

eXoTicc states

Vishal Bhardwaj

IISER Mohali

BELL

eXoTicc states

The "chosen" ones

Vishal Bhardwaj

IISER Mohali

Post CKM school Mumbai, Dec. 2016

BELL

Outline

- Quark Model
- Charmonium
- X(3872) Most studied and not well understood
- $Z_c \rightarrow$ "I got a charge in me"

• Summary

BELL

Hadrons in 1963

Tables of Elementary Particles and Resonant States

Stable hadrons

TABLE I. Elementary Particles, March 1963.

MATTS ROOS

Nordisk Institut for Tcoretisk Atomfysik, Copenhagen, Denmark

Meson resonances

Class	mbol arge	und	Iso	min	Spin arity	ngeness	Moss		Magnetic	Mosn life		Common
	Syn	Antip	T	T _a	~ ~	Stru	(MeV)	(m _{s*})	moment $(e/2m_p)$	(sec)	$(1/m_{r^{\pm}})$	deçay modes
	Z -	÷+	1/2	-1	1	-2	1320.8 ± 0.4	9.46		1.4 (+0.6/-0.2)	3×10^{31}	$\Lambda \pi^{L_{m}}$
	Ξ9	<i></i>		-		-2	1316	9.43		3.9(+1.4/-0.9)×10 ⁻¹⁰	8×10^{10}	$\Lambda \pi^0$
	Σ~	¥+	1	-1	3+	-1	1195.96 ± 0.30	8.57		$(1.50 \pm 0.05) \times 10^{-10}$	$3.4 imes10^{10}$	11 r -
ron	Σ^0			Ô	1+	-1	1191.5 ± 0.5	8.54		$10^{-11} > r > 10^{-22}$	$10^{12} > \tau > 10$	$\Lambda\gamma$
Hype	Σ+	¥-		1	1+	-1 1	1189.40 ± 0.20	8.52		$(0.78 \pm 0.03) \times 10^{-10}$	$1.65 \times 10^{\rm u}$	$\frac{p\pi^{0}}{n\pi^{+}}$
	Δ°	-	0	0	3+	-1	$1115.38 \pm 0.10^{\circ}$	7.991	-15 ± 05	(2.57 ± 0.30) × 10-9	5.4 × 10 ¹⁰	n=-
		Ã⁰		0		1	1115.44 ± 0.32	7.991	10 12 010	(1.9 + 1.0) × 10-10	4 × 10 ⁴	$n\pi^0$
-	n ⁰		3	-1	4+	0	939.507 ± 0.01	6.731	-1.9128	1013 + 26	2.15 × 10 ¹⁶	206°E.
ucleons	p^+	π		N-M-	13+	0	938.213 ± 0.01	6.722	2.792816 ± 0.000034	0		1~ 11
24		P		~ 8		0			-1.8 ± 1.2			
	K+		- PER	ż	0-	1	493.98 ± 0.14	3.539	0	$(1.227 \pm 0.008) \times 10^{-6}$	$2.60 imes 10^{10}$	$\mu^+ r_s(\mu 2)$ $\pi^+ \pi^{+}(\pi 2)$ $\mu^+ \pi^{+} r_s(\mu 3)$ $e^+ \pi^+ r_s(e3)$ $\pi^+ \pi^+ \pi^-(\tau^+)$ $\pi^+ \pi^{+} \pi^{+} \pi^{+}(\tau^+)$
Metons	K*	<i>К</i> − <i>К</i> ⁰		- I -	0-	-1 -1	497.9 ± 0.6	3.57	<0.04 he/m _E	$K_1^{(0.90 \pm 0.02)} \times 10^{-33}$ $K_1^{0.63} \times 10^{-41.0} \times 10^{-8}$	$1.9 imes 10^{10}$ $1.3 imes 10^{16}$	$\frac{\pi^{+}\pi^{-}}{\pi^{0}\pi^{3}}$ $\pi^{+}\pi^{-}\pi^{0}$ $3\pi^{0}$ $\pi^{+}e^{-}p_{e}$ $\pi^{-}e^{+}p_{e}$ $\pi^{-}\mu^{+}p_{\mu}$ $\pi^{-}\mu^{+}p_{\mu}$
	π^+	-	1	1	0-	0	139.58 ± 0.05	1	0	$(2.547 \pm 0.027) \times 10^{-8}$	5.48×10^{10}	$\mu^+\nu_{\mu}$
	π0	π 0		0	0-	ő	134.97 ± 0.05	0.967	0	$(1.05 \pm 0.18) imes 10^{-18}$	$2.23 imes 10^7$	$\frac{2\gamma}{\gamma e^+e^-}$
	μ-	μ+			1		105.65	206.765 ± 0.002 m_e	$(1.001162 \pm 0.000005) \\ e/2m_{\mu}$	$(2.210 \pm 0.002) \times 10^{-6}$	4.69×10^{40}	$e^{-p_{a}p_{\mu}}$
Leptons	6-	ę+			7		$\substack{0.510976 \pm \\ 0.000007}$	111,	$(1.0011609 \pm 0.0000024) \\ e/2m_e$	œ	00	
	$\nu_{\mu}^{\ 0}$		_		-1		< 2.5	$< 5m_s$				
	×.4	7μ 70			+ 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		< 0.00025	<5 ×10 ⁻⁴ m.				
Photon	γ°				1	0	0	0				

