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MoAvaAon	

In	B	physics	there	are	three	puzzles:	
	

RD(⇤) =
BR(B ! D(⇤)⌧⌫⌧ )

BR(B ! D(⇤)µ⌫µ)

B ! K⇤µ+µ�2)		P5’	in		

1)	

3)																																																																in	the	dilepton	invariant	mass	bin		
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We propose that both anomalies in B meson decays, RD(⇤) and RK might be explained by only
one vector leptoquark weak triplet state. The constraints on the parameter space are obtained by
considering t ! b⌧⌫⌧ data, lepton flavor universality tests in the kaon sector, bounds on the lepton
flavor violating decay B ! Kµ⌧ , and b ! cµ⌫µ decays. The presence of such vector leptoquark
could be exposed in precise measurements of top semitauonic decays to b quark. The model predicts
that LFU ratio RK⇤ in B ! K⇤`+`� decays is larger than RK .

I. INTRODUCTION

Although LHC has not found yet any particles not present in the Standard Model (SM), low-energy precision
experiments in B physics pointed out a few puzzling results. Namely, we are witnessing persistent indications of
disagreement with the SM prediction of lepton flavor universality (LFU) ratio in the ⌧/µ and ⌧/e sector. In the case

of ratio RD(⇤) = �(B!D(⇤)⌧⌫)
�(B!D(⇤)`⌫)

[1–6], the deviation from the SM is at 3.5� level [7] and has attracted a lot of attention

recently [8, 9]. Since the denominator of these ratios are the well measured decay rates with light leptons in the final
states, ` = e, µ, the most obvious interpretation of RD(⇤) results are in terms of new physics a↵ecting semileptonic
b ! c⌧⌫ processes [10].

The second group of observables, testing rare neutral current processes with flavor structure (s̄b)(µ+µ�) also indicate
anomalous behaviour [11–21]. Decay B ! K⇤µ+µ� deviates from the SM in the by-now-famous P 0

5

angular observable
at the confidence level of above 3� [22]. If interpreted in terms of new physics, all analyses point to modifications of
the leptonic vector current, which is also subject to large uncertainties due to nonlocal QCD e↵ects. However, several
studies have shown that even with generous errors assigned to QCD systematic e↵ects, the anomaly is not washed
away [23]. Furthermore, the sizable violation of LFU in the ratio RK = �(B!Kµµ)

�(B!Kee) in the dilepton invariant mass

bin 1 GeV2  q2  6 GeV2, has been established at 2.6�. This ratio is largely free of theoretical uncertainties and
experimental systematics, deviates in the muon channel consistently with the deviation in B ! Kµ+µ�. Strikingly
enough all these disagreements were observed in the B meson decays to the leptons of the second and third generation.
As pointed out in [10] lepton flavour universality has been tested at percent level and are in the case of pion and kaon
in excellent agreement with the SM predictions. It has been already suggested that scalar leptoquark might account
for this anomalous behaviour in many works [7, 12, 14, 24–27].

Many models of New Physics (NP) [1–6, 8, 9, 11–21, 27] have been employed to explain either RK and P 0
5

anomalies
or RD(⇤) . Reference [15] suggested that RK and P 0

5

can be explained if NP couples only to the third generations of
quarks and leptons. Similarly, the authors of [9] suggested that both RD(⇤) and RK anomalies can be correlated if the
e↵ective four-fermion semileptonic operators consist of left-handed doublets. The model of [28] proposed existence
of an additional weak bosonic triplet and falls in the category of weak doublet fermions coupling to the weak triplet
bosons, which then can explain all three B meson anomalies. Among the NP proposals a number of them suggest

that one scalar leptoquark accounts for either R(⇤)
D or RK anomalies. Howerer, in the recent paper [7] both deviations

were addressed by a single scalar leptoquark with quantum numbers (3, 1,�1/3) in such a way that RD(⇤) anomalies
is explained at the tree level, while RK only at loop level. This leptoquark scalar, unfortunately can couple to diquark
state too and therefore it potentially leads to proton decay. One may impose that this dangerous coupling vanishes,
but such a scenario is not easily realised within any GUT approach.

In this paper, we extend the SM by a vector SU(2) triplet leptoquark, which accomplishes both of the above
requirements by generating purely left handed currents with quarks and leptons. Furthermore, the triplet nature
of the state connects the above mentioned anomalies with the rare decay modes of B mesons to a final states with
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3.5σ	

3σ	

2.6σ	

charged		current	

FCNC	

QuesAon:	Is	there	any	chance	to	see	NP	in	charm	?	



Charm	decays	and	CKM		
(Semi)leptonic	charm	inputs	to	the	CKM	fit		
	

Direct	extracAon	using	la[ce	(HFAG+FLAG		CKMFi`er	(using	unitarity)	

Leptonic		

Semileptonic		
	



•  Assuming	unitarity	of	VCKM,	the		
Values		of	Vcs	and	Vcd	are	dominated		
by	Vcb	measurement	and		
nuclear	&	kaon	data;		
	

•  Vcs	and	Vcd	values	are	largely		
driven	by		indirect	constraints;		
	

•  Great	advance	in	la[ce	determinaAon	of	decay	constants	
and	form	factors	enables	progress	in	tesAng	consistency	of	the	SM		
	



		
Ø 	EffecAve	Lagrangian	approach	describing	NP	in																						transiAon;	

					-	Pseudoscalar	operator				

					-	Scalar	operator		

	
Ø 	NP	in	branching	raAos,	forward-backward	asymmetry		transversal	muon	
polarizaAon;	

	

c ! sl⌫l

Wilson	coefficients	

1502.07488,	S.F.,	I.	Nišandžić,	U.	Rojec	
1404.0454,	J.	Barranco	et	al.,	

	Search	for	NP	in	charged	current	transiAons	
	(charm	mesons)	



Why		to	search	for	NP	in	charm	meson	semileptonic		decays?	

Vcd	

Ø 	Important	to	know	CKM	matrix	elements	Vcs	and	Vcd;	

Ø 	High	precision		results	for	the	decay	constants,	or	form-	factors	required!	

Ø 	In																																		observed	disagreement	of	experimental	and	SM	
					predicAon.		

s(d)	-		-	

Vcs	

Vcs,d	

B ! D(⇤)⌧⌫⌧



Approach:	

c ! sl⌫l

QuesAons		for	theory:	

•  Can	current	precision	on	charm	meson	decay	constants/form	factors		
enables	to	search	for	New	Physics	in	charm?	
	
•  What	are	the	most	appropriate	observables?	
	

EffecAve	Lagrangian	to	describe			NP	in																									transiAon	



NP	proposals	in																													c ! sl⌫l

J.	Barranco	et	al.	1303.3896;	
Akeyrod	and	Chen,	hep-ph/0701078	

charged	scalar	

new	gauge	bosons	

leptoquarks	

e.g.I.Dorsner,	S.F.J.F.	Kamenik,		
N.	Kosnik,	0906.5585	
		

R		SUSY	A.G.	Akeroyd,	S.	Recksiegel,	
hep-ph/0210376.		



Simplest	proposal	for	NP		-	scalar/pseudoscalar		operators:		

New	physics	might	modify	branching	raAos		

Examples:		
	
a)	THDM	type-III,	originaAng		
from	non-holomorpfic	Yukawa	
couplings	in	the	fermion	mass-basis;	
	
b)	Aligned	THDM	(Yukawa	couplings		
to	neutral	scalar	flavor	diagonal,	the	
complex	Yukawa	couplings	to		
charged	scalar.	
	



