction determination (pointing).
- jets: precise calibration (% level), stability in presence of large pile-up.
- missing transverse energy: stability in presence of large pile-up
- b-jets Good understanding of signal efficiency and misidentification rate.

Analysed final states

- Focus on the latest 13 TeV results ATLAS (13.3fb⁻¹) and CMS (12.9fb⁻¹);
- H→bb: <u>ATLAS-CONF-2016-080</u>, <u>CMS-PAS-HIG-16-038</u> (previous 13TeV result)
 JHEP 05 (2016) 160
 Run I all-hadronic channel;
- $H \rightarrow \gamma \gamma$: <u>ATLAS-CONF-2016-067</u>, <u>CMS-PAS-HIG-16-020</u>;
- H→leptons: <u>ATLAS-CONF-2016-058</u>, <u>CMS-PAS-HIG-16-022</u> (previous 13TeV result);
- ttH combination: <u>ATLAS-CONF-2016-068</u>.

	H→bb	Н→үү	H→WW*	Н→тт	H→ZZ*
tt-allhad	Υ	Υ			
tt-l+jets	Υ	Υ	Y	Υ	Υ
tt-dilepton	Υ	Y	Y	Υ	Y

H→leptons

Y - I 3 TeV result Y - 8 TeV result

ttH(bb)

- Largest BR ~ 58% 😶
- Fermion-only production and decay;
- Multiple b-quarks in the final state Higgs reconstruction challenging;
- irreducible tt+bb background has large theory unc.

Selection:

• semi-lepton / dilepton tt-decays - events with $11/21 \& \ge 4j (\ge 2 \text{ btag}) / \ge 3j (\ge 2 \text{ btag})$.

Categorisation based on N-jet & N-btag;

 High S/B regions - signal-like (S/B~1%-7%), low S/B regions used to control background and systematic uncertainties.

Main background tt+jets Understanding of the tt+jets(HF) modelling and associated uncertainties requires a huge effort (from the experiments and theorists) - backup;

Signal extraction - final discriminant:

- I. BDT reconstruction technique or MEM to separate $t\bar{t}H$ vs $t\bar{t}+bb$;
- 2. Using I in combination with BDT that exploits full event kinematics.

BDT - Boosted Decision Tree, MEM - Matrix Element Method

Jelena Jovicevic - CKM 2016, Mumbai, India

Dominant systematics

Modelling of $t\overline{t} + \ge Ib$, jet flavour tagging and $t\overline{t} H$ modelling.

95% confidence level upper limit of $\sigma < 4.0 \ge \sigma_{SM} (1.9^{+1.4}_{-2.8} = 2.8)$

Normalisation of $t\bar{t} + \ge I$ HF jet processes.

95% confidence level upper limit of $\sigma < 1.5 \ge \sigma_{SM} (1.7^{+0.7} - 0.5 = 0.5)$

ttH(multilepton)

- Significant BR (WW~20%, ZZ~3%, тт~6%);
- Distinct multi-lepton signatures from Higgs and top decays;
- Higgs reconstruction is difficult.

• Targeted experimental signatures: **21** (e, μ) **of same charge** OR \geq **31** (to reduce tt). **Main background:** \overline{t}

- Irreducible: $t\overline{t}$ +V and VV production estimated from NLO MC and validated in data.
- Reducible: from non-prompt leptons (primarily from b hadron decays in tt) and from prompt leptons with misidentified charge - data driven estimate;

Selection and Signal extraction:

- ATLAS: Tight selection \rightarrow high purity, cut and count analysis;
- CMS: MVA lepton selection, fit 2D BDT: $t\bar{t}H$ vs $t\bar{t}$ & $t\bar{t}H$ vs $t\bar{t}V$ (inc. MEM as input in \geq 3I).

t**t**H(multilepton)

Dominant systematics: Estimation of background from non-prompt leptons

TRIUMF **V / Z /** т geeeele Small BR ~ 0.2% Higgs boson can be reconstructed as a Н narrow peak parametrisable <u>backgro</u>und. gooldood **Strategy** (a category of the $H \rightarrow \gamma \gamma$ couplings analysis): look for a bump over a smooth background in the di-photon invariant mass spectrum; CMS Preliminary 12.9 fb⁻¹ (13 TeV)

GeV

Events

¹² H→γγ ¹² m_H=126.0 GeV, μ̂=0.95

110

 Categories: Selected 2 photons + ≥ 11/01 + additional jet requirements enhancing leptonic / hadronic tt decays;

Signal modelling:

- ATLAS: Double-sided crystal ball function;
- CMS: Sum of Gaussians.