Two "flavors" of hadrons

"non-strange" : n, p, π , ρ ,... "strange": Λ,Σ, Κ, Κ*,...

10	8	.я	1		ity.		Ma	88	TOD	Lifer	Produ	iction	I
Symb	Charg	Isospi	Spin	1	G-par	8	(MeV)	(11,+)	width P (MeV)	time Γ^{-1} (1/m _x *)	Process	kus (MeV)	Modes
K‡	-	> 1				1	1630 ±± 100	11.7			*~p	3534	$(K_{10}^{*}\pi\pi)^{-}$ $(K_{10}^{*})^{-}$ $(K\pi\rho)^{-}$ otherm
<u>K</u> *	+		-			1							same, charge +
X9	•					0	1340 ± 70	9.6			π ⁻ p	2287	(ρππ)° others
ка						0	1275 ± 25	9.1			$\pi^- p$	2125	$K^0\overline{K}^0$ K^+K^-
K**						1	1260	9.0			π -N		$K(n\pi)$
f	•	0	2		++	0	1253 ± 20	9.0	100 ± 50	1.4	$\pi^- p$	2070	#~#+
$K^*_{K^*}$	++	ŝ				1	1150 ± 50	8.2			π −p	2250	$K^{0}\pi^{+}\pi^{+}$ $K^{0}\pi^{-}\pi^{-}$
$\chi_1 \\ \chi_1$	•	1				0	1050 1040	7.5 7.4			π ⁻ p	1620	$\frac{\pi^-\pi^-\pi^+\pi^0}{\pi^+\pi^-(\pi\pi)^0}$
K2	٠	0	64	en	++	0	1040 ± 40	7.4			K - p	1780	$K_1^*K_1^*$ even number π 's
<i>x</i> ₁	٠	0	od	d		0	1020	7.3	< 3	>47	$K \neg p$	1760	$K_1^0 K_2^0$ odd number π 's
43 43 43	a ++	2				0 0 0	990	7.2			π_p	1490	7"7" 7"7" 7"7"
$\overline{K_1^*}$	-	ł	1	-		-1	888 ± 3	6.4	50 ;t: 10	2.8	$K^{\perp}p$	1074	Kon-
\overline{K}_{1}^{*}	0					-1					K^-p	1078	$\frac{K^-\pi^*}{K^0\pi^*}$
K_i^*	+					1					$\pi^- p$	1834	$K^{+}\pi^{+}$ $K^{+}\pi^{0}$
K_1^*	0					1					π~p	1657	$K^{+}\pi^{-}$ $K^{0}\pi^{0}$
<i>φ</i> 3	0					0	885 ± 10	6.3			$\pi \overline{p}$	1284	***
æ	ů	0	1	_	-	0	781.1 ± 0.8	5.6	<12	>12	$\overline{p}p$		$\begin{array}{c} \displaystyle \frac{\operatorname{neutr.}}{\pi^+\pi^-\pi^0} & \\ \pi^+\pi^-\pi^0 & \\ \pi^+\pi^-\pi^+\pi^0 & \\ \pi^+\pi^-\pi^+\pi^- & \\ \pi^+\pi^- & \\ \pi^+\pi^- & \end{array}$
Ρ	-	1	1	-	+	0	757 ± 5	5.4	120 ± 10	1.2	#~p	1029	$\frac{\pi^{-}\pi^{0}}{\pi^{-}\pi^{0}\pi^{0}}$