For																																																										(la[ce,	Fermilab	&	MILC)	

and																																															obtained	from	global	CKM	unitarity	fit,	

allowed	parameter	space	of	new	physics	coupling:	

			



NP	in		

c(l)P can	contribute	to		

Using	helicity	formalism:		

D ! K⇤l⌫l

D ! K⇤l⌫l (	four	form-factors	necessary!)	

c(l)P modifies	Ht	



Rather	weak	knowledge	of	form-factors.	
FOCUS	performed	non-parametric			
measurements	of	helicity	amplitudes		
(errors	too	big),	hep-ph	/0509027;	
BaBar	(1012.1810)	single	pole	parameterizaAon		
used	in	our	fit:	 RL/T =

�L

�T

PDG:	
RL/T	=1.13±0.08	

Not	compeAAve	with		the			
constraints	coming	from	pure		
leptonic	decay!	



The	Wilson	coefficient	of	the	scalar	operator				

NP	in		

Helicity	amplitudes	

D ! Kl⌫l

c(l)S



Form-factors	calculated	by	la[ce		
collaboraAon	HPQCD		(1305.1462)	
crosses		
circles		

D ! K
Ds ! ⌘

Allowed	region	for	cs		from		
BR(D ! Kl⌫l)



NP	in	differenAal		width	distribuAon	

NP,	allowed	by	constraint	from		the	fit			of	cS		from	the	branching	raAo	

SM	



Check	of	lepton	universality	

SM	

NP,	allowed	by	constraint	
from	the	fit	to	the		branching	
raAo		which	gives	constraint	
on	cS,	assuming	
	

Charm 2016, BolognaN. Kosnik

Charged currents - semileptonic lepton universality

10

[Fajfer,Nisandzic,Rojec,1502.07488]



Forward-backward	asymmetry	in																																																												

~q = 0

✓

K	

	l	

SensiAve	on	the	real	part	of		cs!		

D ! Kl⌫l

Forward-backward	asymmetry		
would	not	show	deviaAon	from	SM!	
THDM	with	more	general	flavor	structure		
might	lead	to	different	cS	and	cP	and	AFB	
can	differ		from	SM.	

SM	value:			



NP	in	transversal		muon	polarizaAon		

The	relaAve	complex	phase	between	nonstandard	scalar	Wilson	
coefficient	and		Vcs	is	a	possible	new	source	of	the	CP	violaAon.		
	
The	measurement	of	the	T-odd	transverse	polarizaAon	of	charge	
lepton	might	give		informaAon	on	that	effect.	In	SM	it	is	vanishing	
effect.	

																	amplitude	for	
spin	projecAon	along		~s
A(±~s)

For	allowed	value	of			

8

implying c
(`)
S ' �c

(`)
P = c

(`)
L . The values of the scalar and pseudoscalar couplings are thus approximately related,

so that the tight constraints from the leptonic decays imply that the forward-backward asymmetry in D ! Kµ⌫
would not show the deviations from the SM. In more general THDMs the scalar and pseudoscalar coe�cients are
independent. Examples of such models are the Aligned THDM [24, 25] or the THDM with general flavour structure.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.05

0.10

0.15

q2@GeV2D

A F
BHmL Hq

2 L

FIG. 5: Comparison of the shape of forward-backward asymmetry A(µ)
FB(q

2) in the SM (red) with the deviations (grey) induced

by currently allowed values of c(µ)
S couplings. Coloured bands represent the form factor uncertainties.

C. NP in transversal muon polarization

The relative complex phase between the non-standard scalar Wilson coe�cient and the Vcs element of the CKM
matrix is a possible new source of the CP violation. The total decay rate does not o↵er an independent information
about such e↵ects. One could measure the T-odd transverse polarization of the final charged lepton in the semileptonic
D meson decays [18, 19]. It follows from the CPT invariance that this observable is also CP-odd. Since its value is
expected to be vanishingly small in the SM, the measured non-vanishing value would be clear sign of the NP. This
observable was first theoretically introduced and experimentally studied in semileptonic K meson decays, see [36–38].
The transversal polarization of the ⌧ lepton in the semitauonic B decays has also been theoretically considered as a
possible test of the beyond SM CP violating e↵ects, see [39, 40]. In the case of process with the electron in the final
state, this observable remains insensitive to the corresponding scalar Wilson coe�cient. We define the transversal
polarization of the muon in the process D+ ! K0µ+⌫ as the ratio:

P
(µ)
? =

|A(~s)|2 � |A(�~s)|2
|A(~s)|2 + |A(�~s)|2 , (21)

where ~s ⌘ (~pK⇥~p`)/|~pK⇥~p`| denotes the unit vector perpendicular to the K` decay plane and A(±~s) is the amplitude
for spin projections along ~s. The small value of P?

(`) is in the SM generated by the final state interactions. For example,

the electromagnetic e↵ects produce the value of the order 10�6 in the process K+ ! ⇡0µ+⌫ [41]. The theoretical
computations of the contributions of the final state interactions on this observable in the semileptonic D decays is
currently lacking, but we expect that it is small enough that it can be neglected. The contribution to the numerator
of (21) arises from the interference between the SM and the scalar amplitudes [37–40], namely

P
(µ)
? (q2, Eµ) =

✓
d�

dq2dEµ

◆�1

(q2, Eµ) Im
�
h
0

(q2)h⇤
t (q

2)
�
. (22)

The NP contribution is encoded in the modification of the helicity amplitude ht(q2) (see Eq. (14)). The function
(q2, Eµ) is given by

(q2, Eµ) = �2

r
rµ
�

✓
4Eµ

m2

D

�4rµ

◆✓
(1�rK�rq)

2�4rK

◆
�4

✓
� 2Eµ

mD
+2rK+rµ+

Eµ(1� rK � rq)

mD
+rq

◆
2

�
1/2

, (23)



NP	in	charm		

Constraints	from	K,	B	physics	

Constraints	from	EW	physics,	
oblique	correcAons,	

Constraints	from	LHC:	top	physics	

Z ! bb̄

Ø  SM	and																								oscillaAons;	
	
Ø  SM	in	rare	charm	decays;	
	

New	physics	in	charm	FCNC	processes	



NP	in		c ! ul+l�

Tree	level	FCNC	

l+	

l-	

c	

u	

-	

The	same	couplings		immediately	create	contribuAons		
to				D0 � D̄0

u	

c-	

c	

u	

-	 -	

Loop	level	

(e.g.)	
l+	

l-	

c	

u	

-	 u	

c-	

-	

c ! ul+l�

c	

u	

-	

D0 � D̄0

NP	

NP	 NP	

NP	



ms,d ⌧ ⇤QCD

• 	conspiracy:			d,s,	b	quarks		are	in	the	loops;	
	
• 	very	strong		GIM	suppression;		

• 																																																										

	

long	distance	contribuAon	
dominant!	

ProperAes	of	FCNC	in	charm	rare	decays	

c	

u	

-	

a	weak	singlet,	doublet	or	triplet		

up	quark	weak	doublet	“talks”	to	down	quark	via	CKM!	
		



Charm 2016, BolognaN. Kosnik

Neutral currents - effective description

Tree-level 4-quark operators

O7 =
emc

(4⇡)2
(ū�µ⌫PRc)F

µ⌫ OS =
e2

(4⇡)2
(ūPRc)(¯̀̀ )

O9 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ`) OP =

e2

(4⇡)2
(ūPRc)(¯̀�5`)

O10 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ�5`) OT =

e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫`)

OT5 =
e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫�5`)

12

1) At scale mW all penguin contributions vanish due to GIM 
2) SM contributions to C7…10 at scale mc entirely due to mixing of tree-

level  operators into penguin ones under QCD 

3)  SM values at mc 

4)  All operators’ contributions to D→πℓℓ can be absorbed into q2  
     dependent effective Wilsons C7,9eff(q2) 

(Short-distance) penguin  
operators

C7 = 0.12, C9 = �0.41

[de Boer, Hiller, 1510.00311]

He↵ = �dHd + �sHs � 4GF�bp
2

X

i=3,...,10,S,P,...

