Experimental measurements of $D_{(s)}$ semileptonic branching fractions

Yangheng Zheng

University of Chinese Academy of Sciences

Nov. 29, 2016

9th International Workshop on the CKM Unitarity Triangle

TIFR, Mumbai

Outline

- **♦Introduction**
- **♦ Selected recent results in**
 - ♦ $D \rightarrow P l \nu$ measurements: BF & Form factor fit ⇒ $f_{+}^{D\rightarrow\pi}(0), f_{+}^{D\rightarrow K}(0)$
 - $\bullet D \rightarrow V l \nu$ measurements
 - ◆Rare/Forbidden decay search
 - $+D \rightarrow \text{ wev and } D \rightarrow \text{ dev (new)}$
 - $+D \rightarrow a_0(980) \text{ev (new)}$
 - $+D^+ \rightarrow D^0 e^+ v_e$ (new)
 - $ightharpoonup D_s^+
 ightharpoonup \phi e^+ \nu$, $\eta^{(\prime)} e^+ \nu$, $f_0 e^+ \nu$ (new)
- **♦Summary**

Introduction

- Windows on weak and strong physics
- ♦ Weak decay ⇒ theoretically clean
- Over-constrain CKM and search for New Physics
- ◆ Strong interaction ⇒ test Lattice QCD

Semileptonic decays

$$\frac{dG(D \to K(\rho)en)}{dq^{2}} = \frac{G_{F}^{2} \left[V_{cs(d)}\right]^{2} P_{K(\rho)}^{3}}{24\rho^{3}} \left[f_{+}(q^{2})\right]$$

$$q^{2} = (p_{1} + p_{v})^{2} \implies \mathbf{M}^{2}_{inv}$$
of lepton pair

- $\rightarrow D_{(s)} \rightarrow P l \nu$
 - ♦ Measure |V_{cx}| x FF
 - ♦ Charm physics: CKM-unitarity ⇒ | V_{cx}|, extract FF, test LQCD; Or input LQCD FF to test CKM-unitarity
 - ♦ B physics: FF in D semileptonic decays ⇒ Validate and Calibrate LQCD calculation ⇒ improve |V_{ub}| measurement ⇒ test CKM-unitarity
- $\rightarrow D_{(s)} \rightarrow V l \nu$
 - Extract more parameters, test pole dominance model
 - ♦ Study S-wave in D → Kπ I ν , D → KK I ν , D → $\pi\pi$ I ν
- $\rightarrow D_{(s)} \rightarrow Rare/forbidden$
 - **♦** Search for new physics
 - ◆ Study D_s structure and long-distant effect

Charm facilities

- Hadron colliders (Huge cross-section, energy boost)
 - **→** Tevetron (CDF, D0)
 - **→ LHC (LHCb, CMS, ATLAS)**
- ◆ e⁺e⁻ Colliders (more kinematic constrains, clean environment, ~100% trigger efficiency)
 - ◆ B-factories (Belle, BaBar)
 - **♦ Prompt D* decays & B decays**
 - **♦**High Luminosity ⇒ double tag technique possible
 - Threshold production (CLEOc, BESIII)
 - **◆**Can not compete in statistics with Hadron colliders & B-factories!
 - ◆Only Charm hadron pairs, no extra CM Energy for pions
 - ◆Quantum Correlations (QC) and CP-tagging are unique
 - **♦** Systematic uncertainties cancellations while applying double tag technique

v Recon. (Experimental challenges)

Commonly used techniques (Partial reconstruction)

- Hadron Machines (FOCUS, LHCb)
 - Applied for semileptonic decays
 - **♦** Secondary vertex ⇒ D direction
 - 4-momenta of charged decay product(s)