P	•					0	751 ± 6	5.4	110 ± 10	1.3	πΝ	1029	a a a a a a a a neutrals
P1	٠					0	780	5.6	60	2.3	πN	1085	ara ara ara+ neutrola
P1	•					0	720	5.2	20	7	#N	975	****
P		2				0	260	5.4			π+p	1066	****
ψ4 ψ4	***	-				0	100	0,4			* p	1055 1590	π π π π+ π+π+
K ^{**}	•	2	>	1		1	730 ± 10	5.2	≤ 20	>7	π~p	1485	$K^{+}\pi^{-}$ $K^{0}\pi^{0}$ $(K_{-})^{+}$
δ	-	1 or 2				0	645 ± 25	4.5			π ⁻ p	810	π ⁻ x ⁰
õ	+		_			0							# ⁺ # ⁰
a	+	1 or 2				0	625	4.5	<80	>1.7	pp		7 ⁺ 7 ⁻ 7 ¹ 7 ⁺ 7 ⁺ 7 ⁻
4: 4:	0 ++	2	0 0	or 2		0 0 0		4.3 4.2	75	1.9	π ⁻ p	1025 733 1235	2,24 2,24 2,24
555	•	1				0 0 0	$\begin{array}{c} 564 \pm 9 \\ 541 \pm 18 \end{array}$	4.0 3.9	<43	>3.2	π ⁻ p π ⁻ p π ⁺ p	707 672	. 7 - 70 - 7 + 7 - - 7 + 7 - - 7 + 7 0
							Тл	вьк IIb.	Mesonie Re	sonant St	ates, Mar	eh 1963. (Continued)
			UAL/INS	0.1292	b	1					Prod	iction]
Symbo	Charge	Isospin	Spin	Parity	G-parit	8	(MeV)	(<i>m_{x⁴}</i>)	Full width Γ (MeV)	Life- time Γ^{-1} $(1/m_{r}^{+})$	Process	k _{iat} (MeV)	Modes
	0	0	0	-	+	0	548.5 ± 0.6	3.93	≤ 7	>20	πp	685	$\left(\begin{array}{c} \pi^{+}\pi^{-}\pi^{0} \\ \pi^{+}\pi^{-}\gamma \\ 3\pi^{0} \\ \pi^{0}\gamma \\ 2\gamma \\ others \end{array}\right)$
12	0	0				0	520 ± 20	3.7	70 ± 30	2.0	*~p	639	π ⁺ π
2	D ++	2				0 0 0	$^{440}_{420-440}_{440}$	$\frac{3.1}{3.1}$ 3.1			π~p	735 515 975	$\pi^{-}\pi^{-}$ $\pi^{-}\pi^{+}$ $\pi^{+}\pi^{+}$
i	0	0			-	0	395 ± 10	2.8	50 ± 20	2.8	π^p	446	# ⁺ #
i	0 ++	2				0 0 0	330 330 330	$2.4 \\ 2.4 \\ 2.4 \\ 2.4$			*~p	557 346 790	$\frac{\pi^{-}\pi^{-}}{\pi^{+}\pi^{+}}$ $\frac{\pi^{+}\pi^{+}}{\pi^{+}\pi^{+}}$
and	0	0			-	0	317 ± 6	2.3	≤ 16	>9	pd		# + #
		(04406 - 10100 THE		Internet in the second s

