Addressing R_K and neutrino mixing in a class of $U(1)_X$ models

Disha Bhatia, Sabyasachi Chakraborty and Amol Dighe

November 29, 2016
Experimental anomalies and Global fits interpretation

\(b \to s\ell\ell \) anomalies at LHCb:

\[
R_K = \frac{\mathcal{BR}(B^+ \to K^+ \mu\mu)}{\mathcal{BR}(B^+ \to K^+ ee)} = 0.745^{+0.090}_{-0.074} \pm 0.036 \text{ for } q^2 \in [1, 6] \text{GeV}^2.
\]

SM prediction: \(1 \pm 0.001 \Rightarrow \text{Lepton flavour non-universality} \)

- \(P'_5 \) for \(B \to K^*\mu\mu \)

Global fits: Simultaneous explanation if NP in **vector-axial** operators

\[
\begin{align*}
\mathcal{O}_9^\ell &= \bar{b}\gamma_\mu P_L s \bar{\ell}\gamma^\mu \ell, \\
\mathcal{O}_{10}^\ell &= \bar{b}\gamma_\mu P_L s \bar{\ell}\gamma^\mu \gamma_5 \ell, \\
\mathcal{O}'_9^\ell &= \bar{b}\gamma_\mu P_R s \bar{\ell}\gamma^\mu \ell, \\
\mathcal{O}'_{10}^\ell &= \bar{b}\gamma_\mu P_R s \bar{\ell}\gamma^\mu \gamma_5 \ell.
\end{align*}
\]
Global fits continued ...

2-D global fits in \((C_{9}^{NP,\mu}, C_{9}^{NP,e})\), \((C_{9}^{NP,\mu}, C_{10}^{NP,\mu})\) and \((C_{9}^{NP,\mu}, C'_{\mu})\)

\[\chi^2 \text{ for } (C_{9}^{NP,\mu}, C_{9}^{NP,e}) \text{ better} \]
\[C_{9}^{NP,e} \neq 0 \text{ allowed within } 2\sigma \]
Model building by taking RK anomaly at face value

- Introduce NP in \mathcal{O}_9^μ and \mathcal{O}_9^e using Z' of a $U(1)_X$ symmetry.
 - $R_K \Rightarrow$ diff X-charges for e and μ
 - dominant Z' effects \Rightarrow unequal X-charges for d-type quarks.

- Explain neutrino-mixings simultaneously with flavour $b \rightarrow s$ anomalies.

- X-charges of SM fermions:

<table>
<thead>
<tr>
<th>Quarks</th>
<th>Q_1</th>
<th>u_R</th>
<th>d_R</th>
<th>Q_2</th>
<th>c_R</th>
<th>s_R</th>
<th>Q_3</th>
<th>t_R</th>
<th>b_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)_X$</td>
<td>x_{1L}</td>
<td>x_{1uR}</td>
<td>x_{1dR}</td>
<td>x_{2L}</td>
<td>x_{2cR}</td>
<td>x_{2sR}</td>
<td>x_{3L}</td>
<td>x_{3tR}</td>
<td>x_{3bR}</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leptons</th>
<th>L_1</th>
<th>e_R</th>
<th>L_2</th>
<th>μ_R</th>
<th>L_3</th>
<th>τ_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)_X$</td>
<td>y_{1L}</td>
<td>y_{1eR}</td>
<td>y_{2L}</td>
<td>$y_{2\mu_R}$</td>
<td>y_{3L}</td>
<td>$y_{3\tau_R}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- X-charge of $\Phi_{SM} = a\Phi_{SM}$
Model building by taking RK anomaly at face value continued ...

- X-charges are determined in a **bottom-up** approach (the importance stated in Camalich's talk) using constraints from:
 - Anomaly free $U(1)_X$.
 - $K - \bar{K}$.
 - V_{ckm}.
 - Global fits: Vanishing of $C_{9,10}^{\prime,\ell}$, $C_{10}^{NP,\ell}$.
 - m_A.
 - Allowed neutrino textures.
Constructing the $U(1)_X$ Model

- Introducing 3 ν_R + assigning vector-like charges, i.e.
 \[x_{1L} = x_{1uR} = x_{1dR} = x_1 \]
 \[\Rightarrow \text{anomaly free } U(1)_X, \]
 \[\Rightarrow X \text{ charge of } \Phi_{\text{SM}} \text{ zero}, \]
 \[\Rightarrow C_{10}^{\text{NP}, \ell} = 0. \]