Get direction of the signal D from momentum conservation (sum of momentums of the rest decay products)

$$ec{p}_D \propto - \sum ec{p}_i$$

- Fully reconstruct the tag side as D*X (better resolution but less statistics)
- Charm @ threshold (see next slide)

v Recon. @charm threshold

- ◆ CLEO-c, BESIII
- ◆ 100% of beam energy converted to D pair (Clean environment, kinematic constrains v Recon.)
- ightharpoonup D generated in pair \Rightarrow absolute Branching fractions
- \bullet At $\psi(3770)$ charm production is $D^0 \overline{D}{}^0$ and $D^+ D^-$
- **→** Fully reconstruct about 15% of *D* decays

$$\vec{p}_{ar{D}}, E_{ar{D}}$$
 $\vec{p}_{ar{D}}, E_{ar{D}}$
 $\vec{p}_{ar{D}}, E_{ar{D}}$

$$DE = E_D - E_{\text{Beam}}$$

$$M_{\text{BC}} = \sqrt{E_{\text{Beam}}^2 - p_D^2}$$

◆ Double tag techniques: Hadronic tag on one side, on the other side for leptonic/semileptonic studies. Neutrino is reconstructed from missing energy and momentum (Double tag efficiency is high.)

$D^0 \rightarrow Pe^+\nu \ (P=K/\pi)$

PRD92(2015)072012

Data analysis

- ◆ Full data samples: 2.93fb⁻¹ @3.773GeV
- ◆ 5 tag modes
- Signal side: just positron and K/π, minimal extra energy
- ♦ Kinematic variable: U_{miss}
- ♦ Most precise measurements on FF and |V_{cx}|
- ◆ Branching fraction results are in excellent agreement with previous measurements and more precise

Differential partial width Fits

Fitted using different form factor models

PRD92(2015)072012

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - q^{2}/m_{note}^{2}}$$

- → Simple pole model $f_{+}(q^2) = \frac{f_{+}(0)}{1 q^2/m_{pole}^2}$ → Modified pole model (Becirevic and Kaidalov, $f_{+}(q^2) = \frac{f_{+}(0)}{\left(1 \frac{q^2}{m_{pole}^2}\right)\left(1 \alpha \frac{q^2}{m_{pole}^2}\right)}$ PLB 478, 417)
- ♦ Series expansion (CLEO-c/BES III $f_+(q^2) = \frac{1}{P(q^2) \phi(q^2, t_0)} \sum_{k=0}^{\infty} a_k(t_0) \left[z(q^2, t_0)\right]^k$ explored 2nd and 3rd order):

Using $f_{+}^{K(\pi)}(0)|V_{cs(d)}|$ from the 2-par.

series fit and FFs from HPQCD:

$$|V_{cs}| = 0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239$$

$$|V_{cd}| = 0.2155 \pm 0.0027 \pm 0.0014 \pm 0.0094$$

Measurement of Form Factors $f_{+}^{K(\pi)}(q^2)$

- The solid lines are the best fit to LQCD with modified pole model
 - ◆ Inner band is statistical uncertainty of the LQCD calculation
 - ♦ Outer band is stat.+syst. uncertainties of the LQCD calculation
- ◆ Slight tension between measurements and LQCD calculation at higher q² bins.

The precision of these form factors is higher than that of the LQCD calculations by a factor of 3~4.

$$f_{+}^{\pi}(0)/f_{+}^{K}(0)$$
 and $|V_{cd}|/|V_{cs}|$

PRD92(2015)072012

Experimentally

$$+ f_{+}^{\pi}(0)/f_{+}^{K}(0) = 0.8649 \pm 0.0112 \pm 0.0073$$

- ◆ Theoretically
 - $+ f_{\perp}^{\pi}(0)/f_{\perp}^{K}(0) = 0.84 \pm 0.04$
 - **◆LCSR: P. Ball, PLB 641, 50 (2006)**

The ratio is in excellent agreement with the LCSR calculation.

+ BESIII

- $|V_{cd}|/|V_{cs}| = 0.238 \pm 0.004_{stat} \pm 0.002_{sys} \pm 0.011_{LCSR}$
- **♦** Comparison of |V_{cd}|/|V_{cs}| measurements

Experiment	$ V_{cd} / V_{cs} $	Note
PDG2014 [6]	0.228 ± 0.009	Using $ V_{cd} = 0.225 \pm 0.008$ and $ V_{cs} = 0.986 \pm 0.016$
CLEO-c [23]	$0.242 \pm 0.011 \pm 0.004 \pm 0.012$	Using $D \to \pi e^+ \nu_e$ and $D \to K e^+ \nu_e$
BESIII (this work)	$0.238 \pm 0.004 \pm 0.002 \pm 0.011$	Using $D^0 \to \pi^- e^+ \nu_e$ and $D^0 \to K^- e^+ \nu_e$

