$|V_{ud}|$ from nuclear beta decays

J.C. Hardy
Cyclotron Institute
Texas A&M University

with
I.S. Towner
CURRENT STATUS OF V_{ud}

$$V_{ud} = 0.97420 \pm 0.00021$$
SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2} \langle \tau \rangle^2$$

f = statistical rate function: $f(Z, Q_{EC})$
t = partial half-life: $f(t_{1/2}, BR)$

G_v = vector coupling constant
$\langle \tau \rangle$ = Fermi matrix element

EXPERIMENT
SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

\[
ft = \frac{K}{G_v^2 \langle \tau \rangle^2}
\]

- $f = \text{statistical rate function: } f(Z, Q_{EC})$
- $t = \text{partial half-life: } f(t_{1/2}, BR)$
- $G_v = \text{vector coupling constant}$
- $\langle \tau \rangle = \text{Fermi matrix element}$

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

\[
\mathcal{J}t = ft (1 + \delta'_R)[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}
\]
SUPERAALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ f t = \frac{K}{G_v^2 <\tau>^2} $$

$\mathbf{f} = \text{statistical rate function: } f(Z, Q_{EC})$

$\mathbf{t} = \text{partial half-life: } f(t_{1/2}, \text{BR})$

$G_v = \text{vector coupling constant}$

$<\tau> = \text{Fermi matrix element}$

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

$$ ft = ft (1 + \delta'_R) \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)} $$

$\mathbf{f}(Z, Q_{EC})$

$\sim 1.5\%$

$\mathbf{f}(\text{nuclear structure})$

$0.3-1.5\%$

$\mathbf{f}(\text{interaction})$

$\sim 2.4\%$
BASIC WEAK-DECAY EQUATION

\[f_t = \frac{K}{G_v^2 \langle \tau \rangle^2} \]

- \(f = \) statistical rate function: \(f(Z, Q_{EC}) \)
- \(t = \) partial half-life: \(f(t_{1/2}, BR) \)
- \(G_v = \) vector coupling constant
- \(\langle \tau \rangle = \) Fermi matrix element

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

\[\mathcal{J} t = f_t (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)} \]

- \(f(Z, Q_{EC}) \)
 \(\sim 1.5\% \)
- \(f(\text{nuclear structure}) \)
 \(0.3-1.5\% \)
- \(f(\text{interaction}) \)
 \(\sim 2.4\% \)

THEORETICAL UNCERTAINTIES

\(0.05 - 0.10\% \)
FROM A SINGLE TRANSITION

Experimentally determine \(G_v^2 (1 + \Delta_R) \)

\[
\mathcal{H}_t = ft (1 + \delta_R') \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)}
\]
FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}_t = ft (1 + \delta_R') \left[1 - (\delta_C - \delta_{NS})\right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

\mathcal{F}_t values constant
THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\not{t} = ft (1 + \delta_R') \left[1 - (\delta_c - \delta_{ns}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

WITH CVC VERIFIED

Obtain precise value of $G_v^2 (1 + \Delta_R)$

Determine V_{ud}^2

$$V_{ud}^2 = \frac{G_v^2}{G_\mu^2}$$
THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F} t = ft (1 + \delta'_R) \left[1 - (\delta_c - \delta_{NS}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

WITH CVC VERIFIED

Obtain precise value of $G_v^2 (1 + \Delta_R)$

Determine V_{ud}^2

Test CKM unitarity

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

$V_{ud} = G_v^2 / G_{\mu}^2$
THE PATH TO \(V_{ud} \)

FROM A SINGLE TRANSITION

Experimentally determine \(G_v^2 (1 + \Delta_R) \)

\[
\mathcal{F} t = ft (1 + \delta'_R)[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}
\]

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate the correction terms
Test for presence of a Scalar current

WITH CVC VERIFIED

\[
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\]

Obtain precise value of \(G_v (1 + \Delta_R) \)
Determine \(V_{ud} \)
Test Conservation of \(L^0 + L^+ + L^- = 0 \)

\(\mathcal{F} t \) values constant

\[
V_{ud} = \frac{G_v^2}{G_\mu^2}
\]

ONLY POSSIBLE IF PRIOR CONDITIONS SATISFIED

\[
V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1
\]
8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.