Background modelling:

- ATLAS: exponential function extracted from side bands;
- CMS: Sum of exponentials or power law terms, Laurent series and polynomials;

TTH Hadronic Tag

S+B fit

±1σ ±2σ

B component

Data

The result is heavily dominated by the statistical uncertainty. By the end of Run 2, we expect to have factor of ~3 reduction in statistical uncertainty.

ttH combination and summary

Run I precision already reached with ~13fb⁻¹ of Run 2 data! No significant deviations from the SM observed at both experiments. Stay tuned for the new results from CMS and ATLAS using full 2015+2016 statistics ~ 35fb⁻¹

tH production

tH production at the LHC

- CMS Run2: tH(bb) <u>CMS PAS HIG-16-019</u>, Run1: tH(bb, multi-lepton, γγ) <u>CMS-HIG-14-027</u>, ATLAS Run 1 indirect constraint in <u>Physics Letters B 740 (2015)</u>;
- Both t-channel (tHq) and tW production (tHW) considered;

- tH sensitive to magnitude and sign of Higgs-top-Yukawa coupling
 - SM assumption $K_t = I$ destructive interference, $\sigma_{SM}(tH) \sim 90$ fb⁻¹;
 - $\kappa_t = -1$ (if BSM contributions allowed in the loops), $\sigma(tH) \sim 10 \times \sigma_{SM}$;
- Analysis Strategy: Similar to ttH. Benefit from forward jet tag. Dedicated sig. vs bkg
 BDT for each (Kt, Kv) point (in case of tHq event reconstruction for tHq and tt-bkg.).

Jelena Jovicevic - CKM 2016, Mumbai, India

RIUMF

Results of the direct tH search

• Run 2 tH(bb) result

Excluding SM tH production above I I 3.7 (obs.) and 98.6 (exp.) x σ_{SM}

Exclusion at κ_t=-1 6.0 (obs.) and 6.4 (exp.) x σ_{κt=-1}

• Run I tH(bb,TT,leptons, $\gamma\gamma$) result

From all channels combined in Run I exclusion at κ_t =-1 2.8 (obs.) and 2.0 (exp.) x $\sigma_{\kappa t=-1}$

BSM charged Higgs searches

Many extensions of the SM, as well as suppressed SM scenarios, sensitive to Higgs-top interactions:

- Flavour changing neutral current: $t \rightarrow qH$
- Vector-like heavy top partner
- Charged Higgs boson searches within the top sector (SUSY, 2HDM,...)

Jelena Jovicevic - CKM 2016, Mumbai, India

. . .

Search for H[±] within top sector

Charged Higgs bosons can be produced in decays of $(m_{H\pm} < m_{top})$ or in association with $(m_{H\pm} > m_{top})$ a top quark

TRIUMF

Experiments explore several H[±] decay modes (cs, cb, tb, τν, AW)

Jelena Jovicevic - CKM 2016, Mumbai, India

28.11 - 02.12, 2016

Searches for light H[±] (top sector)

Jelena Jovicevic - CKM 2016, Mumbai, India

RIUMF

(top sector)

Many searches also interpreted in SUSY / 2HDM

 10^{0}

anching ratios

CDF $t \rightarrow H^{\pm}(AW)b, t \rightarrow H^{\pm}(cs)b$: <u>CDF note 10104</u>, <u>10.1103/PhysRevLett.103.101803</u> DZero **t**→**H**[±](**T**V/**cs**)**b**: <u>Phys.Lett.B682:278-286,2009,</u> <u>10.1016/j.physletb.2009.11.016</u>

Searches at LHC:
 CMS 8 TeV t→H[±](cs)b, 8 TeV H[±] legacy: ATLAS 7 TeV t→H[±](cs)b:
 Eur. Phys. J. C (2013) 73, JHEP 11 (2015) 018
 Eur. Phys. J. C (2013) 73