For the BES-III and CLEO-c results of $|V_{cd}|/|V_{cs}|$, the first error is statistical, second systematic, and the third is theoretical uncertainty

$D^0 \rightarrow \pi e^+ \nu \text{ signal (BaBar)}$

- ◆ Data set:347.2 fb⁻¹ @Y(4S)
 - ♦ Partial reconstruction: $D^{*+} \rightarrow D^0\pi$ with the $D^0 \rightarrow \pi e^+ v$
 - ♦ Normalization: $D^{*+} \rightarrow D^0\pi$ with the $D^0 \rightarrow K\pi$
- ◆ Imposing D*+ and D⁰ mass constraint
- $+ q^2 = (p_l + p_v)^2 = (p_D p_\pi)^2$
- ◆ Fisher discriminant ⇒ suppress background from B events and other semileptonic decays from continuum

PRD91(2015)052022

$D^0 \rightarrow \pi e^+ \nu$ Form Factor (BaBar)

PRD91(2015)052022

Branching Fraction ratio

$$R_D = \frac{Br(D^0 \to \pi^- e^+ \nu_e)}{Br(D^0 \to K^- \pi^+)} = 0.0702 \pm 0.0017 \pm 0.0023$$

Using $D^0 \to K\pi$ BF from PDG:

$$Br(D^0 \to \pi^- e^+ \nu_e) = (2.770 \pm 0.068 \pm 0.092 \pm 0.037) \times 10^{-3}$$

- ◆ Test FF parametrization
 - ◆ 2 or 3 poles are used to parametrize the FF
 - Two pole parameterization cannot reproduce data
 - Three pole ansatz fits the data well up to 2 GeV²
- **♦** For factor normalization

$$|V_{cd}|f_{+,D}^{\pi}(0) = 0.1374 \pm 0.0038_{\text{stat.}} \pm 0.0022_{\text{syst.}} \pm 0.0009_{\text{ext.}}$$

0.2

data, 3-pole

$D^+ \rightarrow K_{\rm L} e^+ \nu$

- ★ K_L reconstruction (Partial recon.)
 - ◆ EMC neutral cluster ⇒ K_L position
 - Fix U_{miss}=0 ⇒ K_L momentum
- **♦** D^+ → K_L e+v is measured for the first time

PRD92(2015)112008

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$

 $A_{CP}^{D+\rightarrow KLe+v} = (-0.59\pm0.60\pm1.50)\%$

★ This result is consistent with theoretical prediction (-3.3x10⁻³) [Z.Z. Xing, PLB353, 313(1995); PLB363, 266(1996)]

Simultaneous Fit to observed DT yields, red dash is signal

 $f_{+}^{K}(0)|V_{cs}|$ =0.728±0.006±0.011

Direct measurement

 $f_{+}^{K}(0) = 0.748 \pm 0.007 \pm 0.012 \Leftarrow [with |V_{cs}| from SM constraint fit]$

 $|V_{cs}| = 0.975 \pm 0.008_{stat} \pm 0.015_{sys} \pm 0.025_{LQCD} \Leftarrow [with fK + (0) = 0.747 \pm 0.019 (PRD82, 114506(2010)]$

$D^+ \rightarrow K_S^0 e^+ v \text{ and } D^+ \rightarrow \pi^0 e^+ v$

- ◆ Full data set: 2.93 fb⁻¹ data@ 3.773 GeV
- \bullet BESIII's BR for $D^+ \to \pi^0 e^+ \nu$ is lower than CLEOc's.
- **♦** Form Factors are also measured.