CiOi

Tree-level	4-quark	operators		
	

(Short-distance)	penguin	operators		
	

1)  	At	scale	mW	all	penguin	contribuAons	vanish	due	to	GIM;	

2)		SM	contribuAons	to	C7...10	at	scale	mc	enArely	due	to	mixing	of	tree-		
level	operators	into	penguin	ones	under	QCD		
	
3)	SM	values	at	mc		
	

Charm 2016, BolognaN. Kosnik
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O7 =
emc
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e2

(4⇡)2
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O9 =
e2
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e2
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(ū�µPLc)(¯̀�µ�5`) OT =
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(4⇡)2
(ū�µ⌫c)(¯̀�
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OT5 =
e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫�5`)

12

1) At scale mW all penguin contributions vanish due to GIM 
2) SM contributions to C7…10 at scale mc entirely due to mixing of tree-

level  operators into penguin ones under QCD 

3)  SM values at mc 

4)  All operators’ contributions to D→πℓℓ can be absorbed into q2  
     dependent effective Wilsons C7,9eff(q2) 

(Short-distance) penguin  
operators

C7 = 0.12, C9 = �0.41

[de Boer, Hiller, 1510.00311]

He↵ = �dHd + �sHs � 4GF�bp
2

X

i=3,...,10,S,P,...

CiOi

4)	All	operators’	contribuAons	to	D→πll	can	be	absorbed	into	q2	
dependent	effecAve	Wilsons	C7,9eff(q2)	

(de	Boer,	Hiller,	1510.00311)		
	

SM	effecAve	Hamiltonian	



Breit-Wigner	model	for	the	qq	resonances		
	

Charm 2016, BolognaN. Kosnik

Neutral currents - D →πμμ, resonant contributions

13

Cres
9 =

�d

�b

"
a⇢

m2
⇢

q2 �m2
⇢ + i

p
q2�⇢

+ · · ·
#

Cres
S =

�d

�b

"
a⌘m2

⌘

q2 �m2
⌘ + im⌘�⌘

+ · · ·
#

LHCb bound
on constant 
amplitude model

.  

Bounds from LHCb, 1304.6365 

Breit-Wigner model for the qq resonances

Borrowed from de Boer, Hiller, 1510.00311

SM short distance rate 
not accessible

Fix |aX| from measured D→Xπ, X→ℓℓ 
We marginalise over the unknown phase of aX.  

(borrowed	from	de	Boer,	Hiller,	1510.00311)		
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Maximally	allowed	values	of	the	Wilson	coefficents	in	the	low	and	high	energy	bins	

2

while separate branching fractions in the low- and high- q2 bins were bounded as [14]1:

BR(⇡+µ+µ�)I ⌘ BR(D+ ! ⇡+µ+µ�)q22[0.0625,0.276] GeV2 < 2.5⇥ 10�8

BR(⇡+µ+µ�)II ⌘ BR(D+ ! ⇡+µ+µ�)q22[1.56,4.00] GeV2 < 2.9⇥ 10�8 .
(3)

Motivated by these improved bounds we consider several NP models and either derive constraints on their flavor
parameters and masses, or for the models that are severely bounded from alternative flavor observables (e.g. D0� D̄0

mixing, K, or B physics), we comment on the prospects of observing their signals in rare charm decays. To this end,
we use the e↵ective Lagrangian encoding the short-distance NP contributions in a most general way. Namely, the
experimental results (1) and (3) give us a possibility to constrain NP in c ! u`+`� also in a model independent way.

In the case of b ! s`+`� transitions, LHCb has recently observed large departure of the experimentally determined
lepton flavor universality (LFU) ratio RK = BR(B ! Kµ+µ�)q22[1,6]GeV2/BR(B ! Ke+e�)q22[1,6]GeV2 from the

expected SM value [15]. This value was found to be RLHCb
K = 0.745+0.090

�0.074 ± 0.036, lower than the SM prediction
RSM

K = 1.0003 ± 0.0001 [16]. This surprising result of LHCb indicates possible violation of LFU in the µ-e sector.
Due to the importance of this result, we investigate whether analogous tests in the µ-e LFU can be carried out in
c ! u`+`� processes.

The outline of this article is as follows. In Section 2 we describe e↵ective Lagrangian of |�C| = 1 transition
and determine bounds on the Wilson coe�cients coming from the experimental limits on BR(D+ ! ⇡+µ+µ�) and
BR(D0 ! µ+µ�). Sec. 3 contains analysis in the context of specific theoretical models of new physics, contributing
to the c ! u`+`� and related processes. Sec. 4 discusses lepton flavor universality violation. Finally, we summarize
the results and present conclusions in Sec. 5.

II. OBSERVABLES AND MODEL INDEPENDENT CONSTRAINTS

A. E↵ective Hamiltonian for c ! u`+`�

The relevant e↵ective Hamiltonian at scale µc ⇠ mc is split into three contributions corresponding to diagrams with
intermediate quarks q = d, s, b [9, 17]

He↵ = �dHd + �sHs + �bHpeng , (4)

where each of them is weighted by an appropriate combination �q = VuqV
⇤
cq of Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements. Virtual contributions of states heavier than charm quark is by convention contained within

Hpeng = �4GFp
2

X

i=3,...,10

CiOi . (5)

The operators appearing in the above Hamiltonian have thus enhanced sensitivity to new physics contributions:

O7 =
emc

(4⇡)2
(ū�µ⌫PRc)F

µ⌫ , OS =
e2

(4⇡)2
(ūPRc)(¯̀̀ ) ,

O9 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ`) , OP =

e2

(4⇡)2
(ūPRc)(¯̀�5`) ,

O10 =
e2

(4⇡)2
(ū�µPLc)(¯̀�µ�5`) , OT =

e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫`) ,

OT5 =
e2

(4⇡)2
(ū�µ⌫c)(¯̀�

µ⌫�5`) .

(6)

The chiral projectors are defined as PL,R = (1 ⌥ �5)/2, Fµ⌫ is the electromagnetic field strength tensor. For each of
the operators O7,9,10,S,P we introduce the corresponding counterpart O0

7,9,10,S,P with opposite chiralities of quarks.
Within the SM the Wilson coe�cients Ci result from the perturbative dynamics of the electroweak interactions and
QCD renormalization. The latter e↵ect determines the value of C7(mc) by two-loop mixing with current-current
operators and was found to be V ⇤

cbVubC
SM
7 = V ⇤

csVus(0.007 + 0.020i)(1 ± 0.2) [4, 8]. On the other hand the value of
C9 Wilson coe�cient was found to be small after including renormalization group running e↵ects as shown in [7] and
confirmed in [6], while C10 is negligible in the SM [18].
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(ū�µPLc)(¯̀�µ�5`) , OT =

e2

(4⇡)2
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(ū�µ⌫c)(¯̀�

µ⌫�5`) .

(6)

The chiral projectors are defined as PL,R = (1 ⌥ �5)/2, Fµ⌫ is the electromagnetic field strength tensor. For each of
the operators O7,9,10,S,P we introduce the corresponding counterpart O0

7,9,10,S,P with opposite chiralities of quarks.
Within the SM the Wilson coe�cients Ci result from the perturbative dynamics of the electroweak interactions and
QCD renormalization. The latter e↵ect determines the value of C7(mc) by two-loop mixing with current-current
operators and was found to be V ⇤

cbVubC
SM
7 = V ⇤

csVus(0.007 + 0.020i)(1 ± 0.2) [4, 8]. On the other hand the value of
C9 Wilson coe�cient was found to be small after including renormalization group running e↵ects as shown in [7] and
confirmed in [6], while C10 is negligible in the SM [18].