~220 individual measurements with compatible precision

$$t = ft (1 + \delta_R') [1 - (\delta_c - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$
WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2016

What’s new:
1) 10C $t_{1/2}$ – R. Dunlop et al., PRL 116, 172501 (2016).
2) 16O Q_{EC} – A.A. Valverde et al., PRL 114, 232502 (2015).
3) 14O br – P.A. Voytas et al., PRC 92, 065502 (2015).

Hardy & Towner

- 8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.
- ~220 individual measurements with compatible precision

$$t = ft \left[1 + \delta_R' \right] \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2Gv^2 (1 + \Delta_R)}$$
WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2016

- 8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.
- ~220 individual measurements with compatible precision

$$t = ft \left(1 + \delta_R' \right) \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G^2 (1 + \Delta_R)}$$
WORLD DATA FOR $0^+ \rightarrow 0^+ \text{ DECAY, 2016}$

- 8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.
- ~220 individual measurements with compatible precision

\[t = ft (1 + \delta'_R) \left[1 - (\delta_c - \delta_{NS}) \right] = \frac{K}{2G^2 (1 + \Delta_R)} \]
NUMBER OF PROTONS, Z

NUMBER OF NEUTRONS, N

R_b

Q_{EC}

BR

$0^+ 1$

$0^+ 1$

$\frac{1}{2}$

$WORLD\ DATA\ FOR\ 0^+ \rightarrow 0^+\ DECAY,\ 2016$

- 8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.

- ~220 individual measurements with compatible precision

$ft = ft\ (1 + \delta_R)'\left[1 - (\delta_C - \delta_{NS})\right] = \frac{K}{2G_v^2\ (1 + \Delta_R)}$

Hardy & Towner

8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.

~220 individual measurements with compatible precision.

Critical test passed: ft values consistent

$$ft = ft\left(1 + \delta'_{R}\right)\left[1 - (\delta_c - \delta_{NS})\right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$
1. Radiative corrections

\[\mathcal{F} t = ft (1 + \delta'_R) \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)} \]

\[\delta'_R = \frac{\alpha}{2\pi} [g(E_m) + \delta_2 + \delta_3 + \ldots] \]

\[\Delta_R = \frac{\alpha}{2\pi} \left[4 \ln(m_z/m_p) + \ln(m_p/m_A) + 2C_{\text{Born}} + \ldots \right] \]

\[\delta_{NS} \quad \text{Order-α axial-vector universal photonic contributions} \]

2. Isospin symmetry-breaking corrections

\[\delta_C \quad \text{Charge-dependent mismatch between parent and daughter analog states (members of the same isospin triplet).} \]
\[\delta_C = \delta_{C1} + \delta_{C2} \]

Difference in configuration mixing between parent and daughter.

- Shell-model calculation with well-established 2-body matrix elements.
- Charge dependence tuned to known single-particle energies and to measured IMME coefficients.
- Results also adjusted to measured non-analog 0\(^+\) state energies.

0.01 – 0.3 %

Mismatch in radial wave function between parent and daughter.

- Full-parentage Saxon-Woods wave function also matched to known binding energy and charge radius from electron scattering.
- Compared with Hartree-Fock calculation matched to known binding energy.
- Core states included based on measured spectroscopic factors.

0.4 – 1.5 %
A. Agreement with CVC:

$
\mathcal{F}_t
$
values have been calculated with different models for δ_c, then tested for consistency. Normalized χ^2 and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
</tbody>
</table>

$\chi^2 = 1.37$

Diagram Description:

- **Title:** Shell-model, Saxon-Woods radial functions
- **Axes:**
 - Z of daughter
 - \mathcal{F}_t
- **Legend:**
 - Towner & Hardy
 - PRC 77, 025501 (2008)
- **Data Points:**
 - Several \mathcal{F}_t values with error bars.
A. Agreement with CVC:

\mathcal{F}_t values have been calculated with different models for δ_c, then tested for consistency. Normalized χ^2 and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
</tbody>
</table>

Shell-model, Saxon-Woods radial functions

$\chi^2 = 1.37$

Towner & Hardy
PRC 77, 025501 (2008)