$D^+ \rightarrow K_S^0 \mu^+ \nu$

Eur. Phys. J. C 76 (2016) 369

From Rong/Gang at CHARM2016

- ♦ Full data set: 2.93 fb⁻¹ data@ 3.773 GeV

 B(D⁺→ \overline{K}^0 μ⁺ν)
- ♦ 6 hadronic modes, 1.52×10⁶ *D* tags
- Comparing this measured BF with PDG:
 - $+ \frac{\Gamma[D^0 \to K^- \mu^+ \overline{\nu}]}{\Gamma[D^+ \to \overline{K}^0 \mu^+ \nu]} = 0.963 \pm 0.044 \Rightarrow \text{Supporting isospin conservation.}$
 - $+ \frac{\Gamma[D^+ \to \overline{K}^0 \mu^+ \nu]}{\Gamma[D^+ \to \overline{K}^0 e^+ \nu]} = 0.988 \pm 0.033 \implies \text{consistent with theoretical prediction.}$

Status of Form Factors $f_{+}^{D\to K(\pi)}(0)$

 $f_+^{D \to K(\pi)}(0)$ determined from $f_+^{D \to K(\pi)}(0)$ $|V_{cs(d)}|$ combining with

|Vcs(d)| from the SM global fit

- ♦ D^0 → π -e+ ν and D^0 → K-e+ ν from BESIII ⇒ most precise measurements
- Experimental accuracy is better than the LQCD calculation.

Status of $|V_{cs}|$ and $|V_{cd}|$

 $|V_{cs(d)}|$ extracted from $f_+^{D\to K(\pi)}(0)$ $|V_{cs(d)}|$ combining with $f_+^{D\to K(\pi)}(0)$ from LQCD calculation.

 $0.906 \pm 0.029_{exp} \pm 0.023_{LQCD}$ Belle ($D^0 \rightarrow K^- e^+ v_e$, $D^0 \rightarrow K^- \mu^+ v_{\mu}$) PRL 97, 061804 (2006) $0.973 \pm 0.015_{\text{exp}} \pm 0.024_{\text{LOCD}}$ BABAR ($D^0 \rightarrow K^-e^+v_-$) PRD 76, 052005 (2007) $\begin{array}{l} 0.963 \pm 0.011_{exp} \pm 0.024_{LQCD} \\ \text{CLEO-c} \; (D^0 \! \rightarrow \! K^-\!e^+\nu_e, \; D^+ \! \rightarrow \! K^0\!e^+\nu_e) \end{array}$ PRD 80, 032005 (2009) $0.9601 \pm 0.0058_{exp} \pm 0.0239_{LOCD}$ BES-III ($D^0 \rightarrow K^- e^+ v_-$) PRD 92, 072012 (2015) $\begin{array}{l} 0.9442 \pm 0.02\underline{53}_{\text{pxp}} \pm 0.0235_{\text{LQCD}} \\ \text{BES-III} \; (\text{D}^{\text{+}} \! \rightarrow \! \overline{\text{K}}_{\text{s}} \text{e}^{\text{+}} \nu_{\text{e}}) \end{array}$ Preliminary 0.8 0.9

The inner uncertainties are experimental; the outer uncertainties are due to uncertainties of LQCD calculations

$D \rightarrow V l \nu$

- ♦ Kinematics (K^* → $K\pi$ as Vector decay example): 5 degree of freedom (m² in K^* system, \mathbf{q}^2 in l_V system, $\cos(\dot{\theta}_K)$, $\cos(\theta_{e})$ and χ
- ◆ For massless l (e: good approximation), need 3 form factors: 2 axial and a vector. Uaually parameterized with simple pole.
- ◆ Usually measure r_v and r_△
- \bullet Combined with $D \rightarrow \rho e \nu$, $D \rightarrow K^* e \nu$ and $B \rightarrow V l^+ l^-$, to extract $|V_{ub}|$ from $B \rightarrow \rho e v$ (PRD 70, 114005 (2004))

$$V(q^2) = \frac{V(0)}{1 - \frac{q^2}{m_V^2}}, \quad r_V \equiv \frac{V(0)}{A_1(0)}$$

- ♦ Measure D → { $K\pi$ -S wave}ev component $A_1(q^2) = \frac{A_1(0)}{1 \frac{q^2}{m_A^2}}$, $A_2(q^2) = \frac{A_2(0)}{1 \frac{q^2}{m_A^2}}$, $A_3(0) = \frac{A_2(0)}{1 \frac{q^2}{m_A^2}}$, $A_3(0) = \frac{A_2(0)}{1 \frac{q^2}{m_A^2}}$, $A_3(0) = \frac{A_3(0)}{1 \frac{$