1

Note that the high-q2 bin quoted by the experiment extends beyond the maximal allowed q2
max

= (mD �m⇡)
2

= 2.99 GeV

2

.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

q2[GeV2]

∼d
Γ/
dq

2
[a
rb
itr
ar
y
un
its
]

C7
(')

C9,10
(')

CS,P
(')

CT,T5



6

Figure 2. Comparison of short-distance spectrum sensitivities to di↵erent Wilson coe�cients. Grey regions indicate the LHCb
experimental low- and high-q2bins.
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BR(⇡µµ)
I

BR(⇡µµ)
II

BR(D0 ! µµ)

C̃
7
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C̃
9

2.1 1.3 -

C̃
10

1.4 0.92 0.63

C̃S 4.5 0.38 0.049

C̃P 3.6 0.37 0.049

C̃T 4.1 0.76 -

C̃T5

4.4 0.74 -

C̃
9

= ±C̃
10

1.3 0.81 0.63

Table II. Maximal allowed values of the Wilson coe�cient moduli, |C̃i| = |VubV
⇤
cbCi|, calculated in the nonresonant regions of

D+ ! ⇡+µ+µ� in the low lepton invariant mass region (q2 2 [0.0625, 0.276] GeV2), denoted by I, in the high invariant mass
region (q2 2 [1.56, 4.00] GeV2), denoted by II, and from the upper bound BR(D0 ! µ+µ�) < 7.6 ⇥ 10�9 [13]. The last row
gives the maximal value for the case where C̃

9

= ±C̃
10

. All the quoted bounds have been derived for real Ci. The bounds for
C̃i apply also to the chirally flipped coe�cients C̃0

j .

shown in Fig. 3.

Figure 3. Forward-backward asymmetry for the resonant background itself (orange) and in the scenario with CS = 0.049/�b,
CT = 0.2/�b (cyan).

We turn to the discussion of specific models the in next section.
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Forward-backward	asymmetry	for	the	resonant	background	itself		
(orange)		and	in	the	scenario		CS = 0.049/�b CT = 0.2/�b
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whereas the angular coe�cients are

a`(q
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�

2

�
|V |2 + |A|2

�
+ 8m2

`m
2
D|A|2 + 2q2

⇥
�2
` |S|2 + |P |2

⇤

+ 4m`(m
2
D �m2

⇡ + q2)Re[AP ⇤] ,

b`(q2)

4
= q2�2

`Re[ST
⇤] + q2Re[PT ⇤
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+m`(m
2
D �m2

⇡ + q2)Re[AT ⇤
5 ] +m`�

1/2�`Re[V S⇤] ,

c`(q
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`
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�
|V |2 + |A|2

�
+ 2q2

�
�2
` |T |2 + |T5|2

�
+ 4m`�`�

1/2Re[V T ⇤] .

(13)

The coe�cients a` and c` enter then the q2 distribution of branching ratio whereas b` is proportional to forward-
backward asymmetry:

dBR

dq2
(D ! ⇡``) = ⌧D 2N�1/2�`


a`(q

2) +
1

3
c`(q

2)

�
,

AFB(q
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0
�
R 0

�1

⌘
dcos ✓ d�(D!⇡``)

dq2 d cos ✓

d�(D ! ⇡``)/dq2
=

b`(q2)

a`(q2) +
1
3c`(q

2)
.

(14)

Contributions of the vector resonances ⇢, !, and �, decaying to µ+µ�, is due to the first two terms in the e↵ective
Hamiltonian (4) and electromagnetic interaction. E↵ects of vector resonances to the spectrum can be treated assuming
näıve factorization by adding a q2-dependent piece to C9 that contains vector current of leptons. Analogously, the
scalar contribution of ⌘ feeds into CS . The procedure is described in detail in Ref. [28] for the contribution of
D+ ! ⇡+⇢0(!) and updated for the D+ ! ⇡+� ! ⇡+µ+µ� in Ref. [26]. The current experimental upper bound
outside the resonance region indicates that the long distance contribution is very suppressed. One might expect
that at high invariant dilepton mass bin some excited states of vector mesons might give additional long distance
contribution. However, it was shown in [29] and [30] that contributions of these states is negligible in comparison
with the leading long distance contributions. We parametrize the resonances with the Breit-Wigner shapes,

Cres
9 =

�d

�b

"
a⇢

m2
⇢

q2 �m2
⇢ + i

p
q2�⇢

+ a!
m2

!

q2 �m2
! + im!�!

� a�
m2

�

q2 �m2
� + im���

#
,

Cres
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�d

�b

a⌘m
2
⌘

q2 �m2
⌘ + im⌘�⌘

.

(15)

The magnitude of unknown parameters aX (X = ⇢,!,�, ⌘), can be fitted to the measured resonant branching ratios,
given in Tab. I [31]. The corresponding values of |aX | are given in the second row in Tab. I. We treat the relative
phases as free parameters. Alternatively, for the relative phases and magnitudes of aX one can use flavor structure
arguments [18]. In the left-hand panel in Fig. 1 we present the long distance contributions to the di↵erential branching
ratio for D+ ! ⇡+µ+µ� as a function of dilepton invariant mass for a representative set of parameters |aX | from the
1� region (Tab. I) and random phases of aX . On the right-hand panel in Fig. 1 we also indicate the interpretation of
experimental upper bounds (3) in the case where the total amplitude would be constant, namely in the case where all
angular coe�cient functions a`, b`, c` would be independent of q2. We also estimate the saturation of these bounds
by the total resonant decay branching ratio and find for the low- and high-q2 bin contributions to be smaller than
7.3 ⇥ 10�9 and 5.3 ⇥ 10�9, respectively. On the other hand, the short distance contribution to the total branching
ratio of the SM due to the quoted value of C7 is of the order 10�12 and thus negligible.

X ⇢ ! � ⌘

BR(D+ ! ⇡+X(! µ+µ�))[10�8] 3.7(7) < 3.1 160(10) 2.0(3)

|aX | 1.21(12) < 0.26 0.94(3) 0.27(2)

Table I. 1� ranges and 90% CL upper bounds on resonant branching ratios and amplitude parameters [31].
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Test	of	lepton	flavour	universality	violaAon			

In	1510.0311	(de	Beor	and	Hiller)	it	was	pointed	out	that	bounds	on		
electron-positron	mode	are	weaker:		

BR(D+ ! ⇡+e+e�) < 1.1⇥ 10�6

10

As we use muonic modes frequently, in the following Wilson coefficients and operators without a

lepton flavor index are understood as muonic ones, that is C
(µ)
i = Ci etc.