								TABLE	Ha. Baryon	ic Resona	nt States,	March 19	63.
	10	æ	c				N		12.01	T : C .	Produ	iction	1
Class	Symb	Charg	Isospi	Spin	Parity	s	(MeV)	$(m_{x^{\pm}})$	width P (MeV)	time Γ^{-1} (1/ $m_{\pi^{\pm}}$)	Process	$\stackrel{k_{\mathrm{ish}}}{(\mathrm{MeV})}$	Modes
	Y^*_{05}	0	0	a or a		-1	1815	13.0	120	1.16	K^-p	1050	K^-p others
	Y**	ů				$^{-1}$	1770 ± 100	12.7			$\pi^- p$	2260	$Y_{13}^{**}\pi^{-}$ $\Lambda \pi^{+}\pi^{-}$
	Y*	0				-1	1715	12.2			$\pi^- p$	2185	$K^{\circ}n$
	Y_{0}^{**}	0	0			-1	1680	12.0	<20	>7	K^-p	760	$\Lambda \eta$
ates	Y**	*	1	3		-1	1660 ± 10	11.9	40 ± 10	3.5	<i>K</i> - <i>p</i>	715	$\begin{array}{c} \overline{K}{}^{0}p \\ (\Sigma \pi)^{+} \\ \Lambda \pi^{+} \\ \Lambda \pi^{+} \pi^{0} \\ \Sigma^{+} \pi^{\pm} \pi^{+} \end{array}$
lic St	Y_{2}^{*}		1 or 2			- 1	1550 ± 20	11.1	125	1.75	$\pi^- p$	1770	Σπ
peror	=1	-	$\frac{1}{2}$	3	4	$^{-2}$	1533 ± 3	10.98	≤ 7	≥ 20	$K \neg p$	1512	Ξ-π ⁰
Hy	≍t	0				-2						1521	Ξ-π+
	Y^*_{02}	Ð	0	3 2		-1	1520 ± 3	10.89	16	8.7	$K \neg p$	395	$(\overline{K}N)^{0}$ $(\Sigma \pi)^{0}$ $\Lambda \pi^{+}\pi^{}$
	Y_0^{π}	0	0			-1	$^{1404.7}_{0.4} \pm$	10.1	<1.4	>100	K^-p	445	$(\Sigma \pi)^0 = \Lambda \pi \pi$
	Y_{11}^{*}		1	$\frac{1}{2}$ or $\frac{3}{2}$	+	-1	1385 ± 5	9.92	50 ± 10	2.8	K^-p	408	(Σπ)~
	Y_{12}^{a}	0				-1						395	$(\Sigma \pi)^{0}$
	Y13	+				-1						408	$(\Sigma \pi)^+$ $\Delta \pi^+$
	N_{3}^{*}		32			0	2360 ± 25	16.9	200 ± 25	0.7	$\pi^+ p$	2510	πN others
	N_1^{a}		12			0	2190 ± 25	15.7	200 ± 20	0.7	$\pi^- p$	2080	πN others
	Z_3^*	0	22	$> \frac{3}{2}$		0	1920 ± 20	13.8	15	9	$\pi^{-}(A)$		$(K \Sigma)^0$
50	N [*] ₃₇		32	12		0	1900	13.6	200	0.7	$\pi^{-}(A)$.	1440	$\frac{\pi N}{K\Sigma}$
State	Niı		$\frac{1}{2}$	1/2	+	0	1690	12.1			$\pi^- p$	1030	πN
cleonic 5	N [*] Lb		3	4	+	0	1683 ± 5	12.06	80	1.7	π p	1020	$\pi N \atop K\Lambda$ others
Z	Z_1^*	0	.12	>1/2		0	1650 ± 20	11.8	<7	>20	$\pi^{-}(A)$		$K^{*}\Lambda$
	N_{13}^{*}		12	3	-	0	1517 ± 3	10.87	60	2.3	'π"p	731	πN others
	N [*] ₃₃ N [*] ₃₃ N [*] ₃₃	 0 +	Picke Picke	32	Ť	0	1237	8.86	90 ± 20	1.6	πΝ	303	$\pi^n n \pi^p \pi^n n \pi^n n \pi^n p$
													π^+n

Baryon resonances

Quark model

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

1964 M. Gell-Mann, Phys.Lett. 8, 214 (1964) Independently Gell-Mann (and Zweig) develop quark model to explain the particles with three fundamental building blocks named quarks (and aces) up (u), down (d) and strange (s)

Mesons : bound state of 2 quarks

$$\pi^+$$
 = ud , π^0 = 1/V2(uu - dd) and π^- = du
K⁺ = us , K⁰ = ds , \overline{K}_0 = sd and K⁺ = su

Ūd

Baryons : bound state of 3 quarks

p=uud, n=udd and Λ =uds

p=uud, n=udd and $\Lambda=uds$

The first paper discussing the idea of quark, also mention the idea of constituent particle having more than 3 quarks.