 - BaBar(348 fb⁻¹):PRD 83 (2011) 072001

$D \rightarrow K^* e \nu$, $D^+ \rightarrow K^- \pi^+ e^+ \nu$

■ Fractions with >5σ significance

$$f(D^+ \to (K^- \pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$$

 $f(D^+ \to (K^- \pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

■ Properties of different $K\pi$ (non-) resonant amplitudes

$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$$

 $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$
 $r_{BW} = (3.07 \pm 0.26 \pm 0.11) (\text{GeV}/c)^{-1}$

■ q² dependent form factors in D⁺→ K^{*0}(892)e⁺v

PRD94(2016)032001

Model independent S-wave phase measurement

$M_{V/A}$ is expected to $M_{D^*(1-/+)}$

$$m_V = (1.81^{+0.25}_{-0.17} \pm 0.02) \text{ GeV}/c^2$$

 $m_A = (2.61^{+0.22}_{-0.17} \pm 0.03) \text{ GeV}/c^2$
 $A_1 (0) = 0.573 \pm 0.011 \pm 0.020$
 $r_V = V(0)/A_1 (0) = 1.411 \pm 0.058 \pm 0.007$
 $r_2 = A_2(0)/A_1 (0) = 0.788 \pm 0.042 \pm 0.008$

Model independent form factors

the dominate K*(892)0 component is accompanied by S-wave contribution (~6% of total) and that other component are negligible.

$D \rightarrow \omega e \nu \text{ and } D \rightarrow \phi e \nu$

PRD92(2015)071101(R)

- ♦ CLEOc: $D \rightarrow \rho e v$ and $D \rightarrow \omega e v$
 - Measured FF for D → ρeν for the first time.
 - → PRL110, 131802 (2013)
- BESIII
 - Most precise BR for D→
 ∞ev
 - **♦** Amplitude analysis of D+→∞e+v is performed for the first time
 - Form Factor ratio

$$r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06$$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$

◆ BFs are consistent with FK predictions (Fajfer and Kamenik, Phys. Rev. D 72, 034029 (2005))

Better precision or sensitivity

$D^+ \rightarrow D^0 e^+ \nu_e$

B€SⅢ

Motivation

- ♦ the weak decays ← light-quark sectors (heavy-quark unchanged)
- ◆ Theoretical prediction is 2.78× 10⁻¹³ [EPJC, 59:841-845(2009) by Applying the SU(3) symmetry for the light quarks]

- **→** D⁻: reconstructed with six tag modes
- → D⁰: reconstructed with three signal modes
- ◆ D⁰ momentum and D⁻D⁰ energy are used to suppress the background

	₫	-^	Ī
]	c ——	c	;
	Tag Mode	Signal Mode	
	$K\pi\pi$	$K\pi$	
	$K\pi\pi\pi^0$	$K\pi\pi^0$	
	$K_S^0\pi\pi^0$	$K\pi\pi\pi$	
	$K_{\sigma}^{0}\pi\pi\pi$		

 $KK\pi$

$D^+ \rightarrow D^0 e^+ \nu_e$

- Two Dimension fit on candidates
 - → Beam constrained mass for the D⁻ candidates
 - ◆ Invariant mass for the D⁰ candidates
- ♦ Bayesian method : upper-limit of $B(D^+ \rightarrow D^0 e^+ v_e) < 7.8 \times 10^{-5}$ @ 90%C.L..
- Compatible with the theoretical prediction [EPJC, 59:841-845(2009)]

 $N_{\rm bkg}^{i}$ estimated with Inc. MC: $D^{0} \to K^{-}\pi^{+}: 3.0\pm0.6$ $D^{0} \to K^{-}\pi^{+}\pi^{+}\pi^{-}: 8.5\pm1.0$ $D^{0} \to K^{-}\pi^{+}\pi^{0}: 10.3\pm1.2$