Neglecting the SM Wilson coefficients, we find the following constraints on the BSM Wilson

coefficients from the limits on the branching fraction of D+ ! ⇡+µ+µ� given in Table II in the

high q2-region (
p
q2 � 1.25GeV) at CL=90%

0.9|C9 + C 0
9|2 + 0.9|C10 + C 0

10|2 + 4.1|CS + C 0
S |2 + 4.2|CP + C 0

P |2 + 1.1|CT |2 + 1.0|CT5|2

+ 0.6Re[(C9 + C 0
9)C

⇤
T ] + 1.2Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 2.3|C7|2 + 2.8Re[C7(C9 + C 0
9)

⇤
] + 0.8Re[C7C

⇤
T ] . 1 . (29)

Analogous constraints in the full q2-region are somewhat stronger. They read

1.3|C9 + C 0
9|2 + 1.4|C10 + C 0

10|2 + 2.2|CS + C 0
S |2 + 2.3|CP + C 0

P |2 + 0.9|CT |2 + 0.8|CT5|2

+ 0.9Re[(C9 + C 0
9)C

⇤
T ] + 1.0Re[(C10 + C 0

10)(CP + C 0
P )

⇤
]

+ 3.7|C7|2 + 4.4Re[C7(C9 + C 0
9)

⇤
] + 1.3Re[C7C

⇤
T ] . 1 . (30)

The branching fraction B(D0 ! µ+µ�
) < 6.2 · 10�9 at CL=90% [29] provides complementary

constraints as

|CS � C 0
S |2 + |CP � C 0

P + 0.1(C10 � C 0
10)|2 . 0.007 . (31)

Thus, D ! ⇡µµ is sensitive to the complete set of operators, however, the purely leptonic decays

put stronger constraints on scalar/pseudoscalar operators.

Barring cancellations, we find, consistent with [34], |C(0)
9,10| . 1, which can exceed the resonance

contribution at high q2. Assuming no further flavor suppression for the BSM contribution g2/⇤2

(weakly-induced tree level) or g4/(16⇡2
⇤

2
) (weak loop), the limits on C

(0)
9,10 imply quite mild con-

straints for the scale of new physics: ⇤ & O(5) TeV or ⇤ around the electroweak scale, respectively.

With SU(2)L-relations C9 = �C10 the bounds on new physics ease by a factor of 1/
p
2. Analogous

constraints on the other coefficients read |CT,T5| . 1 and |C(0)
S,P | . 0.1. In Fig. 3 we illustrate BSM

effects in the D+ ! ⇡+µ+µ� differential branching fraction at high q2 with two viable choices for

BSM-induced Wilson coefficients. As anticipated, the BSM distributions can exceed the SM one.

Constraints on c ! uee modes are weaker than the c ! uµµ ones, B(D+ ! ⇡+e+e�) < 1.1·10�6

and B(D0 ! e+e�) < 7.9 · 10�8 at CL=90% [29], and imply
���C(e)

S,P � C
(e)0
S,P

��� . 0.3 ,
���C(e)

9,10 � C
(e)0
9,10

��� . 4 ,
���C(e)

T,T5

��� . 5 ,
���C7

⇣
C

(e)
9 � C

(e)0
9

⌘��� . 2 . (32)
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BSM-induced Wilson coefficients. As anticipated, the BSM distributions can exceed the SM one.

Constraints on c ! uee modes are weaker than the c ! uµµ ones, B(D+ ! ⇡+e+e�) < 1.1·10�6

and B(D0 ! e+e�) < 7.9 · 10�8 at CL=90% [29], and imply
���C(e)

S,P � C
(e)0
S,P

��� . 0.3 ,
���C(e)

9,10 � C
(e)0
9,10

��� . 4 ,
���C(e)

T,T5

��� . 5 ,
���C7

⇣
C

(e)
9 � C

(e)0
9

⌘��� . 2 . (32)

In	1510.0965	(S.F.	and	N.	Košnik)	it	was	suggested,	assuming	as	in	the	case	
																															that	NP	does	not	affect	electron-positron	mode,	that	tests	of	LFU		
can	be	performed	either	in	I	or	II	bin		
B ! Ke+e�
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For the transitions c ! u`+`� the driving flavor changing parameter is ✏u12 that induces scalar and pseudoscalar
Wilson coe�cients, while we assume that ✏`22 is negligible [41]:

�CP = CS =
⇡

4
p
2GF↵�b

mµ

v

✏u⇤12 tan�

m2
H

, (37)

C 0
P = C 0

S =
⇡

4
p
2GF↵�b

mµ

v

✏u21 tan�

m2
H

. (38)

The best upper bounds on CP , CS , or C 0
P , C

0
S pairs are obtained from BR(D0 ! µ+µ�) and read |C̃S � C̃ 0

S |  0.05
and |C̃P � C̃ 0

P |  0.05 which makes them very di�cult to probe in D ! ⇡µ+µ� decay, unless the cancellation between
CS (CP ) and C 0

S (C 0
P ) in D0 ! µ+µ� is arranged by fine-tuning.

D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
well motivated by many extensions of the SM, see e.g. [42, 43]. Even more, a Z 0 boson can explain B ! K⇤µ+µ�

angular asymmetries puzzle, as presented in e.g. [44, 45]. Assuming as in [43] flavor nonuniversal couplings of Z 0 to
fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)
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BR(D0 ! e+e�) < 7.9⇥ 10�8
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|C̃i|max

RII

⇡

SM - 0.999± 0.001

C̃
7

1.6 ⇠ 6–100

C̃
9

1.3 ⇠ 6–120

C̃
10

0.63 ⇠ 3–30

C̃S 0.05 ⇠ 1–2

C̃P 0.05 ⇠ 1–2

C̃T 0.76 ⇠ 6–70

C̃T5

0.74 ⇠ 6–60

C̃
9

= ±C̃
10

0.63 ⇠ 3–60

C̃0
9

= �C̃0
10

��
LQ(3,2,7/6)

0.34 ⇠ 1–20

Table III. The LFU ratio RII

⇡ at high dilepton invariant mass bin and maximal value of each Wilson coe�cient (applies also for
the primed coe�cients, C̃0

i). It is assumed that NP contributes only to the muonic mode. The SM value of RII

⇡ is given in the
first row.

In the SM the departure of the above ratios from 1 comes entirely from lepton mass di↵erences. We find RI,SM
⇡ =

0.87 ± 0.09 in the low-q2 and RII,SM
⇡ = 0.999 ± 0.001 in the high-q2 region, where in the latter region both leptons

are e↵ectively massless. In Tab. III we quote ranges for the ratio RII
⇡ for the maximal allowed values of Wilson

coe�cients by rare charm decays considered in the previous Sections. Generally we find that with currently allowed
Wilson coe�cients and assuming no NP contribution in electronic modes these ratios could become much larger. The
spread in these predictions is large because of unknown relative phases in the resonant part of the spectrum, i.e.,
BR(D+ ! ⇡+e+e�) ⇡ BR(D+ ! ⇡+µ+µ�) ⇡ (0.5–5.3) ⇥ 10�9. Note that large enhancements are allowed in the
scenarios which are currently constrained by D+ ! ⇡+µ+µ�. In the low-q2 region the interference terms in RI

⇡ are
even more pronounced since the e↵ect of nearby ⇢ resonance is interfering either in positive or in negative direction,
and thus we cannot conclude the sign of deviation from the SM value of RI

⇡.

VI. SUMMARY AND OUTLOOK

Motivated by the great improvement of bounds on rare charm decays by the LHCb experiment we determine
bounds on the e↵ective Wilson coe�cients. Existing data implies upper bounds on the e↵ective Wilson coe�cients as
presented in Tab.II. The strongest constraints on C10, CP , CS and C 0

10, C
0
P , C

0
S are obtained from the bound on the

branching fraction of D0 ! µ+µ� decay. The nonresonant di↵erential decay width distribution gives bounds on Ci,
i = 7, 9, 10, S, P, T, T5 as well as on the coe�cients of the operators of opposite chirality. The constraints are stricter
in the high dilepton invariant mass bin than in the low dilepton invariant mass bin, and this statement applies in
particular to the contributions of the scalar and pseudoscalar operators. Forward-backward asymmetry is sensitive to
the combination of scalar and tensor coe�cients at high-q2.