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq \bar{q}), etc., while mesons are made out of (q \bar{q}), (qq $\bar{q}q\bar{q}$), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly gives just 1 and 8.

Still we have not seen particle with more than three quarks making matter ?

QCD : real particles are color singlet

Baryons are red-bluegreen triplets

Λ=usd

Mesons are coloranticolor pairs

π=ūd

Other possible combinations of quarks and gluons :

H di-Baryon

Tightly bound 6 quark state

Glueball

Color-singlet multigluon bound state

Tetraquark

Tightly bound diquark & anti-diquark

Molecule

loosely bound mesonantimeson "molecule"

artistic illustration

X(3872)	3871.68±0.17	< 1.2	1++	$B \rightarrow K + (J/\psi \pi^+ \pi^-)$	[32, 33, 34, 35]
				$p\bar{p} \rightarrow (J/\psi \pi^+\pi^-) +$	[36, 37, 38, 39, 40]
				$B \rightarrow K + (J/\psi \pi^+ \pi^- \pi^0)$	[41, 42]
				$B \rightarrow K + (D^0 D^0 \pi^0)$	[43, 44]
				$B \rightarrow K + (J/\psi\gamma)$	[45, 46, 47]
				$B \rightarrow K + (\psi' \gamma)$	[45, 46, 47]
				$pp \rightarrow (J/\psi \pi^+ \pi^-) +$	[48, 49]
X (3915)	3917.4 ± 2.7	28^{+10}_{-9}	0++	$B \rightarrow K + (J/\psi\omega)$	[50, 42]
				$e^+e^- \rightarrow e^+e^- + (J/\psi \omega)$	[51, 52]
X (3940)	3942 ⁺⁹	37^{+27}_{-17}	$0(?)^{-(?)+}$	$e^+e^- \rightarrow J/\psi + (D^*D)$	[53]
	0			$e^+e^- \rightarrow J/\psi + ()$	[54]
G(3900)	3943 ± 21	52±11	1	$e^+e^- \rightarrow \gamma + (D\bar{D})$	[55, 56]
Y(4008)	4008^{+121}_{-49}	226±97	1	$e^+e^- \rightarrow \gamma + (J/\psi \pi^+\pi^-)$	[57]
Y(4140)	4144 ± 3	17 ± 9	??+	$B \rightarrow K + (J/\psi\phi)$	[58, 59, 60]
X(4160)	4156+29	139+113	$0(?)^{-(?)+}$	$e^+e^- \rightarrow J/\psi + (D^*\bar{D})$	[53]
Y(4260)	4263+8	95±14	1	$e^+e^- \rightarrow \gamma + (J/\psi \pi^+\pi^-)$	[61, 62, 63, 57]
	-,			$e^+e^- \rightarrow (J/\psi\pi^+\pi^-)$	[64]
				$e^+e^- \rightarrow (J/\psi \pi^0 \pi^0)$	[64]
Y (4360)	4361 ± 13	74±18	1	$e^+e^- \rightarrow \gamma + (\psi'\pi^+\pi^-)$	[65, 66]
X (4630)	4634+9	92^{+41}_{-32}	1	$e^+e^- \rightarrow \gamma (\Lambda_c^+ \Lambda_c^-)$	[67]
Y(4660)	4664±12	48±15	1	$e^+e^- \rightarrow \gamma + (\psi'\pi^+\pi^-)$	[66]
$Z_{c}^{+}(3900)$	3890 ± 3	33 ± 10	1+-	$Y(4260) \to \pi^- + (J/\psi \pi^+)$	[68, 69]
				$Y(4260) \to \pi^- + (D\bar{D}^*)^+$	[70]
$Z_{c}^{+}(4020)$	4024 ± 2	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) \to \pi^- + (h_c \pi^+)$	[71]
				$Y(4260) \to \pi^- + (D^*D^*)^+$	[72]
$Z_{c}^{0}(4020)$	4024 ± 4	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) \to \pi^0 + (h_c \pi^0)$	[73]
$Z_1^+(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$B \rightarrow K + (\chi_{c1}\pi^+)$	[74, 75]
$Z^{+}(4200)$	4196+35	370_{-149}^{+99}	1+-	$B \rightarrow K + (J/\psi \pi^+)$	[76]
$Z_{7}^{+}(4250)$	4248+185	177^{+321}_{-72}	??+	$B \rightarrow K + (\chi_{c1}\pi^+)$	[74, 75]
Z ⁺ (4430)	4477 ± 20	181 ± 31	1+-	$B \rightarrow K + (\psi' \pi^+)$	[77, 78, 79, 80]
				$B \rightarrow K + (J\psi \pi^+)$	[76]
$Y_{b}(10890)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\Upsilon(nS)\pi^+\pi^-)$	[81]
Z ⁺ _L (10610)	10607.2±2.0	18.4±2.4	1+-	$\Upsilon(5S) \rightarrow \pi^- + (\Upsilon(1,2,3S)\pi^+)$	[82, 83]
0 ($\Upsilon(5S) \rightarrow \pi^- + (h_b(1, 2P)\pi^+)$	[82]
				$\Upsilon(5S) \rightarrow \pi^- + (B\bar{B}^*)^+$	[84]
$Z_{L}^{0}(10610)$	10609 ± 6		1+-	$\Upsilon(5S) \rightarrow \pi^0 + (\Upsilon(1,2,3S)\pi^0)$	[85]
$Z_{L}^{+}(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\Upsilon(5S) \to \pi^- + (\Upsilon(1,2,3S)\pi^+)$	[82] S O 150
D ($\Upsilon(5S) \rightarrow \pi^- + (h_b(1,2P)\pi^+)$	[82] 5. UISE
				$\Upsilon(5S) \rightarrow \pi^- + (B^*R^*)^+$	[84]
				• (55) - 7 # + (55)	Lo 1