$D \rightarrow a_0(980)e^+\nu_e$

Motivation

- → $R \equiv \frac{B(D^+ \to f_0 l^+ \nu) + B(D^+ \to \sigma l^+ \nu)}{B(D^+ \to a_0 l^+ \nu)}$: a model-independent way to study the structure of the light scalar mesons[Wang and Lu, PRD82, 034016 (2010), PDG review]
- ♦ Chiral unitarity approach [PRD 92, 054038 (2015)] \Rightarrow BFs: ~5(6)x10⁻⁵ for D⁰(D⁺)

Data analysis (Double Tag technique applied)

→ For Tag side:

$$ar{D}^0
ightarrow K^+\pi^-
onumber \ ar{D}^0
ightarrow K^+\pi^-\pi^0
onumber \ ar{D}^0
ightarrow K^+\pi^-\pi^+\pi^-
onumber$$

$$D^{-}
ightarrow K^{+}\pi^{-}\pi^{-} \ D^{-}
ightarrow K^{+}\pi^{-}\pi^{-}\pi^{0} \ D^{-}
ightarrow K^{0}_{S}\pi^{-} \ D^{-}
ightarrow K^{0}_{S}\pi^{-}\pi^{0} \ D^{-}
ightarrow K^{0}_{S}\pi^{-}\pi^{+}\pi^{-} \ D^{-}
ightarrow K^{+}K^{-}\pi^{-}$$

♦ Signal side:

$$D^0 o a_0 (980)^- e^+ \nu_e, \, a_0 (980)^- o \eta \pi^-, \eta o \gamma \gamma \ D^+ o a_0 (980)^0 e^+ \nu_e, \, a_0 (980)^0 o \eta \pi^0, \eta o \gamma \gamma$$

$D \rightarrow a_0(980)e^+\nu_e$

Kinematic variables:

- Invariant mass of η π: M_{ηπ}
- $igsplace U \equiv E_{miss} c |\vec{p}_{miss}|, \ E_{miss} = E_{beam} E_{\eta\pi} E_e, \ ec{p}_{miss} = (ec{p}_{tag} + ec{p}_{\eta\pi} + ec{p}_e)$

- 2-D unbinned extended maximum likelihood fits
 - ◆ U shape

 MC shape
 - M_{ηπ} shape: fixed BW Function (Belle:PRD80, 032001 (2009))
 - **♦** BKG shapes ← MC shape

- Dominant sys errrors
 - Model of decay dynamics
 - + $a_0(980)$ lineshape

Projection of data set, the fit results and backgrounds on (left) $M_{\eta\pi}$ and (right) U for (top) $D^0 \to a_0(980)^- e^+ \nu_e$ and (bottom) $D^+ \to a_0(980)^0 e^+ \nu_e$.

[BESIII Preliminary]

First observation of $D^0 o a_0(980)^- e^+ \nu_e$ and evidence for $D^+ o a_0(980)^0 e^+ \nu_e$.

- $\bullet \quad B(D^0 \to a_0(980)^- e^+ \nu_e) \times B(a_0(980)^- \to \eta \pi^-) = (1.12^{+0.31}_{-0.28}(stat) \pm 0.10(syst)) \times 10^{-4}$ 5. 9 σ
- $B(D^{+} \rightarrow a_{0}(980)^{0}e^{+}\nu_{e}) \times B(a_{0}(980)^{0} \rightarrow \eta\pi^{0}) = (1.47^{+0.73}_{-0.59}(stat) \pm 0.14(syst)) \times 10^{-4} < 2.7 \times 10^{-4} @90\% C. L.$

$D_s^+ \rightarrow \phi e^+ \nu$, $\eta^{(\prime)} e^+ \nu$, $f_0 e^+ \nu$ (CLEOc data)

Hietala, Cronin-Hennessy, Pedlar, Shipsey, PRD 92, 012009 (2015)

Motivation

- **→** Test Latice QCD & probe the quark contents of light mesons $(\eta, \eta', f_0 ...)$
- ◆ ISGW2 model (PRD 52, 2783 (1995)):Predict a difference between the D and D_s⁺ inclusive semileptonic rates
- Can be used to determine the $\eta \eta'$ & f_0 -ss_mixing angle.(PLB 404, 166 (1997))