Shell-model, Hartree-Fock radial functions

$\chi^2 = 6.38$

Towner & Hardy
PRC 79, 055502 (2009)
A. Agreement with CVC:

$\mathcal{F} t$ values have been calculated with different models for δ_c, then tested for consistency. Normalized χ^2 and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
<tr>
<td>DFT</td>
<td>4.26</td>
<td>0</td>
</tr>
</tbody>
</table>

$\chi^2 = 1.37$

$\chi^2 = 4.26$

$\chi^2 = 6.38$
A. Agreement with CVC:

\(\mathcal{F} \) values have been calculated with different models for \(\delta_c \), then tested for consistency. Normalized \(\chi^2 \) and confidence levels are shown.

<table>
<thead>
<tr>
<th>Model</th>
<th>(\chi^2/N)</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
<tr>
<td>DFT</td>
<td>4.26</td>
<td>0</td>
</tr>
<tr>
<td>RHF-RPA</td>
<td>4.91</td>
<td>0</td>
</tr>
<tr>
<td>RH-RPA</td>
<td>3.68</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\chi^2 = 1.37 \) for Shell-model, Saxon-Woods radial functions.

\(\chi^2 = 4.26 \) for Nuclear density functional theory.

\(\chi^2 = 6.38 \) for Shell-model, Hartree-Fock radial functions.
B. Measurements of mirror superallowed transitions:

\[
\begin{align*}
\text{38}^{88}\text{Ar}^{20} & \rightarrow \text{38}^{88}\text{Ca}^{20} \\
& \text{444 ms} \\
\text{Q}_{\text{EC}} &= \text{6612} \\
\end{align*}
\]
B. Measurements of mirror superallowed transitions:

\[t = ft \left(1 + \delta'_R \right) \left[1 - (\delta_C - \delta_{\text{NS}}) \right] \]

\[
\frac{ft_A}{ft_B} = \frac{(1 + \delta'_B) \left[1 - (\delta^B_C - \delta^B_{\text{NS}}) \right]}{(1 + \delta'_A) \left[1 - (\delta^A_C - \delta^A_{\text{NS}}) \right]}
\]

\[
= 1 + (\delta^B_R - \delta^A_R) + (\delta^B_{\text{NS}} - \delta^A_{\text{NS}}) - (\delta^C_C - \delta^C_C)
\]
B. Measurements of mirror superallowed transitions:

$$\mathcal{H}t = ft (1 + \delta_R')\left[1 - (\delta_C - \delta_{NS})\right]$$

$$\frac{ft_A}{ft_B} = \frac{(1 + \delta_R^B)[1 - (\delta_C^B - \delta_{NS}^B)]}{(1 + \delta_R^A)[1 - (\delta_C^A - \delta_{NS}^A)]}$$

$$= 1 + (\delta_R^B - \delta_R^A) + (\delta_{NS}^B - \delta_{NS}^A) - (\delta_C^B - \delta_C^A)$$
B. Measurements of mirror superallowed transitions:

\[\tau t = ft (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] \]

\[\frac{ft_A}{ft_B} = \frac{(1 + \delta^B_R) [1 - (\delta^B_C - \delta^B_{NS})]}{(1 + \delta^A_R) [1 - (\delta^A_C - \delta^A_{NS})]} \]

\[= 1 + (\delta^B_R - \delta^A_R) + (\delta^B_{NS} - \delta^A_{NS}) - (\delta^B_C - \delta^A_C) \]
B. Measurements of mirror superallowed transitions:

\[\mathcal{A} t = ft \left(1 + \delta_R^{'B} \right) \left[1 - (\delta_C - \delta_{NS}) \right] \]

\[\frac{ft_A}{ft_B} = \frac{\left(1 + \delta_R^{'B} \right) \left[1 - (\delta_C - \delta_{NS}) \right]}{\left(1 + \delta_R^{'A} \right) \left[1 - (\delta_C - \delta_{NS}) \right]} \]

\[= 1 + (\delta_R^{'B} - \delta_R^{'A}) + (\delta_{NS} - \delta_{NS}) - (\delta_C - \delta_C) \]
B. Measurements of mirror superallowed transitions:

\[t = ft (1 + \delta_R) [1 - (\delta_C - \delta_{NS})] \]

\[\frac{ft_A}{ft_B} = \frac{(1 + \delta_R^B)[1 - (\delta_C^B - \delta_{NS}^B)]}{(1 + \delta_R^A)[1 - (\delta_C^A - \delta_{NS}^A)]} = 1 + (\delta_R^B - \delta_R^A) + (\delta_{NS}^B - \delta_{NS}^A) - (\delta_C^B - \delta_C^A) \]

