WG 3 summary Rare B,D,K decays

Akimasa Ishikawa, Enrico Lunghi, Matthew Moulson, Justine Serrano

CKM 2016, Mumbai

Disclaimer

- Particularly dense sessions: 28 contributions!!!!
- Impossible to be exhaustive in 30 min... this talk in an advertisement for the parallel talks ⁽ⁱ⁾

$b \rightarrow s\ell\ell$

Phenomenology of $b \rightarrow s\ell\ell$

• $b \rightarrow s\ell\ell$ decays can theoretically be described by effective hamiltonian

- Operators O_i depends on hadronic form factors, which usually dominate theoretical uncertainties
- Wilson coefficient C_i describe short distance effects, they are sensitive to NP $J/\psi(1S)$

- $B \rightarrow K^* \ell \ell : C_7 C_9 C_{10}$
- $B \rightarrow \ell \ell : C_{10} C_S C_P$
- $B \rightarrow X_s \gamma : C_7$

```
Global fits favoured C_9^{NP} \sim -1
```


ATLAS has entered the game!

$b \rightarrow s \mu \mu$ branching ratios

Measured BR are consistently lower than predicted in SM

$B^0 \rightarrow K^{*0} \mu \mu$ angular observables

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \right].$$

Observables $(A_{FB}, F_L \text{ and } S_i)$ are function of the Wilson coefficients.

A cleaner set of observables, where hadronic form factor uncertainties cancels at the leading order, can be defined

$$P'_{5} \equiv \frac{S_{5}}{\sqrt{F_{L}(1-F_{L})}}$$

$B^0 \rightarrow K^{*0} \mu \mu$ results

- LHCb: Full angular analysis ($\theta_{\lambda}, \theta_{K}, \phi$) of Run1 data (3fb⁻¹) \Rightarrow access to A_{FB} , F_L , S_i , P'_i
- CMS: analysis uses the angles ($\theta_{\lambda}, \theta_{K}$) and the 8TeV data (20.5 fb⁻¹) \Rightarrow measure A_{FB}, F_L

Global fit to $B \rightarrow K^* \mu \mu$ LHCb analysis is 3.4σ from SM

9

10

- Babar: uses the angles ($\theta_{\lambda}, \theta_{K}$) \Rightarrow measure A_{FB}, F_{L} B+ modes have been added.
 - F_L smaller than SM in bin 1<q²<6 GeV²
 - P_2 also measured and found 2 sigma bellow SM in bin 2<q²<4.3 GeV²

Simon Wehle **Belle:** Uses the three angles $(\theta_{\lambda}, \theta_{K}, \phi)$ with folding technique. • \Rightarrow access to A_{FB} , F_L , S_i , P'_i , and also Qi observables $\langle Q_i \rangle = \langle P_i^{\mu} \rangle - \langle P_i^{e} \rangle$ Combining electron and muons: Separating electrons and muons: 1.5 DHMV Belle preliminary DHMV Belle preliminary LHCb 2013 All Modes 1.0 LHCb 2015 Electron Modes This Measurement Muon Modes 0.5 *5*°° 0.0 -0.5 -1.0-1.5 15 20,0 5 10 0 5 15 10 20 $q^2 \; [{\rm GeV^2/c^4}]$ 2 [GeV²/c⁴]

tension at 2.5σ from SM

tension at 2.6 σ for the muons tension at 1.1 σ for the electrons

$B^0 \rightarrow K^{*0} \mu \mu$ results

• Also measure the variables Qi which test lepton flavor universality

Some more results

- Differential BR measurement of B→K*(892)µµ removing S-wave contribution
- $B \rightarrow K\pi \mu\mu$ BR and angular analysis in the $K_{0,2}^{*}$ (1430) region
- Differential BR of $B^+ \rightarrow \pi^+ \mu\mu$: first observation of b \rightarrow d transition
- Angular analysis of ${\rm B_s} \rightarrow \phi \; \mu\mu$ and $\Lambda_{\rm b} \rightarrow \Lambda \; \mu\mu$
- Angular analysis of $B^0 \rightarrow K^*ee$
- $\Lambda_b \rightarrow p\pi\mu\mu$: First observation (5.5s) of a baryonic b \rightarrow d transition
- Evaluation of charm contributions in $B^+ \rightarrow K^+ \mu \mu$

Set 95% CL upper limits for MSSM model with $m_{P(S)} = 214.3$ MeV (2.5 GeV) ^(*): $BF(B_S^0 \rightarrow SP \rightarrow 4\mu) < 2.2 \times 10^{-9}$ $BF(B^0 \rightarrow SP \rightarrow 4\mu) < 6.0 \times 10^{-10}$