BRs measurements

- Data sample: 586 pb⁻¹ @4.17 GeV (D_sD_s*)
- Do not reconstruct the D_s^{*} daughter photon ⇒ higher efficiency & smaller Sys. Err. ⇒ v missing mass can not be used
- **♦** Significantly increasing the available statistics.
- Agree to previous measurements.
- $\uparrow \eta \eta' \text{ mixing angle: } 42^{\circ} \pm 2^{\circ} \pm 2^{\circ}; f_0 \text{ss mixing angle:}$ $20^{o+32^{\circ}} \text{ Signal mode}$

. <u> </u>	<u>- , , , , , , , , , , , , , , , , , , ,</u>			
Signal mode	BABAR (%)	CLEO-c (%)	This analysis (%)	
$D_s \to \phi e \nu$	$2.61 \pm 0.03 \pm 0.08 \pm 0.15$	$2.36 \pm 0.23 \pm 0.13$	$2.14 \pm 0.17 \pm 0.08$	
$D_s \rightarrow \eta e \nu$	• • •	$2.48 \pm 0.29 \pm 0.13$	$2.28 \pm 0.14 \pm 0.19$	
$D_s \to \eta' e \nu$	• • •	$0.91 \pm 0.33 \pm 0.05$	$0.68 \pm 0.15 \pm 0.06$	
$D_s \to f_0 e \nu, f_0 \to \pi \pi$	Seen	$0.20 \pm 0.03 \pm 0.01$	$0.13 \pm 0.03 \pm 0.01$	
$D_s \to K_S e \nu$	• • •	$0.19 \pm 0.05 \pm 0.01$	$0.20 \pm 0.04 \pm 0.01$	
$D_s \to K^* e \nu$	• • •	$0.18 \pm 0.07 \pm 0.01$	$0.18 \pm 0.04 \pm 0.01$	

$$D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu$$

Submitted to PRD arXiv 1608.06484

BRs measurements

- Data sample: 482 pb⁻¹ @4.009 GeV (D_sD_s threshold)
- ◆ Double tag method used
- lacktriangle Reconstruct a η or η' (to $\pi\pi\eta$ or $\gamma\rho$)
- Agree to previous experimental measurements.
- **♦ Improve upon the** *Ds***+ semileptonic** branching fraction precision.
- ◆ Observed first time at D_sD_s threshold.

Ref. [7]: PRL 75, 3804 (1995) (CLEO II)

Ref. [8]: PRD 80, 052007 (2009) (CLEO-c)

Ref. [9]: PRD 92, 012009 (2015)

	BESIII	Ref. [7]	Ref. [8]	Ref. [9]	PDG [4]
$B(D_s^+ \to \eta e^+ \nu_e) [\%]$	$2.30 \pm 0.31 \pm 0.09$	_	$2.48 \pm 0.29 \pm 0.13$	$2.28 \pm 0.14 \pm 0.20$	2.67 ± 0.29
$B(D_s^+ \to \eta' e^+ \nu_e) [\%]$	$0.93 \pm 0.30 \pm 0.05$	_	$0.91 \pm 0.33 \pm 0.05$	$0.68 \pm 0.15 \pm 0.06$	0.99 ± 0.23
$\frac{B(D_s^+ \to \eta' e^+ \nu_e)}{B(D_s^+ \to \eta e^+ \nu_e)}$	$0.40 \pm 0.14 \pm 0.02$	$0.35 \pm 0.09 \pm 0.07$	_	_	

Summary and future perspective

- ◆ BESIII has large and clean e+e- data samples near threshold. Many new and improved form factor measurements (Exist Lattice QCD calculations generally in good agreement with data)
- ◆ BESIII results on Ds decays at threshold have been released, statistics limited.
- ♦ In future
 - **◆BESIII** has collected 3 fb⁻¹ 'D_S' data around Ecm ~ 4180 MeV, expect new results on D_S decays in the near future.
 - ◆LHCb & Belle II (will turn on soon): Large inclusive samples of all charmed hadrons ⇒ two challenges: control of systematics & better theoretical tools

Thank you

Backup slides