# Addressing $R_K$ and neutrino mixing in a class of $U(1)_X$ models

Disha Bhatia, Sabyasachi Chakraborty and Amol Dighe

November 29, 2016

#### Experimental anomalies and Global fits interpretation

 $b \to s \ell \ell$  anomalies at LHCb :

•

$$R_{K} = rac{\mathcal{BR}(B^{+} o K^{+}\mu\mu)}{\mathcal{BR}(B^{+} o K^{+}ee)} = 0.745^{+0.090}_{-0.074} \pm 0.036 \;\; {
m for} \;\; q^{2} \in \; [1,6] \, {
m GeV}^{2}.$$

SM prediction :  $1 \pm 0.001 \Rightarrow$  Lepton flavour non-universality

•  $P_5'$  for  $B \to K^* \mu \mu$ 

Global fits : Simultaneous explanation if NP in vector-axial operators

•

$$\begin{array}{rcl} \mathcal{O}_{9}^{\ell} & = & \overline{b}\gamma_{\mu}P_{L}s\;\overline{\ell}\gamma^{\mu}\ell\;, & \mathcal{O}_{10}^{\ell} & = & \overline{b}\gamma_{\mu}P_{L}s\;\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\;, \\ \mathcal{O}_{9}^{\prime\ell} & = & \overline{b}\gamma_{\mu}P_{R}s\;\overline{\ell}\gamma^{\mu}\ell\;, & \mathcal{O}_{10}^{\prime\ell} & = & \overline{b}\gamma_{\mu}P_{R}s\;\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\;. \end{array}$$



#### Global fits continued ...

Results taken from T. Hurth, F. Mahmoudi and S. Neshatpour, Nucl. Phys. B **909**, 737 (2016)

2-D global fits in 
$$(C_9^{{\rm NP},\mu},C_9^{{\rm NP},e}),$$
  $(C_9^{{\rm NP},\mu},C_{10}^{{\rm NP},\mu})$  and  $(C_9^{{\rm NP},\mu},C_9'^{\mu})$ 







- $\chi^2$  for  $(C_9^{NP,\mu}, C_9^{NP,e})$  better
- $C_9^{\text{NP},e} \neq 0$  allowed within  $2\sigma$

#### Model building by taking RK anomaly at face value

- Introduce NP in  $\mathcal{O}_9^\mu$  and  $\mathcal{O}_9^e$  using Z' of a  $U(1)_X$  symmetry.
  - $R_K \Rightarrow \text{diff } X\text{-charges for } e \text{ and } \mu$
  - dominant Z' effects  $\Rightarrow$  unequal X-charges for d-type quarks.
- ullet Explain neutrino-mixings simultaneously with flavour b 
  ightarrow s anomalies.
- *X*-charges of SM fermions:

| Quarks   | $Q_1$                              | $u_R$        | $d_R$        | $Q_2$                              | CR           | s <sub>R</sub>   | $Q_3$                   | $t_R$        | $b_R$            |
|----------|------------------------------------|--------------|--------------|------------------------------------|--------------|------------------|-------------------------|--------------|------------------|
| $U(1)_X$ | <i>x</i> <sub>1<i>L</i></sub>      | $X_{1_{uR}}$ | $X_{1_{dR}}$ | <i>x</i> <sub>2</sub> <sub>L</sub> | $X_{2_{cR}}$ | X <sub>2sR</sub> | <i>X</i> 3 <i>L</i>     | $X_{3_{tR}}$ | X3 <sub>bR</sub> |
| Leptons  | $L_1$                              |              | $e_R$        | L <sub>2</sub>                     |              | $\mu_R$          | L <sub>3</sub>          |              | $	au_{R}$        |
| $U(1)_X$ | <i>y</i> <sub>1</sub> <sub>L</sub> |              | $y_{1_{eR}}$ | <i>y</i> <sub>2</sub> <sub>L</sub> |              | $y_{2_{\mu R}}$  | <i>y</i> 3 <sub>L</sub> |              | $y_{3_{\tau R}}$ |

• X-charge of  $\Phi_{SM} = a_{\Phi_{SM}}$ 

## Model building by taking RK anomaly at face value continued ...

- X-charges are determined in a **bottom-up** approach (the importance stated in **Camalich's** talk) using constraints from:
  - Anomaly free  $U(1)_X$ .
  - $K-\overline{K}$ .
  - $\bullet$   $V_{ckm}$ .
  - Global fits : Vanishing of  $C_9^{\prime,\ell}$  ,  $C_{10}^{NP,\ell}$ .
  - m<sub>A</sub>.
  - Allowed neutrino textures.