(*) compared to phase space model: tiny change of reconstruction efficiency due to different **p** distribution of muons

	B·	$\rightarrow K\tau\tau$		
 BR~10⁻⁷ in SM Use leptonic tau Apply cut on NN background from 	decays output to remove $B \rightarrow D^{(*)} (\rightarrow K \ell' v)$	100 = 100 100 = 100 100 = 100 100 = 100 0 = -0.4 = -0.2		Signal MC (arb. scale) Peaking background Comb. background 0.8 1 1.2 1.4 1.6 P cut MLP output
		e^+e^-	$\mu^+\mu^-$	$e^+ \mu^-$
Expected bkg 🛛 🛶	$\overline{N^i_{ m bkg}}$	$49.4 \pm 2.4 \pm 2.9$	$45.8 \pm 2.4 \pm 3.2$	$59.2 \pm 2.8 \pm 3.5$
	$\epsilon_{\rm sig}^i(\times 10^{-5})$	$1.1 \pm 0.2 \pm 0.1$	$1.3 \pm 0.2 \pm 0.1$	$2.1 \pm 0.2 \pm 0.2$
Observed events 🛛 🔿	$N_{ m obs}^{i}$	45	39	92
	Significance (σ)	-0.6	-0.9	3.7
	$B(B^+ \to K^+ \tau^+ \tau)$ $B(B^+ \to K^+ \tau^+ \tau)$	$(1.31^{+0.66+0.00}_{-0.61-0.00}) < 2.25 \times 10^{-3}$	³⁵ ₂₅)×10 ⁻³ (90% CL UL)	15

$B_{(s)} \rightarrow \tau \tau$

SM prediction:

$$\begin{split} B(B_s \to \tau \tau) &= (7.73 \pm 0.49) \ 10^{-7} \\ B(B^0 \to \tau \tau) &= (2.22 \pm 0.19) \ 10^{-8} \end{split}$$

Signal/control regions defined from the Dalitz tau decay plane :

 $B(B_s \to \tau \tau) < 2.4(3.0) \ 10^{-3}$ at 90 (95)% CL First experimental limit! $B(B^0 \to \tau \tau) < 1.0(1.3) \ 10^{-3}$ at 90 (95)% CL Improve Babar result by factor²⁴/₁₆

New Belle limits using semileptonic tags, fitting extra energy in the calorimeter

Worlds most stringent limits obtained for:

 $B^0 \to K^0_S \nu \overline{\nu}, \ B^0 \to K^{*0} \nu \overline{\nu}, \ B^{+/0} \to \pi^{+/0} \nu \overline{\nu}, \ B^{+/0} \to \rho^{+/0}$

 $B \rightarrow X_{(s+d)}\gamma$

- Measured photon energy spectrum can be used to constrain HQE parameter e.g. m_b
- Full inclusive method with lepton tagging
- Detector resolution effects unfolded
- HQE parameter fit result
 - $m_b = 4.626 \pm 0.028 \, {
 m GeV}/c^2$
 - $\mu_{\pi}^2 = 0.301 \pm 0.063 \, \text{GeV}/c^2$
 - ► correlation ρ = -0.701

Subtracting b \rightarrow d γ using $|V_{td}/V_{ts}|^2 \sim 4\%$

Belle preliminary **Results**

 $\mathcal{B}(B \to X_s \gamma)_{E_v > 1.6 GeV} = (3.12 \pm 0.10_{\text{stat}} \pm 0.19_{\text{syst}} \pm 0.08_{\text{model}}) \times 10^{-4}$

 $B_s \rightarrow \phi \gamma$

- First measurement of photon polarization in radiative B_s decays
- Untagged measurement of the time dependent decay rate of $B_s \rightarrow \phi \gamma$

• Consistent with SM within 2σ :

 $\mathcal{A}^{\Delta} = -0.98 \, {}^{+0.46}_{-0.52} \, {}^{+0.23}_{-0.20}$ $\mathcal{A}^{\Delta\Gamma}(SM) = 0.047 {}^{+0.029}_{-0.025}$ Muheim et al. [PLB664(08)174]

LFV/LNV/LUV

Lepton Universality in $B \rightarrow K I^+ I^-$

$$R_{X} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to X \mu^{+} \mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to X e^{+} e^{-})}{dq^{2}} dq^{2}}$$

- SM prediction $R_K \approx 1.0 \pm \sim 0.01$
- LHCb measurement at 2.6σ
- More precise evaluation of QED

correction (see M. Bordone's talk) \Rightarrow R_K = 1.0 ± 0.01, PHOTOS looks correct