n arXiv:1511.01589v1 [hep-ex] 8

X(3872)	3871.68±0.17	< 1.2	1++	$B \rightarrow K + (J/\psi \pi^+ \pi^-)$	[32, 33, 34, 35]	
				$p\bar{p} \rightarrow (J/\psi \pi^+\pi^-) +$	[36, 37, 38, 39, 40]	
				$B \rightarrow K + (J/\psi \pi^+ \pi^- \pi^0)$	[41, 42]	X(2872)
				$B \rightarrow K + (D^0 D^0 \pi^0)$	[43, 44]	λ(3072)
				$B \rightarrow K + (J/\psi\gamma)$	[45, 46, 47]	
				$B \rightarrow K + (\Psi' \gamma)$	[45, 46, 47]	
				$pp \rightarrow (J/\Psi \pi^+ \pi^-) + \dots$	[48, 49]	
X (3915)	3917.4 ± 2.7	28^{+10}_{-9}	0++	$B \rightarrow K + (J/\psi\omega)$	[50, 42]	X/2015)
				$e^+e^- \rightarrow e^+e^- + (J/\psi \omega)$	[51, 52]	X(3913)
X(3940)	3942 ⁺⁹	37^{+27}_{-17}	0(?)-(?)+	$e^+e^- \rightarrow J/\psi + (D^*D)$	[53]	
	-0	-17		$e^+e^- \rightarrow J/\psi + ()$	[54]	
G(3900)	3943 ± 21	52±11	1	$e^+e^- \rightarrow \gamma + (D\bar{D})$	[55, 56]	
Y(4008)	4008^{+121}_{-49}	226±97	1	$e^+e^- \rightarrow \gamma + (J/\psi \pi^+\pi^-)$	[57]	
Y(4140)	4144 ± 3	17 ± 9	??+	$B \rightarrow K + (J/\psi\phi)$	[58, 59, 60]	
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	0(?)-(?)+	$e^+e^- \rightarrow J/\psi + (D^*\bar{D})$	[53]	V(ACO)
Y(4260)	4263	95±14	1	$e^+e^- ightarrow \gamma + (J/\psi \pi^+ \pi^-)$	[61, 62, 63, 57]	1(4200)
	-			$e^+e^- \rightarrow (J/\psi \pi^+\pi^-)$	[64]	
				$e^+e^- \rightarrow (J/\psi \pi^0 \pi^0)$	[64]	
Y (4360)	4361 ± 13	74±18	1	$e^+e^- \rightarrow \gamma + (\psi'\pi^+\pi^-)$	[65, 66]	
X(4630)	4634+9	92^{+41}_{-32}	1	$e^+e^- \rightarrow \gamma (\Lambda_c^+ \Lambda_c^-)$	[67]	
Y(4660)	4664±12	48±15	1	$e^+e^- \rightarrow \gamma + (\psi'\pi^+\pi^-)$	[66]	
$Z_{c}^{+}(3900)$	3890 ± 3	33 ± 10	1+-	$Y(4260) \to \pi^- + (J/\psi\pi^+)$	[68, 69]	
				$Y(4260) \to \pi^- + (D\bar{D}^*)^+$	[70]	_ /
$Z_{c}^{+}(4020)$	4024 ± 2	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) \rightarrow \pi^- + (h_c \pi^+)$	[71]	Z_{c}^{+}
				$Y(4260) \to \pi^- + (D^*\bar{D}^*)^+$	[72]	C
$Z_{c}^{0}(4020)$	4024 ± 4	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) \rightarrow \pi^0 + (h_c \pi^0)$	[73]	