Then, we have investigated new physics models in which the e↵ective operators may be generated. We have found
that the presence of a leptoquark which is either scalar and weak doublet, (3, 2, 7/6), or has spin-1 and is a weak
singlet, (3, 1, 5/3), can lead to sizeable contributions to the Wilson coe�cients C 0

9 and C 0
10. Sensitivity to the LQ

scenarios is similar in high-q2 bin of D+ ! ⇡+µ+µ� and D0 ! µ+µ�, while D0 � D̄0 mixing results in somewhat
stronger constraint. For the Two Higgs doublet model of type III the presence of scalar and pseudoscalar operators
enhances sensitivity in D0 ! µ+µ� and therefore results in small e↵ects in D+ ! ⇡+µ+µ�. We have also discussed a
SM extension by a Z 0 gauge boson where tree-level amplitude in D0 � D̄0 mixing is a dominant constraint and leaves
no possibility of signals in rare charm decays.

Our study indicates a possibility to check whether lepton flavor universality between muonic and electronic channels
is valid by means of studying ratios of widths of D+ ! ⇡+`+`� at low or high dilepton invariant mass bins, RI,II

⇡ . In
the SM the two ratios are close to 1, especially in the high-q2 bin. Assuming the electronic decay is purely SM-like
we find that in the high-q2 bin the ratio RII

⇡ is in most cases significantly increased with respect to the SM prediction,
while there is no clear preference between higher and lower values at low-q2 bin ratio RI

⇡. In the leptoquark models
studied in this paper the ratio may be greatly increased, but slight decrease cannot be excluded, presently due to
unknown interplay of weak phases with the phases of resonant spectrum. Chances to observe new physics in rare charm
decays are possible in models where the connection to the stringent constraints stemming from B and K flavor physics
are hindered. New physics models which fulfill this condition are main candidates to be exposed experimentally by

RI,SM
⇡ = 0.87± 0.09

RII,SM
⇡ = 0.999± 0.001AssumpAons:	

-  e+e-	mode	are	SM-like;	
-  NP	enters	in	μ+μ-	mode	only;	
-  listed	Wilson	coefficients	are	maximally	allowed	by	current	LHCb	data.	
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FIG. 3: The differential branching fraction dB(D+ ! ⇡+µ+µ�
)/dq2 at high q2. The solid blue curve is the

non-resonant SM prediction at µc = mc and the lighter blue band its µc-uncertainty, the dashed black line

denotes the 90% CL experimental upper limit [28] and the orange band shows the resonant contributions.

The additional curves illustrate two viable, sample BSM scenarios, |C9| = |C10| = 0.6 (dot-dashed cyan

curve) and C
(0)
i = 0.05 (dotted purple curve).

To discuss LFV we introduce the following effective Lagrangian

Lweak

eff

(µ ⇠ mc) =
4GFp

2

↵e

4⇡

X

i

⇣
K

(e)
i O

(e)
i +K

(µ)
i O

(µ)
i

⌘
, (c ! ue±µ⌥

) , (33)

where the K
(l)
i denote Wilson coefficients and the operators O

(l)
i read

O
(e)
9 = (ū�µPLc) (e�

µµ) , O
(µ)
9 = (ū�µPLc) (µ�

µe) , (34)

and all others in analogous notation to Eq. (28). The LFV Wilson coefficients are constrained by

B(D0 ! e+µ�
+ e�µ+

) < 2.6 · 10�7, B(D+ ! ⇡+e+µ�
) < 2.9 · 10�6 and B(D+ ! ⇡+e�µ+

) <

3.6 · 10�6 at CL=90% [29] as
���K(l)

S,P �K
(l)0
S,P

��� . 0.4 ,
���K(l)

9,10 �K
(l)0
9,10

��� . 6 ,
���K(l)

T,T5

��� . 7 , l = e, µ . (35)

The observables in the D ! Pl+l� angular distribution, AFB and FH , Eqs. (D2), (D3) can

be sizable while respecting the model-independent bounds. We find that, upon q2-integration,

|AFB(D
+ ! ⇡+µ+µ�

)| . 0.6, |AFB(D
+ ! ⇡+e+e�)| . 0.8, FH(D+ ! ⇡+µ+µ�

) . 1.5 and

c ! uµ±e⌥
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Scalar	Leptoquaks	(3,2,7/6)	
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The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:
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In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].
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The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:
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(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
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cµ Y R

uµ
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64⇡2m2
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].
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The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:
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(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
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Y R⇤
cµ Y R

uµ

�2

64⇡2m2
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= � (GF↵)2

32⇡4
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].
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The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:
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,
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,
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,
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,
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(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
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Y R⇤
cµ Y R

uµ

�2

64⇡2m2
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= � (GF↵)2

32⇡4
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].
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The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:
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(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
�
Y R⇤
cµ Y R

uµ

�2
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].
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In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with
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We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as
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2
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in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].

8

The LQ Yukawa matrices YL and YR are written in the mass basis of up-type quarks and charged leptons with the
CKM and PMNS rotations present in the down-type quarks and neutrinos. Thus, the couplings of LQ component
with charge 5/3 are

L(5/3) = (¯̀RYLuL)�
(5/3)⇤ � (ūRYR`L)�

(5/3) + h.c. . (23)

The tree level amplitude induced by a nonchiral LQ state �(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and (pseudo)tensor operators:

CP = CS = � ⇡

2
p
2GF↵�b

Y L⇤
µu Y R⇤

cµ

m2
�

,

�C 0
P = C 0

S = � ⇡

2
p
2GF↵�b

Y L
µcY

R
uµ

m2
�

,

CT = � ⇡

8
p
2GF↵�b

Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

CT5 = � ⇡

8
p
2GF↵�b

�Y R
uµY

L
µc + Y R⇤

cµ Y L⇤
µu

m2
�

,

C10 = C9 =
⇡p

2GF↵�b

Y L
µcY

L⇤
µu

m2
�

�C 0
10 = C 0

9 =
⇡p

2GF↵�b

Y R⇤
cµ Y R

uµ

m2
�

.

(24)

In the minimal numerical scenario, strict bounds in the down-type quark sector can be evaded completely by putting
to zero the couplings to the left-handed quarks. In this case we are allowed to have significant contributions to
rare charm decays via the C 0

9 = �C 0
10 contributions for which the bound from the last line of Tab. II applies. The

contribution to D0� D̄0 mixing amplitude is matched onto the e↵ective Hamiltonian H = C6(ūR�
µcR)(ūR�µcR) with

the e↵ective coe�cient at scale m�

C6(m�) = �
�
Y R⇤
cµ Y R

uµ

�2

64⇡2m2
�

= � (GF↵)2

32⇡4
m2

�(C̃
0
10)

2 . (25)

We have assumed that leptoquark does not couple to electrons or tau leptons. Hadronic matrix element of the above
operator in mixing is customarily expressed as

⌦
D̄0

�� (ūR�µcR)(ūR�
µcR)

��D0
↵
= 2

3m
2
Df2

DB, where the bag parameter

in the MS scheme BD(3 GeV) = 0.757(27)(4) has been computed on the lattice by the ETM Collaboration with
2 + 1 + 1 dynamical fermions [39]. The SM part of the mixing amplitude is poorly known due to its nonperturbative
nature and the only robust bound on the LQ couplings is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world average x = 2|M12|/� = (0.49+0.14

�0.15)% as quoted by the
HFAG [24],

|rC6(m�)|
2mDf2

DBD

3�D
< x , (26)

where r = 0.76 is a renormalization factor due to running of C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally
we find a bound on C 0

9 slightly stronger but comparable to the one obtained from D0 ! µ+µ�:

|C6(m�)| < 2.5⇥ 10�13 GeV�2 =) |C̃ 0
9, C̃

0
10| < 0.34 . (27)

One can imagine an extension of this scenario which would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and large Y R

cµ = 3. The bound on C 0
10 from D0 ! µ+µ�

would then impose the smallness of coupling Y R
uµ, Y

R
uµ < 0.007. Bounds of similar strength are expected from D0�D̄0

mixing. Now one can introduce a nonzero coupling to left-handed quark doublet Y L
µu that would, together with large

Y R
cµ contribute to the Wilson coe�cients CS,P and CT,T5. However, a very strong bound on CS now emerges from

D0 ! µ+µ� and limits the left-handed coupling, Y L
µu < 1.2⇥ 10�3. Thus we can realize

� C̃ 0
10 = C̃ 0

9 = 0.63 , 4C̃T = 4C̃T5 = C̃P = C̃S = �0.049 , (28)

together with small enough Y L
µu = 1.2 ⇥ 10�3 to comply with the constraints from B, K physics and four fermion

operator constraints [40].