H.I. Park et al.
PRL 112, 102502 (2014)
PRC 92, 015502 (2015)
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally
determine $G_V^2 (1 + \Delta_R)$

$\mathcal{F} t = ft (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)}$

FROM MANY TRANSITIONS

Test Conservation of
the Vector current (CVC)
FROM A SINGLE TRANSITION

Experimentally determine $G_V^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta'_R)\left[1 - (\delta_C - \delta_{NS})\right] = \frac{K}{2G_V^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

G_V constant to $\pm 0.011\%$

RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

$\mathcal{I}t = 3072.1(7)$

$G_V(1+\Delta_R)^{1/2}/(hc)^3$

$= 1.14962(13)$

$\times 10^{-5}$ GeV$^{-2}$

$\chi^2/\nu = 0.6$
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}t = ft (1 + \delta'_R)[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate correction terms

G_v constant to $\pm 0.011\%$
FROM A SINGLE TRANSITION

\[\mathcal{F}t = ft (1 + \delta_R^2)[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)} \]

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms

\[G_V \text{ constant to } \pm 0.011\% \]
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}t = \mathcal{F}t \left(1 + \delta_R^2\right) \left[1 - (\delta_C - \delta_{NS})\right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

G_v constant to $\pm 0.011\%$

Validate correction terms

Table: Model Results

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2/N</th>
<th>CL(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-SW</td>
<td>1.37</td>
<td>17</td>
</tr>
<tr>
<td>SM-HF</td>
<td>6.38</td>
<td>0</td>
</tr>
<tr>
<td>DFT</td>
<td>4.26</td>
<td>0</td>
</tr>
<tr>
<td>RHF-RPA</td>
<td>4.91</td>
<td>0</td>
</tr>
<tr>
<td>RH-RPA</td>
<td>3.68</td>
<td>0</td>
</tr>
</tbody>
</table>

Graph: Comparison of ft for mirror pairs

- SW
- HF

Graph: ft vs. Z of daughter

- Elements: ^{14}O, ^{28m}Al, ^{34}Ar, ^{42}Sc, ^{50}Mn, ^{23}Mg, ^{30}Ca, ^{38m}K, ^{46}V, ^{44}Co, ^{62}Ga, ^{74}Rb
RESULTS FROM $0^+ \rightarrow 0^+$ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_V^2 (1 + \Delta_R)$

$$\mathcal{F} t = ft (1 + \delta_R') [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate correction terms

Test for Scalar current

G_V constant to $\pm 0.011\%$
RESULTS FROM 0⁺→0⁺ DECAY

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{Z}t = ft (1 + \delta_R') \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms
Test for Scalar current

G_v constant to \pm 0.011%

limit, $C_s/C_v = 0.0012$ (10)

RESULTS FROM $0^+ \rightarrow 0^+$ DECAY
FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F}t = ft (1 + \delta_R') [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms
Test for Scalar current

G_v constant to ± 0.011%

limit, $C_s/C_V = 0.0012 (10)$

RESULTS FROM $0^+ \rightarrow 0^+$ DECAY
FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F} = ft (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validated correction terms
Test for Scalar current

G_v constant to ± 0.011%

limit, $C_s/C_v = 0.0012 (10)$

WITH CVC VERIFIED

Obtain precise value of $G_v^2 (1 + \Delta_R)$

Determine V_{ud}^2

$$V_{ud}^2 = \frac{G_v^2}{G_{\mu}^2} = 0.94907 \pm 0.00041$$

RESULTS FROM $0^+ \rightarrow 0^+$ DECAY
FROM A SINGLE TRANSITION

Experimentally determine \(G_v^2 (1 + \Delta_R) \)

\[
\mathcal{F} t = ft (1 + \delta'_R) [1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_v^2 (1 + \Delta_R)}
\]