$Z_1^+(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$B \rightarrow K + (\chi_{c1}\pi^+)$	[74, 75]	
$Z^{+}(4200)$	4196^{+35}_{-32}	370^{+99}_{-149}	1+-	$B \rightarrow K + (J/\psi \pi^+)$	[76]	
$Z_2^+(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$B \rightarrow K + (\chi_{c1}\pi^+)$	[74, 75]	
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1+-	$B \rightarrow K + (\psi' \pi^+)$	[77, 78, 79, 80]	
				$B \rightarrow K + (J \psi \pi^+)$	[76]	
$Y_b(10890)$	10888.4 ± 3.0	30.7+8.9	1	$e^+e^- \rightarrow (\Upsilon(nS)\pi^+\pi^-)$	[81]	
$Z_b^+(10610)$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$\Upsilon(5S) \rightarrow \pi^- + (\Upsilon(1,2,3S)\pi^+)$	[82, 83]	
				$\Upsilon(5S) \to \pi^- + (h_b(1, 2P) \pi^+)$	[82]	
				$\Upsilon(5S) \rightarrow \pi^- + (BB^*)^+$	[84]	
$Z_b^0(10610)$	10609 ± 6		1+-	$\Upsilon(5S) \to \pi^0 + (\Upsilon(1,2,3S)\pi^0)$	[85]	
$Z_b^+(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\Upsilon(5S) \to \pi^- + (\Upsilon(1,2,3S)\pi^+)$	[82] S. Ols	sen arXiv:1511.01589v1 [hep-ex]
				$\Upsilon(5S) \to \pi^- + (h_b(1, 2P) \pi^+)$	[82]	
				$\Upsilon(5S) \to \pi^- + (B^*\bar{B}^*)^+$	[84]	

Strategy

Image from http://www.satimagingcorp.com/applications/energy/mining/

This is how **signal** (gold) looks on paper/presentations.

Strategy

This is how one really dig gold !

You dig or study decay modes systematically and if you find some interesting particle.

Study till you are sure that there is no more gold left.

Many time where others are not expecting, you may hit a jackpot !!!

Charmonium

Bound state of c and \overline{c} Spin : ½ and ½ = 0,1 Orbital angular momentum: L =0,1,2,... Parity (P) = (-1)^{L+1} Charge Conjugation (C) = (-1)^{L+S} Total Spin : $\vec{J} = \vec{L} + \vec{S}$

Quark model quantum numbers

L=0, S=0 : J=0	J ^{PC} =
L=0, S=1 : J=1	J ^{PC} =
L=1, S=0 : J=1	J ^{PC} =
L=1, S=1 : J=0,1,2	J ^{PC} =
L=2, S=0 : J=1	J ^{PC} =
L=2, S=1 : J=1,2,3	J ^{PC} =
and so on	

Charmonium

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

(Cornell potential)

Spectrum based on this, with spin-orbital, spin-spin and tensor term.