- Equal X-charge of first two generation, i.e. $x_1 = x_2$
 \[\Rightarrow \text{relaxed } K\bar{K} \text{ constraint} \]
 \[\text{but } V_{\text{ckm}} \text{ in 1-2 sector: solved by adding } \Phi_{\text{NP}} \text{ with } X\text{-charge, } x_1 = x_3. \]

- $V_{dR} \approx 1 \Rightarrow C_{9,10}^{\text{NP}, \ell} = 0$: achieved with Φ_{NP}

- Introduce scalar singlet, S, charged under $U(1)_X$
 \[\Rightarrow \text{masses to } Z', \nu_R\text{'s} \]
 \[\Rightarrow \text{generates } U_{\text{PMNS}} \]
 \[\Rightarrow \text{prevents } m_A \neq 0. \]
Introducing 3 ν_R + assigning vector-like charges, i.e.

$$x_{1L} = x_{1uR} = x_{1dR} = x_1$$

- \Rightarrow anomaly free $U(1)_X$,
- \Rightarrow X charge of Φ_{SM} zero,
- $\Rightarrow C_{10}^{NP,\ell} = 0$.

Equal X-charge of first two generation, i.e. $x_1 = x_2$

- \Rightarrow relaxed $K-K$ constraint
- but V_{ckm} in 1-2 sector : solved by adding Φ_{NP} with X-charge, $x_1 - x_3$.

$$V_{dR} \approx 1 \Rightarrow C_{9,10}^{NP,\ell} = 0 : \text{achieved with } \Phi_{NP}$$

Introduce scalar singlet, S, charged under $U(1)_X$

- \Rightarrow masses to Z', ν_R's
- \Rightarrow generates U_{PMNS}
- \Rightarrow prevents $m_A \neq 0$.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>ν_{SM}</th>
<th>Φ_{NP}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)_X$</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
</tr>
</tbody>
</table>
Constructing the $U(1)_X$ Model

- Introducing 3 ν_R + assigning vector-like charges, i.e.
 \[x_{1_L} = x_{1_uR} = x_{1_dR} = x_1 \]
 - \Rightarrow anomaly free $U(1)_X$,
 - \Rightarrow X charge of Φ_{SM} zero,
 - $\Rightarrow C_{10,\ell}^{NP} = 0$.

- equal X-charge of first two generation, i.e. $x_1 = x_2$
 - \Rightarrow relaxed $K-\bar{K}$ constraint
 - but V_{ckm} in 1-2 sector : solved by adding Φ_{NP} with X-charge, $x_1 - x_3$.

- $V_{dR} \approx 1 \Rightarrow C_{9,10}^{NP,\ell} = 0$: achieved with Φ_{NP}

- Introduce scalar singlet, S, charged under $U(1)_X$
 - \Rightarrow masses to Z', ν_R's
 - \Rightarrow generates U_{PMNS}
 - \Rightarrow prevents $m_A \neq 0$.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>ν_{1R}</th>
<th>ν_{2R}</th>
<th>ν_{3R}</th>
<th>Φ_{SM}</th>
<th>Φ_{NP}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)_X$</td>
<td>x_1</td>
</tr>
</tbody>
</table>
Introducing $3 \nu_R$ + assigning vector-like charges, i.e.

$$x_{1L} = x_{1uR} = x_{1dR} = x_1$$

- \Rightarrow anomaly free $U(1)_X$,
- \Rightarrow X charge of Φ_{SM} zero,
- $\Rightarrow C_{10}^{NP, \ell} = 0$.

equal X-charge of first two generation, i.e. $x_1 = x_2$

- \Rightarrow relaxed $K-\bar{K}$ constraint
- but V_{ckm} in 1-2 sector: solved by adding Φ_{NP} with X-charge, $x_1 - x_3$.