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)
Validate correction terms
Test for Scalar current

G_v constant to \(\pm 0.011\% \)

limit, \(C_s/C_v = 0.0012 (10) \)

WITH CVC VERIFIED

Obtain precise value of \(G_v^2 (1 + \Delta_R) \)
Determine \(V_{ud}^2 \)

\[
V_{ud}^2 = \frac{G_v^2}{G_{\mu}^2} = 0.94907 \pm 0.00041
\]

RESULTS FROM \(0^+ \rightarrow 0^+ \) DECAY

Cabibbo-Kobayashi-Maskawa matrix

weak eigenstates

mass eigenstates
FROM A SINGLE TRANSITION

Experimentally determine $G_v^2 (1 + \Delta_R)$

$$\mathcal{F} = f t \left(1 + \delta_R' \right) \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{2G_v^2 (1 + \Delta_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate correction terms

Test for Scalar current

G$_v$ constant to ± 0.011%

limit, $C_s/C_v = 0.0012 (10)$

WITH CVC VERIFIED

Obtain precise value of $G_v^2 (1 + \Delta_R)$

Determine V_{ud}^2

$V_{ud}^2 = G_v^2/G_{\mu}^2 = 0.94907 \pm 0.00041$

Test CKM unitarity

$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.99963 \pm 0.00049$

RESULTS FROM $0^+ \rightarrow 0^+$ DECAY
T=1/2 SUPERALLOWED BETA DECAY

BASIC WEAK-DECAY EQUATION

\[f_t = \frac{K}{G_V^2 \langle \tau \rangle^2 + G_A^2 \langle \sigma \tau \rangle^2} \]

\(f = \) statistical rate function: \(f(Z, Q_{EC}) \)

\(t = \) partial half-life: \(t_{1/2}, BR \)

\(G_{V,A} = \) coupling constants

\(\langle \rangle = \) Fermi, Gamow-Teller matrix elements

[Diagram showing the relationship between various parameters in the context of beta decay, including statistical rate functions and experimental measurements.]
T=1/2 SUPERALLOWED BETA DECAY

BASIC WEAK-DECAY EQUATION

\[
ft = \frac{K}{G_V^2 \langle \tau \rangle^2 + G_A^2 \langle \sigma \tau \rangle^2}
\]

- \(f \) = statistical rate function: \(f(Z, Q_{EC}) \)
- \(t \) = partial half-life: \(f(t_{1/2}, \text{BR}) \)
- \(G_{V,A} \) = coupling constants
- \(<> \) = Fermi, Gamow-Teller matrix elements

INCLUDING RADIATIVE CORRECTIONS

\[
\mathcal{F}t = ft (1 + \delta'_{R})[1 - (\delta_C - \delta_{NS})] = \frac{K}{G_V^2 (1 + \Delta_{R})(1 + \lambda^2 \langle \sigma \tau \rangle^2)}
\]

\(\lambda = G_A / G_V \)
BASIC WEAK-DECAY EQUATION

\[ft = \frac{K}{G_V^2 \langle \tau \rangle^2 + G_A^2 \langle \sigma \tau \rangle^2} \]

- \(f = \) statistical rate function: \(f(Z, Q_{EC}) \)
- \(t = \) partial half-life: \(f(t_{1/2}, BR) \)
- \(G_{V,A} = \) coupling constants
- \(\langle \rangle = \) Fermi, Gamow-Teller matrix elements

INCLUDING RADIATIVE CORRECTIONS

\[\mathcal{F}t = ft (1 + \delta'_R) \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{G_V^2 (1 + \Delta_R)(1 + \lambda^2 \langle \sigma \tau \rangle^2)} \]

- \(\lambda = G_A/G_V \)

Requires additional experiment: for example, \(\beta \) asymmetry (A)
T=1/2 SUPERALLOWED BETA DECAY