H±→AW

Jelena Jovicevic - CKM 2016, Mumbai, India

(top sector)

QUE

Many searches also interpreted in SUSY / 2HDM

anching ratios

CDF $t \rightarrow H^{\pm}(AW)b, t \rightarrow H^{\pm}(cs)b$: <u>CDF note 10104</u>, <u>10.1103/PhysRevLett.103.101803</u> DZero $t \rightarrow H^{\pm}(\tau v/cs)b$: <u>Phys.Lett.B682:278-286,2009,</u> <u>10.1016/j.physletb.2009.11.016</u>

• Searches at LHC: CMS 8 TeV $t \rightarrow H^{\pm}(cs)b$, 8 TeV H^{\pm} legacy: ATLAS 7 TeV $t \rightarrow H^{\pm}(cs)b$: Eur. Phys. J. C (2013) 73, JHEP 11 (2015) 018 Eur. Phys. J. C (2013) 73 $10^{\circ} F^{----}$

Jelena Jovicevic - CKM 2016, Mumbai, India

Searches for heavy H[±] (top sector)

Searches for heavy H[±] (top sector)

Searches for H[±] (top sector)

Summary

- Higgs and top are here experiments started to play games with them...
- Interplay between the Higgs and top allows for indirect tests of the consistency of the SM via LEP / Tevatron / LHC measurements
- Limits on Higgs-top couplings from ATLAS & CMS (Run I):
 - Most precise constraints through parametrisation of all accessible production and decay modes (mainly indirect, via loop diagrams);
- ttH measurement in all accessible final states at LHC
 - Most precise direct constraint on Higgs-top Yukawa coupling;
- tH measurement allows constraints on sign of Higgs-top-Yukawa coupling;
- Experiments also actively explore a wide range of BSM models, including those with H[±] that couples to top quark (SUSY, 2HDM, etc.)
 - Searches in both low-mass and high-mass H[±] scenarios;
- All measurements compatible with SM predictions at current precision.

Backup

Jelena Jovicevic - CKM 2016, Mumbai, India

28.11 - 02.12, 2016

HL-HLC projections

Jelena Jovicevic - CKM 2016, Mumbai, India

28.11 - 02.12, 2016

tt+jets background in ttH(bb)

CMS:

- Powheg+Pythia8 normalised to NNLO prediction;
- separate templates for $t\overline{t}$ +b, $t\overline{t}$ +bb, $t\overline{t}$ +2b*, $t\overline{t}$ + $\geq Ic$, $t\overline{t}$ + $\geq ILF$;

CMS 13 TeV tt +bb measurement CMS-PAS-TOP-16-010:

ATLAS 8 TeV tt +bb measurement: Eur. Phys. J. C (2016) 76:11

ATLAS:

- Powheg+Pythia6 normalised to NNLO prediction;
- p_T(t) & p_T(tt) corrected to NNLO prediction for $t\overline{t} + \ge Ic$ and $t\overline{t} + \ge ILF$;
- $t\overline{t}$ +b, $t\overline{t}$ +bb and $t\overline{t}$ +B corrected to Sherpa +OpenLoops NLO calculation;
- normalisation for $t\overline{t} + \geq |b|$ and $t\overline{t} + \geq |c|$ free floating in the fit.

* CMS $t\overline{t}$ +2b corresponds to ATLAS $t\overline{t}$ +B

ATLAS Simulation

Preliminary

√s = 13 TeV

 10^{3}

 10^{2}

Sherpa+OpenLoops tt+bb

MG5 aMC@NLO+Hpp tt+bb

••••••• MG5 aMC@NLO+P8 tt+bb

tt+jets Powheg+P6

Higgs and top mass - prospects

Eur. Phys. J. C (2014) 74: 3046.

Higgs production at LHC

RIUMF

ttH production

Jelena Jovicevic - CKM 2016, Mumbai, India

Higgs boson decays

Many decay modes accessible for $m_H = 125 \text{ GeV}$

Bosonic decays: **ZZ**, **WW**, γγ, **Z**γ; Fermionic decays: **bb**, ττ, μμ;