New Babar analysis (same data) on the q² range [1,6]GeV²

--LHCb

5

 $R_{\rm K}$

1.5

0.5

10

LHCb

SM

20

15

Naive average Babar-LHCb : 0.739 +0.094 -0.081

B-meson LFV and LNV Summary

τ LFV summary

No LFV observed. Limits in the range 10^{-8} to $2x10^{-7}$

Fergus Wilson

Rare charm decays

Rare D decay experiments

$D^+ \rightarrow D^0 e^+ v_e$

 $BR_{SM} = 2.78 \times 10^{-13}$

New preliminary from BES-III, this conference:

- Search using double-tag technique, 2.92 fb⁻¹ at $\psi(3770)$
- Reconstruct 3 signal channels: $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$

No signal found: **BR** < 8.7 × 10^{−5} 90%**CL**

$D^+ \rightarrow h^{\pm} e^+ e^{\mp}$

BR_{SM} ~ 10⁻⁸-10⁻⁶ (SD part) **BES-III** preliminary results

- Search using single-tag technique, 2.92 fb⁻¹ at $\psi(3770)$
- Improvements for $D^+ \to h^{\pm}e^+e^{\mp}$ and $D^+ \to h^{\pm}e^+e^{\mp}$

$D^0 \rightarrow \gamma \gamma$

 $BR_{SM} \sim 3 \times 10^{-11} (SD \text{ part})$

Strongly suppressed by GIM mechanism BR could be ~ 10^{-6} in MSSM

 $D^0 \rightarrow e \mu$

LHCb: B(D⁰→eµ) < 1.3 x 10⁻⁸ at 90%CL

$D^+ \rightarrow h^{\pm} e^+ e^{\mp}$: BES-III preliminary

	$N_{ m inside}^{ m data}$	$N_{ m outside}^{ m data}$	$\mathcal{B}[\times 10^{-6}]$			
$D^+ ightarrow K^+ e^+ e^-$	5	69	< 1.2			
$D^+ ightarrow K^- e^+ e^+$	3	55	< 0.6			
$D^+ o \pi^+ e^+ e^-$	3	65	< 0.3			
$D^+ ightarrow \pi^- e^+ e^+$	5	68	< 1.2			
$\mathrm{BR}(D^0 \to \gamma \gamma)$						
BES-III 2015	3.8 ×10 ⁻⁶					
Double tag method						
Belle 2016		8.	5 ×10 ⁻⁷			
$D^{*_+} \rightarrow D^0 (\rightarrow \gamma)$	$\gamma)\pi^+$					

$D^0 \rightarrow \text{invisible}$

No signal found: BR($D^0 \rightarrow$ invisible) < 8.8 x 10-5 @ 90%C.L.

Rare strange decays

 $K_I \rightarrow \pi^0 \nu \nu$

Reconstruct z by imposing $M_{\gamma\gamma} = m_{\pi 0}$

Previous result (100 hrs in 2013) BR < 5.1 × 10⁻⁸ (90%CL)

• Various improvements to reduce background before 2015-2016 run

Current status from Run 62 (2015): SES = 5.9×10^{-9} (90%CL)

• Grossman-Nir limit can be reached with 2015-2016 data (10x Run 62)

Continuing upgrades to reduce background

- New barrel veto
- Both-end readout for CsI crystals

Reach standard model sensitivity by 2021

$K^+ \rightarrow \pi^+ \nu \nu$

NA62 principles:

- ~100 ps timing for K^+ - $\underline{\pi}^+$ association
- EM calorimeters to veto γ s

Target

- Hadron calorimeters to veto μs
- Very light, high-rate trackers to reconstruct K^+ and π^+
- Full particle identification
 1-track selection with K⁺ beam ID

- ~ 100 SM $K + \rightarrow \pi + vv$
- Several triggers collected simultaneously to address a broad physics portfolio
- NA62 plans to explore the dark sector after LS2

 $\Sigma \rightarrow p \mu \mu$

 $\Sigma^+ \rightarrow p\mu^+\mu^- 4.0\sigma$ evidence with full selection No enhancement at $m(\mu^+\mu^-) = 214.3$ MeV

No significant signal in TIS sample:

 $BF(\Sigma^+ \to p\mu^+\mu^-) < 6.3 \times 10^{-8}$ @ 95% CL

No signal found, upper limit:

 $BF(K_S^0 \to \mu^+ \mu^-) < 5.8(6.9) \times 10^{-9} @ 90(95)\%$ CL

 ~ 2 times improvement compared to previous limit

Summary of the summary

- Rich variety of results on $b \rightarrow s \ell \ell$ decays:
 - Tensions persist in angular observables : LHCb still see a deviation in P'₅ with full Run1 dataset, new analyses of Belle and Babar go in the 'right' direction. First Q_i measurement by Belle.
 - First results with τ in the final state are appearing. Still far from SM values but interesting to test LFU!
 - Plenty of other intersting results : of $B^+ \rightarrow \pi^+ \mu\mu$, $B_s \rightarrow \phi \mu\mu$, $\Lambda_b \rightarrow \Lambda \mu\mu$, $B^0 \rightarrow K^*ee$, $\Lambda_b \rightarrow p\pi\mu\mu$, $B^+ \rightarrow K^+\mu\mu$,...
- New result for BR(B \rightarrow X_s γ) and first measurement of the photon polarization in B_s $\rightarrow \phi \gamma$
- New results on charm and kaons decays from BES-III, Belle and LHCb
- Limits improved in several very rare decay :

− $B_{(s)}$ →µµµµ , b → (s,d)vv , Ks→µµ, ...

More to come

- New LHC Run 2 data still to be analyzed \Rightarrow CKM18
- NA62 is fully operational \Rightarrow CKM18
- KOTO has more data on tape \Rightarrow CKM18

- Belle 2 is expected to start in 2018, prospects for rare decays (50 ab-1):
 - b→sγ: CP violating measurement less than 1% precision
 - S(K_s $\pi^0\gamma$) uncertainty ~ 0.03
 - − BR(B \rightarrow K*vv) at 15%

see more in talk of Saurabh SANDILYA

• Future LHCb upgrades under study

- Several μ LFV experiments will start in 2017-2019 :
 - MEGII (PSI): improve resolution by a factor
 2, engineering run foreseen in 2017
 - COMET (J-PARK): μ-e conversion in atoms, target ~10⁻¹⁷
 - Mu2e (FNAL): μ-e conversion in atoms, target ~10⁻¹⁷
 - Mu3e (PSI): previous result from 1988 at 10⁻¹², goal is to reach 10⁻¹⁵ in a first phase, then 10⁻¹⁶

Paolo Cattanec

Observation of $B_c^+ \rightarrow J/\psi D^{(*)}K^{(*)}$ decays

- Dataset: Run 1 (3 fb⁻¹)
- $D^0 \to K^- \pi^+ (D^0 \to K^- \pi \pi \pi); K^{*0} \to K^+ \pi^-$
- First observation of
 - $B_c^+ \rightarrow J/\psi D^0 K^+ \ (6.3 \ \sigma)$
 - $B_c^+ \rightarrow J/\psi D^{*0}K^+$ (10.3 σ , partial reconstruction)

First evidence of

$$- \quad B_c^+ \to J/\psi D^{*+}K^{*0}$$

(4.0 σ , partial reconstruction) - $B_c^+ \rightarrow J/\psi D^+ K^{*0}$ (4.4 σ)

• Most precise B_c^+ mass measurement made using $B_c^+ \rightarrow J/\psi D^0 K^+$

B⁺ production cross-section from CMS

Viladribihari SAHOC

arXiV: 1609.00873

D⁰→eµ

- Select D^0 from $D^{*+} \rightarrow D^0 \pi$ + decays
- Fit simultaneously m(D⁰) and ∆m = m(D^{*+})m(D⁰) in 3 bins of BDT
- Upper limit set from the CLs method using $D^0 \rightarrow K\pi$ as normalization channel

 $B(D^0 \rightarrow e\mu) < 1.3 \times 10^{-8} \text{ at } 90\% \text{CL}$

Paula Alvarez Cartelle

D⁰ LFV status:

 \rightarrow Latest HFAG average: 3.9 σ from SM expectation (includes new result from Belle with $\tau \rightarrow \pi^+(\pi^0)\nu$)

LFU & LFV @ LHCb

EVALUATING CHARM CONTRIBUTIONS IN B⁺->K⁺µµ

Purpose: measure the phase difference between short- (FCNC) and long-distance amplitudes

Sizeble effect of the long-distance contributions far from the resonances could explain the observed tensions

Method: analize the dimuon mass spectrum

- long-distance modeled as sum of BW
- magnitudes, phases, C_9 , C_{10} floated
- C_7 fixed to SM
- hadronic form factors f_+ constrained
- crucial control of the resolution function

u, d

Francesco Polci – CKM 2016

EVALUATING CHARM CONTRIBUTIONS IN B+->K+µµ

- Four degenerate solutions, corresponding to the ambiguities of J/Psi and Psi(2s) phases being negative or positive
- J/Psi phase is compatible with +/- $\pi/2$ => is small away from the pole

• BF compatible with previous measurement and smaller than the SM:

$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \,(\text{stat}) \pm 0.23 \,(\text{syst})) \times 10^{-7}$$

For the future: improved B->K form factors and more data needed. More difficult for the K*: helicity states can have different relative phases

Francesco Polci – CKM 2016

NEW

 $B^0 \rightarrow K^{*0} \mu \mu$