BASIC WEAK-DECAY EQUATION

\[f_t = \frac{K}{G_V^2 \langle \tau \rangle^2 + G_A^2 \langle \sigma \tau \rangle^2} \]

- \(f = \) statistical rate function: \(f(Z, Q_{EC}) \)
- \(t = \) partial half-life: \(f(t_{1/2}, BR) \)
- \(G_{V,A} = \) coupling constants
- \(\langle \rangle = \) Fermi, Gamow-Teller matrix elements

INCLUDING RADIATIVE CORRECTIONS

\[\bar{f}_t = f_t (1 + \delta'_R) \left[1 - \left(\delta_c - \delta_{NS} \right) \right] = \frac{K}{G_V^2 \left(1 + \Delta_R \right) \left(1 + \lambda^2 \langle \sigma \tau \rangle^2 \right)} \]

- \(\lambda = \frac{G_A}{G_V} \)

Requires additional experiment: for example, \(\beta \) asymmetry (A)

NEUTRON DECAY
Mean life:

\[\tau = 880.2 \pm 1.0 \text{ s} \]

\[\chi^2 / N = 3.7 \]
Mean life:

\[\tau = 880.2 \pm 1.0 \text{ s} \]

\[\chi^2 / N = 3.7 \]
Mean life:
\[\tau = 880.2 \pm 1.0 \text{ s} \]
\[\chi^2 / N = 3.7 \]

Beam: 888.1 ± 2.0 s
Bottle: 879.6 ± 0.7 s
Mean life:
\[\tau = 880.2 \pm 1.0 \text{ s} \]
\[\chi^2 / N = 3.7 \]

\(g / g^V \) asymmetry:
\[\lambda = -1.2725 \pm 0.0020 \]
\[\chi^2 / N = 4.1 \]
Mean life:

\[\tau = 880.2 \pm 1.0 \text{ s} \]

\[\chi^2 / N = 3.7 \]

\[\beta \text{ asymmetry:} \]

\[\lambda = -1.2725 \pm 0.0020 \]

\[\chi^2 / N = 4.1 \]

\[V_{ud} = 0.9757 \pm 0.0014 \]
Mean life:
\[\tau = 880.2 \pm 1.0 \text{ s} \]
\[\chi^2 / N = 3.7 \]

Beam: 888.1 ± 2.0 s
Bottle: 879.6 ± 0.7 s

\[\beta \text{ asymmetry:} \]
\[\lambda = -1.2725 \pm 0.0020 \]
\[\chi^2 / N = 4.1 \]

\[V_{ud} = 0.9757 \pm 0.0014 \]

Beam-bottle span
0.9701 ≤ \(V_{ud} \) ≤ 0.9767
Mean life:

\[\tau = 880.2 \pm 1.0 \text{ s} \]
\[\chi^2 / N = 3.7 \]

\[g_A / g_V = -1.2725 \pm 0.0020 \]
\[\chi^2 / N = 4.1 \]

\[V_{ud} = 0.9757 \pm 0.0014 \]

Beam: 888.1 \pm 2.0 \text{ s}
Bottle: 879.6 \pm 0.7 \text{ s}

Beam-bottle span

0.9701 \leq V_{ud} \leq 0.9767

nuclear 0^+ \rightarrow 0^+

\[V_{ud} = 0.9742 \pm 0.0002 \]
\[T = \frac{G_v^2 (1 + \Delta_R)(1 + \lambda ^2 \langle \sigma \tau \rangle^2)}{f t (1 + \delta'_R)[1 - (\delta_C - \delta_{NS})]} \]

Naviliat-Cuncic & Severijns
PRL 102, 142302 (2009)
+ B. Fenker, Phd Thesis TAMU
$$\mathcal{F} t = ft \left(1 + \delta'_R \right) \left[1 - (\delta_C - \delta_{NS}) \right] = \frac{K}{G_V^2 \left(1 + \Delta_R \right) \left(1 + \lambda^2 <\sigma \tau>_2 \right)}$$

$V_{ud} = 0.9730 \pm 0.0014$

Naviliat-Cuncic & Severijns
PRL 102, 142302 (2009)
+ B. Fenker, Phd Thesis TAMU
\[\tau t = ft (1 + \delta'_R)[1 - (\delta_c - \delta_{NS})] = \frac{K}{G^2_V (1 + \Delta_R)(1 + \lambda^2 <\sigma \tau>^2)} \]