$$x_{1_L} = x_{1_{uR}} = x_{1_{dR}} = x_1$$

- $\Rightarrow$  anomaly free  $U(1)_X$ ,
- $\Rightarrow X$  charge of  $\Phi_{SM}$  zero,
- $\bullet \Rightarrow \mathcal{C}_{10}^{\mathsf{NP},\ell} = 0.$
- equal X-charge of first two generation, i.e.  $x_1 = x_2$ 
  - $\bullet \Rightarrow$  relaxed K-K constraint
  - ullet but  $V_{ckm}$  in 1-2 sector : solved by adding  $\Phi_{
    m NP}$  with X-charge,  $x_1-x_2$
- $V_{d_R} pprox 1 \Rightarrow \mathcal{C}_{9,10}^{\prime \mathrm{NP},\ell} = 0$  : achieved with  $\Phi_{\mathrm{NP}}$
- Introduce scalar singlet, S, charged under  $U(1)_X$ 
  - $\Rightarrow$  masses to Z',  $\nu_R$ 's
  - $\bullet \Rightarrow$  generates  $U_{PMNS}$
  - $\Rightarrow$  prevents  $m_A \neq 0$ .

$$x_{1_L} = x_{1_{uR}} = x_{1_{dR}} = x_1$$

- $\Rightarrow$  anomaly free  $U(1)_X$ ,
- $\Rightarrow X$  charge of  $\Phi_{SM}$  zero,
- $\Rightarrow C_{10}^{\mathsf{NP},\ell} = 0.$
- equal X-charge of first two generation, i.e.  $x_1 = x_2$ 
  - $\Rightarrow$  relaxed  $K \overline{K}$  constraint
  - but  $V_{ckm}$  in 1-2 sector : solved by adding  $\Phi_{NP}$  with X-charge,  $x_1 x_3$ .
- ullet  $V_{d_R}pprox 1 \Rightarrow {\cal C}_{9,10}^{\prime {
  m NP},\ell}=0$  : achieved with  $\Phi_{
  m NP}$
- Introduce scalar singlet, S, charged under  $U(1)_X$ 
  - $\Rightarrow$  masses to Z',  $\nu_R$ 's
  - $\Rightarrow$  generates  $U_{PMNS}$
  - $\Rightarrow$  prevents  $m_A \neq 0$ .

$$x_{1_L} = x_{1_{uR}} = x_{1_{dR}} = x_1$$

- $\Rightarrow$  anomaly free  $U(1)_X$ ,
- $\Rightarrow X$  charge of  $\Phi_{SM}$  zero,
- $\Rightarrow C_{10}^{\mathsf{NP},\ell} = 0.$
- equal X-charge of first two generation, i.e.  $x_1 = x_2$ 
  - $\Rightarrow$  relaxed  $K \overline{K}$  constraint
  - but  $V_{ckm}$  in 1-2 sector : solved by adding  $\Phi_{NP}$  with X-charge,  $x_1 x_3$ .
- ullet  $V_{d_R}pprox 1 \Rightarrow {\cal C}_{9,10}^{\prime {\sf NP},\ell}=0$  : achieved with  $\Phi_{\sf NP}$
- Introduce scalar singlet, S, charged under  $U(1)_X$ 
  - $\Rightarrow$  masses to Z',  $\nu_R$ 's
    - $\Rightarrow$  generates  $U_{PMNS}$
    - $\Rightarrow$  prevents  $m_A \neq 0$ .

$$x_{1_L} = x_{1_{uR}} = x_{1_{dR}} = x_1$$

- $\Rightarrow$  anomaly free  $U(1)_X$ ,
- $\Rightarrow X$  charge of  $\Phi_{SM}$  zero,
- $\Rightarrow C_{10}^{\mathsf{NP},\ell} = 0.$
- equal X-charge of first two generation, i.e.  $x_1 = x_2$ 
  - $\Rightarrow$  relaxed  $K \overline{K}$  constraint
  - but  $V_{ckm}$  in 1-2 sector : solved by adding  $\Phi_{NP}$  with X-charge,  $x_1 x_3$ .
- $V_{d_R} pprox 1 \Rightarrow {\mathcal C}_{9,10}^{\prime {\sf NP},\ell} = 0$  : achieved with  $\Phi_{\sf NP}$
- Introduce scalar singlet, S, charged under  $U(1)_X$ 
  - $\Rightarrow$  masses to Z',  $\nu_R$ 's
  - $\Rightarrow$  generates  $U_{PMNS}$
  - $\Rightarrow$  prevents  $m_A \neq 0$ .