D0 ! µ+µ�
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)

9

2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
v/

p
2 =

p
v2u + v2d = 174 GeV. The part of the interaction Lagrangian responsible for FCNCs in the up-type quarks

and charged leptons is [41]

L =
y
(`)Hk

ijp
2

Hk
¯̀
L,i`R,j +

y
(u)Hk

ijp
2

HkūL,iuR,j + h.c. , Hk = (H,h,A) , (34)

and the neutral Yukawa couplings for the charged leptons and up-type quarks are

y
(`)Hk

ij = xk
d

m`i

vd
�ij � ✏`ij

�
xk
d tan� � xk⇤

u

�
,

y
(u)Hk

ij = xk
u

mui

vu
�ij � ✏uij

�
xk
u cot� � xk⇤

d

�
,

(35)

respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)

In	the	high	q2	region	branching	raAo	is		
	two	Ames	smaller	then	the	experimental	bound			

1.4⇥ 10�8
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
the scenario with MSSM-like scalar potential their masses and mixing angles are related [41],

tan� =
vu
vd

, tan 2↵ = tan 2�
m2

A +m2
Z

m2
A �m2

Z

,

m2
H± = m2

A +m2
W m2

H = m2
A +m2

Z �m2
h ,

(33)

where �, tan� = vu/vd, is the angle that diagonalizes the mass matrix of the charged states, ↵ is the mixing angle
of neutral scalars. The vacuum expectation values are normalized to the electroweak vacuum expectation value,
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respectively. The flavor o↵-diagonal terms ✏`fi, ✏
u
fi are free parameters of the model. The coe�cients xk

q for Hk =
(H,h,A) are determined by the mixing angles of the neutral scalars and the VEVs [41]

xk
u = (� sin↵,� cos↵, i cos�) ,

xk
d = (� cos↵, sin↵, i sin�) .

(36)
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2. Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with the SM fermions are contained in a single term at the
renormalizable level:

L = Yij (¯̀i�µPRuj)V
(5/3)µ + h.c. . (29)

Generation indices are denoted by i, j. Integrating out V (5/3) results in the right-handed current operators:

C 0
9 = C 0

10 =
⇡p

2GF�b↵

YµcY
⇤
µu

m2
V

. (30)

On the other hand, the same combination of couplings enters the D0 � D̄0 mixing. We employ the same type of
Hamiltonian as in the preceding Section this time the Wilson coe�cient:

C6(mV ) =
(YµuY

⇤
µc)

2

32⇡2m2
V

=
(GF↵)2

16⇡4
m2

V (C̃
0
10)

2 . (31)

Consequence of the bound (27) is that the rare decay Wilson coe�cients are limited:

|C̃ 0
9, C̃

0
10| < 0.24 . (32)

The above knowledge of C 0
9,10 implies that the branching ratio of D ! ⇡µ+µ� in the high-q2 bin is at most 1.4⇥10�8,

where the long-distance uncertainties have been taken into account. The e↵ect is twice smaller than the existing
experimental bound.

C. Two Higgs doublet model type III

In the Two Higgs Doublet Model of type III (THDM III) the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and H, one pseudoscalar, A, and two charged scalars, H±. In
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For the transitions c ! u`+`� the driving flavor changing parameter is ✏u12 that induces scalar and pseudoscalar
Wilson coe�cients, while we assume that ✏`22 is negligible [41]:

�CP = CS =
⇡

4
p
2GF↵�b

mµ

v

✏u⇤12 tan�

m2
H

, (37)

C 0
P = C 0

S =
⇡

4
p
2GF↵�b

mµ

v

✏u21 tan�

m2
H

. (38)

The best upper bounds on CP , CS , or C 0
P , C

0
S pairs are obtained from BR(D0 ! µ+µ�) and read |C̃S � C̃ 0

S |  0.05
and |C̃P � C̃ 0

P |  0.05 which makes them very di�cult to probe in D ! ⇡µ+µ� decay, unless the cancellation between
CS (CP ) and C 0

S (C 0
P ) in D0 ! µ+µ� is arranged by fine-tuning.

D. Flavor specific Z0 extension

An additional neutral gauge boson appears in many extensions of the SM. Current searches for Z 0 at the LHC are
well motivated by many extensions of the SM, see e.g. [42, 43]. Even more, a Z 0 boson can explain B ! K⇤µ+µ�

angular asymmetries puzzle, as presented in e.g. [44, 45]. Assuming as in [43] flavor nonuniversal couplings of Z 0 to
fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)
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fermions, we allow Z 0 to couple only to the pair c̄u and cū. Such model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from the down-type quark sector which will a↵ect left-handed
quark couplings, we allow only right-handed couplings of Lq

Z0 = Cu(ū�µPRc)Z 0
µ. This assumption leads to the same

e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
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The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
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For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.
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e↵ective operator He↵ = C6(ū�µPRc)(ū�µPRc) as already discussed in the case of leptoquarks. The e↵ective Wilson
coe�cient describing D0 � D̄0 transition is now:

C6(mZ0) =
|Cu|2
2m2

Z0
. (39)

The bound on C6 (27) leads to |Cu| < 7.1 ⇥ 10�4(mZ0/1 TeV). Allowing Z 0 to couple to muons as in the SM with
g`L = (g/ cos ✓W )(�1/2 + sin2 ✓W ) and g`R = g sin2 ✓W / cos ✓W , we obtain

C 0
9 =

4⇡p
2GF�b↵

(g`L + g`R)C
u

2m2
Z0

(40)

and

C 0
10 =

4⇡p
2GF�b↵

(�g`L + g`R)C
u

2m2
Z0

. (41)

For mZ0 ⇠ 1 TeV this amounts to |C9| . 8 and |C10| . 100, (|C̃9| < 10�3 and |C̃10| < 0.014), and induces negligible
e↵ects in D ! ⇡µ+µ� and D ! µ+µ� decays.

V. LEPTON FLAVOR UNIVERSALITY VIOLATION

Lepton flavor universality was checked in the case of B ! K`+`� with ` = e, µ by the LHCb experiment [15] in
the low dilepton invariant mass region, q2 2 [1, 6] GeV2. The disagreement between the measurement and the value
predicted within the SM is 2.6 � [46]. This disagreement might be result of NP as first pointed out in Ref. [46]. Many
subsequent studies found a number of models which can account for the observed discrepancy. In the following we
assume that the amplitude for D+ ! ⇡+e+e� receives SM contributions only, while in the case of ⇡+µ+µ� mode,
there can be NP contributions, similarly to what was assumed for RK in Ref. [47]. We define LFU ratios in the low-
and high-q2 regions as

RI
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[0.252,0.5252]GeV2

BR(D+ ! ⇡+e+e�)q22[0.252,0.5252]GeV2

, (42)

and

RII
⇡ =

BR(D+ ! ⇡+µ+µ�)q22[1.252,1.732]GeV2

BR(D+ ! ⇡+e+e�)q22[1.252,1.732]GeV2
. (43)

negligible	effects!		