Naviliat-Cuncic & Severijns
PRL 102, 142302 (2009)
+ B. Fenker, Phd Thesis TAMU

\[V_{ud} = 0.9730 \pm 0.0014 \]

nuclear $0^+ \rightarrow 0^+$

\[V_{ud} = 0.9742 \pm 0.0002 \]
Decay process:

\[\pi^+ \longrightarrow \pi^0 \ e^+ \ \nu_e \]
\[0^-,1 \longrightarrow 0^-,1 \]
Decay process:

$$
\pi^+ \longrightarrow \pi^0 e^+ \nu_e
$$

$$
0^-,1 \longrightarrow 0^-,1
$$

Experimental data:

$$
\tau = 2.6033 \pm 0.0005 \times 10^{-8} \text{ s} \quad \text{(PDG 2009)}
$$

$$
\text{BR} = 1.036 \pm 0.007 \times 10^{-8}
$$

Pocanic et al, PRL 93, 181803 (2004)

Result:

$$
V_{ud} = 0.9749 \pm 0.0026
$$
PION BETA DECAY

Decay process:

\[\pi^+ \longrightarrow \pi^0 e^+ \nu_e \]

\[0^-,1 \longrightarrow 0^-,1 \]

Experimental data:

\[\tau = 2.6033 \pm 0.0005 \times 10^{-8} \text{ s} \quad \text{(PDG 2009)} \]

\[\text{BR} = 1.036 \pm 0.007 \times 10^{-8} \]

Pocanic et al, PRL 93, 181803 (2004)

Result:

\[V_{ud} = 0.9749 \pm 0.0026 \]

nuclear \(0^+ \rightarrow 0^+ \)

\[V_{ud} = 0.9742 \pm 0.0002 \]
CURRENT STATUS OF V_{ud} AND CKM UNITARITY

$V_{ud} = 0.97420 \pm 0.00021$

Graph showing the status of V_{ud} with uncertainties for different processes: nuclear, neutron, nuclear mirrors, and pion. The values are as follows:

- Nuclear: 0.9700 ± 0.0002
- Neutron: 0.9800 ± 0.0002
- Nuclear Mirrors: 0.9750 ± 0.0002
- Pion: 0.9742 ± 0.0002

Legend:
- Yellow: Experiment
- Red: Radiative correction
- Blue: Nuclear correction
\[V_{ud} + V_{us}^2 + V_{ub}^2 = 0.99963 \pm 0.00049 \]

- **V_{ud}** nuclear decays: 0.94907 ± 0.00041
- **V_{us}** PDG kaon decays: 0.05054 ± 0.00027
- **V_{ub}** B decays: 0.00002 ± 0.00001
1. Analysis of superallowed $0^+ \rightarrow 0^+$ nuclear β decay is shown to confirm CVC and thus yield $V_{ud} = 0.97417(21)$.

2. The three other experimental methods for determining V_{ud} yield consistent results, but are less precise by a factor of 7 or more.

3. The current value for V_{ud}, when combined with the PDG values for V_{us} and V_{ub}, satisfies CKM unitarity to 0.06%.
1. Analysis of superallowed $0^+ \rightarrow 0^+$ nuclear β decay is shown to confirm CVC and thus yield $V_{ud} = 0.97417(21)$.

2. The three other experimental methods for determining V_{ud} yield consistent results, but are less precise by a factor of 7 or more.

3. The current value for V_{ud}, when combined with the PDG values for V_{us} and V_{ub}, satisfies CKM unitarity to 0.06%.

4. The largest contribution to V_{ud} uncertainty is from the inner radiative correction, Δ_R. Very little reduction in V_{ud} uncertainty is possible without improved calculation of Δ_R.

5. Isospin symmetry-breaking correction, δ_C, has been tested by requiring consistency among the 14 known transitions (CVC), and agreement with mirror-transition pairs. It contributes much less to V_{ud} uncertainty than does Δ_R.

6. Significant improvement in neutron decay measurements would provide a valuable consistency check.