| Fields   | $Q_1$ | $Q_2$ | $Q_3$                 | $L_1$                 | $L_2$                 | $L_3$      | $\Phi_{SM}$ | Φ <sub>NP</sub> | 5           |
|----------|-------|-------|-----------------------|-----------------------|-----------------------|------------|-------------|-----------------|-------------|
| $U(1)_X$ | $x_1$ | $x_1$ | <i>X</i> <sub>3</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | <i>У</i> з |             | $x_1 - x_3$     | $x_1 - x_3$ |

$$x_{1_L} = x_{1_{uR}} = x_{1_{dR}} = x_1$$

- $\Rightarrow$  anomaly free  $U(1)_X$ ,
- $\Rightarrow X$  charge of  $\Phi_{SM}$  zero,
- $\Rightarrow C_{10}^{\mathsf{NP},\ell} = 0.$
- equal X-charge of first two generation, i.e.  $x_1 = x_2$ 
  - $\Rightarrow$  relaxed  $K \overline{K}$  constraint
  - but  $V_{ckm}$  in 1-2 sector : solved by adding  $\Phi_{NP}$  with X-charge,  $x_1 x_3$ .
- $V_{d_R} pprox 1 \Rightarrow {\cal C}_{9,10}^{\prime {\sf NP},\ell} = 0$  : achieved with  $\Phi_{\sf NP}$
- Introduce scalar singlet, S, charged under  $U(1)_X$ 
  - $\Rightarrow$  masses to Z',  $\nu_R$ 's
  - $\Rightarrow$  generates  $U_{PMNS}$
  - $\Rightarrow$  prevents  $m_A \neq 0$ .

| Fields   | $Q_1$                 | $Q_2$                 | $Q_3$      | $L_1$ | L <sub>2</sub>        | L <sub>3</sub>        | $\Phi_{SM}$ | Φ <sub>NP</sub> | 5           |
|----------|-----------------------|-----------------------|------------|-------|-----------------------|-----------------------|-------------|-----------------|-------------|
| $U(1)_X$ | <i>x</i> <sub>1</sub> | <i>x</i> <sub>1</sub> | <i>X</i> 3 | $y_1$ | <i>y</i> <sub>2</sub> | <i>y</i> <sub>3</sub> | 0           | $x_1 - x_3$     | $x_1 - x_3$ |

#### Constructing the $U(1)_X$ Model continued ...

Selecting neutrino textures in accordance with global fit

- Plot:
   allowed symmetries in lepton sector
   with atmost two-zeros in M<sub>R</sub>
   (in presence of S)
   + Global fit contours in (C<sub>q</sub><sup>μ</sup>, C<sub>q</sub><sup>e</sup>)
- Select : pass  $1\sigma + C_9^{\text{NP},e,\mu} \neq 0$ .
- Selected combinations (6):

Type-A = 
$$Le - 3L_{\mu} \pm L_{\tau}$$
.  
Type-B =  $Le - L_{\mu} \pm 3L_{\tau}$ ,  
 $Le - L_{\mu} \pm L_{\tau}$ .

• Determine X-charges of quarks using  $U(1)_X$  anomaly condition



Figure:  $\tau$  charge suppressed.

#### Constructing the $U(1)_X$ Model continued ...

Selecting neutrino textures in accordance with global fit

- Plot : allowed symmetries in lepton sector with atmost two-zeros in  $M_R$  (in presence of S)
- Select : pass  $1\sigma + C_{\mathsf{q}}^{\mathsf{NP},e,\mu} \neq 0$ .
- Selected combinations (6):

Type-A 
$$=$$
  $Le-3L_{\mu}\pm L_{\tau}$  .   
Type-B  $=$   $Le-L_{\mu}\pm 3L_{\tau}$  ,  $Le-L_{\mu}\pm L_{\tau}$  .

• Determine X-charges of quarks using  $U(1)_X$  anomaly condition



Figure:  $\tau$  charge suppressed.

# Combined flavour constraints from neutral meson mixings and global fits



Type-B : no 1  $\sigma$  overlap between  $(B_s-\overline{B_s})$  and global fit : disregarded

Type-A: Accepted

## Subjecting Type-A symmetries to direct production Z' bounds from colliders

Collider bounds from :  $\sigma(pp \to Z' \to \mu\mu)$ 



Bounds from flavour( $B_s - \overline{B_s}$ ), global fit and collider : Substantial overlap

#### $R_K$ predictions for Type-A symmetries



Figure:  $g_X = 0.2$ 

## Z' reach at the colliders for Type-A

#### Detection of Z' in $\mu\mu$ channel :



Figure: Schematic for signal access over background for di-muon events



Figure: Significance for detecting Z' with  $g_X = 0.2$ 

## Summarizing

- ullet Two symmetry combinations :  $L_e 3L_{\mu} \pm L_{ au}$  pass all the constraints.
- Additional particles introduced : Z',  $\Phi_{NP}$ , S and 3  $\nu_R$ 's.
- Possible to probe  $L_e-3L_\mu+L_\tau$  at  $3\sigma$  with  $\sim 60~{\rm fb}^{-1}$  luminosity:  $M_{Z'}=3800~{\rm GeV}$  and  $g_X=0.2$ .