$V_{dR} \approx 1 \Rightarrow C_{9,10}^{NP, \ell} = 0$: achieved with Φ_{NP}

Introduce scalar singlet, S, charged under $U(1)_X$

- \Rightarrow masses to Z', ν_R's
- \Rightarrow generates U_{PMNS}
- \Rightarrow prevents $m_A \neq 0$.
Constructing the $U(1)_X$ Model

- Introducing 3 ν_R + assigning vector-like charges, i.e.
 \[x_{1L} = x_{1uR} = x_{1dR} = x_1 \]
 \[\Rightarrow \text{anomaly free } U(1)_X, \]
 \[\Rightarrow X \text{-charge of } \Phi_{SM} \text{ zero}, \]
 \[\Rightarrow C_{10}^{NP, \ell} = 0. \]

- Equal X-charge of first two generation, i.e. $x_1 = x_2$
 \[\Rightarrow \text{relaxed } K\bar{K} \text{ constraint} \]
 \[\text{but } V_{ckm} \text{ in 1-2 sector}: \text{solved by adding } \Phi_{NP} \text{ with } X\text{-charge, } x_1 - x_3. \]

- $V_{dR} \approx 1 \Rightarrow C_{9,10}^{NP, \ell} = 0: \text{achieved with } \Phi_{NP}$

- Introduce scalar singlet, S, charged under $U(1)_X$
 \[\Rightarrow \text{masses to } Z', \nu_R's \]
 \[\Rightarrow \text{generates } U_{PMNS} \]
 \[\Rightarrow \text{prevents } m_A \neq 0. \]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>Φ_{SM}</th>
<th>Φ_{NP}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)_X$</td>
<td>x_1</td>
<td>x_1</td>
<td>x_3</td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>0</td>
<td>$x_1 - x_3$</td>
<td>$x_1 - x_3$</td>
</tr>
</tbody>
</table>
Constructing the $U(1)_X$ Model continued ...

Selecting neutrino textures in accordance with global fit

- Plot:
 - allowed symmetries in lepton sector with atmost two-zeros in M_R
 - + Global fit contours in (C^μ_9, C^e_9)

- Select: pass $1\sigma + C^\text{NP}, e, \mu \neq 0$.

- Selected combinations (6):
 - Type-A = $Le - 3L_\mu \pm L_\tau$.
 - Type-B = $Le - L_\mu \pm 3L_\tau$,
 - $Le - L_\mu \pm L_\tau$.

- Determine X-charges of quarks using $U(1)_X$ anomaly condition

\textbf{Figure: } τ charge suppressed.
Constructing the $U(1)_X$ Model continued ...

Selecting neutrino textures in accordance with global fit

- Plot:
 - allowed symmetries in lepton sector with atmost two-zeros in M_R
 - Global fit contours in (C^μ_9, C^e_9)
- Select: pass $1\sigma + C^{NP, e, \mu}_9 \neq 0$.

Selected combinations (6):

- Type-A $= Le - 3L_\mu \pm L_\tau$.
- Type-B $= Le - L_\mu \pm 3L_\tau$, $Le - L_\mu \pm L_\tau$.

Determine X-charges of quarks using $U(1)_X$ anomaly condition

Figure: τ charge suppressed.
Combined flavour constraints from neutral meson mixings and global fits

Type-A: Allowed at 1σ overlap between $(B_s - \overline{B_s})$ and global fit: disregarded

Type-B: no 1σ overlap between $(B_s - \overline{B_s})$ and global fit: disregarded
Subjecting Type-A symmetries to direct production Z' bounds from colliders

Collider bounds from: $\sigma(pp \rightarrow Z' \rightarrow \mu\mu)$

Bounds from flavour($B_s - \overline{B}_s$), global fit and collider: Substantial overlap
R_K predictions for Type-A symmetries

Figure: $g_X = 0.2$
Z' reach at the colliders for Type-A

Detection of Z' in $\mu\mu$ channel:

![Diagram showing signal access over background for di-muon events](image1)

Figure: Schematic for signal access over background for di-muon events

![Significance for detecting Z' with $g_X = 0.2$](image2)

Figure: Significance for detecting Z' with $g_X = 0.2$
Summarizing

- Two symmetry combinations: $L_e - 3L_\mu \pm L_\tau$ pass all the constraints.

- Additional particles introduced: Z', Φ_{NP}, S and 3 ν_R's.

- Possible to probe $L_e - 3L_\mu + L_\tau$ at 3σ with ~ 60 fb$^{-1}$ luminosity: $M_{Z'} = 3800$ GeV and $g_X = 0.2$.