	
					Model																																							Effect																																					Size	of	the	effect	
		

Spin-1	weak	triplet																			C9	=	-C10																																																			C9	<	10																																																	

Scalar	leptoquark			
(3,2,7/6)		

CS,CP,	CS’,CP‘,CT,CT5,		
C9,C!0,C9’,C10’	

VcbVub|C9,	C10|<	0.34		

Vector	leptoquark			
(3,1,5/3)		

C9’	=	C10’	 VcbVub|C9’,	C10’|<	0.24		

Two	Higgs	doublet		
Model	type	III		 CS,CP,	CS’,CP‘	

VcbVub|CS	–	CS’|<	0.005		

VcbVub|CP	–	CP’|<	0.005		

Z’	model		 C9’,C10’	
	

VcbVub|C9’,|<	0.001	
VcbVub|C10’|	<	0.014	



Summary	

Ø 	Scalar	and	pseudoscalar	operators	describing	NP	contribuAons	considered	in		
Cabibbo		allowed	leptonic	and	semileptonic	charmed	meson	decays;	
	
Ø 	A	number	of	variables	suitable	to	test	NP	contribuAons	were	discussed	as:		
	differenAal	branching	raAo,	forward-backward	asymmetry,	transversal	muon		
asymmetry	for																										and		RL/T	for																														;		
	
Ø 	In	order	to	get	Aght	constraints	on	NP	one	needs:	

a)		La[ce	calculaAons	of	form	factors	in																				and																		;	
b)	High	precision	experimental	studies	of	all	observables.			
																		-		

D ! Kl⌫l D ! K⇤l⌫l

D ! P D ! V

a)	Prospect	of	NP	in	charged	current	D	meson	transiAons	



	b)	Prospect	of	NP	in	FCNC		D	decays	

Ø  	EffecAve	Lagrangian	approach	used	to	described	NP	effects:				NP	can	appear	
in	as	in	SM	in	C7,	C9,	C10	or	in	CS,	CP,	CT,	C7’,C9’,	C10’,	CS’,	CP’,	CT5;	

Ø  	All	these	Wilson		coefficents	can	be	bounded	by	LHCb	results	on	
nonresonant	background		in																																							;	

Ø  Models	of	NP	:	Spin-1	weak	triplet,	Scalar	leptoquark			(3,2,7/6),Vector	
leptoquark			(3,1,5/3)	,	Two	Higgs	doublet		model	type	III	,	Z’	model	might	
contribute	to	Wilson	coefficients;	

	
Ø  SuggesAon:	to	check	of	LFU	violaAon.	

	

D+ ! ⇡+µ+µ�



Thanks!	
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FIG. 2: Left: Asymmetry aCP (m``) weighted by dBr/dm`` in the case when dominated by cos �� term. The shaded region denotes the
defining bin for asymmetry C�

CP . Right: aCP (m``) when dominated by sin ��. Shown are also the two bins where the asymmetry S�
CP is

defined as the difference of ACP in the two bins.
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TABLE I: Values of D ! ⇡+µ+µ� CP asymmetries C�
CP and S�

CP for representative values of ��. Last two columns show effective
sensitivity.
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on ��. Right: asymmetries rescaled by the branching ratios in the corresponding bins, thus representing effective sensitivity to direct CP
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B. D+ ! ⇡+µ+µ�

In order to analyze NP e↵ects in D+ ! ⇡+µ+µ� one needs to evaluate the hadronic transition matrix elements of
currents ū�µPL,Rc and ū�µ⌫PL,Rc. The standard parametrization expresses these matrix elements in terms of three
form factors:

h⇡(k) | ū�µ(1± �5)c |D(p)i = f+(q
2)


(p+ k)µ � m2

D �m2
⇡

q2
qµ

�
+ f0(q

2)
m2

D �m2
⇡

q2
qµ , (7)

h⇡(k) | ū�µ⌫(1± �5)c |D(p)i = i
fT (q2)

mD +m⇡

⇥
(p+ k)µq⌫ � (p+ k)⌫qµ ± i✏µ⌫↵�(p+ k)↵q�

⇤
, (8)

where q = p � k is the dilepton four-momentum. For the f+,0(q2) form factors we use the Bečirević-Kaidalov (BK)
parametrization [19]:

f+(q
2) =

f+(0)

(1� x)(1� ax)
, x = q2/m2

pole ,

f0(q
2) =

f+(0)

1� 1
bx

,

(9)

with the shape parameters mpole and a determined by measurements of D ! ⇡`⌫ decay spectra. We make an
average of four experimental fits to the shape parameters, by taking as input the CLEO-c tagged [20] and untagged
analysis [21], BES III [22], and Babar [23] results, all compiled by the HFAG [24]. The fitted shape parameters
are mpole = 1.90(8) GeV and a = 0.28(14). For the normalization of the form factor we rely on the lattice result
f+(0) = 0.67(3) calculated by the HPQCD collaboration [25]. The shape parameter b = 1.27(17) has also been
extracted in lattice simulations [26]. For the tensor current form factor we rely on the fit of lattice data to BK shape
as in [26]

fT (q
2) =

fT (0)

(1� x)(1� aTx)
, (10)

where x = q2/m2
D⇤ , fT (0) = 0.46(4) and aT = 0.18(16). Based on the e↵ective Hamiltonian (4), the most general

expression for the short distance amplitude can be written as [27]:

ASD(D+(p) ! ⇡+(p0)µ+(k+)µ
�(k�)) =

=
iGF�b↵p

2⇡

⇥
V ū/pv +A ū/p�5v + (S + T cos ✓)ūv + (P + T5 cos ✓)ū�5v

⇤
.

Here ✓ is defined as the angle between the three-momenta of B and `� in the rest frame of lepton pair whereas
V,A, S, P, T , and T5 are q2-dependent functions expressed in terms of hadronic form factors and Wilson coe�cients,

V =
2mcfT (q2)

mD +m⇡
(C7 + C 0

7) + f+(q
2)(C9 + C 0

9) +
8fT (q2)m`

mD +m⇡
CT ,

A = f+(q
2)(C10 + C 0

10) ,

S =
m2

D �m2
⇡

2mc
f0(q

2)(CS + C 0
S) ,

P =
m2

D �m2
⇡

2mc
f0(q

2)(CP + C 0
P )�m`


f+(q

2)� m2
D �m2

⇡

q2
�
f0(q

2)� f+(q
2)
��

(C10 + C 0
10) ,

T =
2fT (q2)�`�

1/2

mD +m⇡
CT ,

T5 =
2fT (q2)�`�

1/2

mD +m⇡
CT5 . (11)

We have employed introduced a shorthand notation � = �(m2
D,m2

⇡, q
2), where �(x, y, z) = (x+y+z)2�4(xy+yz+zx),

as well as �` = �`(q2) =
p

1� 4m2
`/q

2. The decay spectrum can be expressed in terms of q2-dependent angular
coe�cients as:

d�(D ! ⇡``)

dq2 d cos ✓
= N �1/2�`

⇥
a`(q

2) + b`(q
2) cos ✓ + c`(q

2) cos2 ✓
⇤
, N =

G2
F |�b|2↵2

(4⇡)5m3
D

, (12)

Relevant	matrix	elements	
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V,	A,	S,	P,	T,	T5		are	funcAons	of	the	appropriate		Wilson	coefficients.	

NP	enters	through	such	combinaAons:	