States not easily accommodated, candidates for exotic nature.

Charmonium

Bound state of c and \overline{c} Spin : ½ and ½ = 0,1 Orbital angular momentum: L =0,1,2,... Parity (P) = (-1)^{L+1} Charge Conjugation (C) = (-1)^{L+S} Total Spin : $\vec{J} = \vec{L} + \vec{S}$

Quark model quantum numbers

L=0, S=0 : J=0	J ^{PC} =0 ⁻⁺
L=0, S=1 : J=1	J ^{PC} =1
L=1, S=0 : J=1	J ^{PC} =1 ⁺⁻
L=1, S=1 : J=0,1,2	J ^{PC} = 0 ⁺⁺ 1 ⁺⁺ 2 ⁺⁺
L=2, S=0 : J=1	J ^{PC} = 2 ⁻⁺
L=2, S=1 : J=1,2,3	J ^{PC} =1 2 3
and so on	

Charmonium

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

(Cornell potential)

Spectrum based on this, with spin-orbital, spin-spin and tensor term.

States not easily accommodated, candidates for exotic nature.

Charmonium

Bound state of c and \overline{c} Spin : ½ and ½ = 0,1 Orbital angular momentum: L =0,1,2,... Parity (P) = (-1)^{L+1} Charge Conjugation (C) = (-1)^{L+S} Total Spin : $\vec{J} = \vec{L} + \vec{S}$

Quark model quantum numbers

L=0, S=0 : J=0	J ^{PC} =0 ⁻⁺
L=0, S=1 : J=1	J ^{PC} =1
L=1, S=0 : J=1	J ^{PC} =1 ⁺⁻
L=1, S=1 : J=0,1,2	J ^{PC} = 0 ⁺⁺ 1 ⁺⁺ 2 ⁺⁺
L=2, S=0 : J=1	J ^{PC} = 2 ⁻⁺
L=2, S=1 : J=1,2,3	J ^{PC} =1 2 3
and so on	

Exotic quantum number 0⁺⁻, 0⁻⁻, 1⁻⁺, 2⁺⁻ and so on..

Charmonium

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

(Cornell potential)

Spectrum based on this, with spin-orbital, spin-spin and tensor term.

States not easily accommodated, candidates for exotic nature. S,P,D corresponds to relative orbital angular momentum L=0,1,2 between quark and antiquark

Spin of quark can couple to either S=0 (spin-singlet) or S=1(spin-triplet) states. Parity of quark-antiquark state with orbital angular momentum L is $P = (-1)^{L+1}$ Charge conjugation is $C= (-1)^{L+S}$ CHARMONIUM: THE MODEL

States are denoted by

L=0 states can be ¹S₀ or ³S₁ L=1 states can be ¹P₁ or ³P_{0,1,2} L=2 states can be ¹D₂ or ³D_{1,2,3}

Radial quantum number denoted by n

Quark model quantum numbers

L=0, S=0 : J=0	J ^{PC} =0 ⁻⁺
L=0, S=1 : J=1	J ^{PC} =1
L=1, S=0 : J=1	J ^{PC} =1 ⁺⁻
L=1, S=1 : J=0,1,2	J ^{PC} = 0 ⁺⁺ 1 ⁺⁺ 2 ⁺⁺
L=2, S=0 : J=1	J ^{PC} = 2 ⁻⁺
L=2, S=1 : J=1,2,3	J ^{PC} =1 2 3
and so on	

3095

cc spectrum (theory)

cc spectrum (established)

cc spectrum (exotics?)

Production of $c\bar{c}$ (-like) @ B-factories

e⁻

Scan the data (M_{finalstate}) in order to search for any exciting exotic signal (particle)

Simplified example

MC for illustration purpose

Peak will be at the mass of the resonance.

Lets	s che	ck the m	ass o	f X	(3872)
X(3872) found	in J/ψτ	$\pi \rightarrow$ similar	to ψ '	Ano	ther charmonium ?
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$\textbf{3871.69} \pm \textbf{0.17}$	PDG Avera	ge			
$3871.9 \pm 0.7 \pm 0.2$	20 ± 5	ABLIKIM	2014	BES3	$e^+ e^- ightarrow J/\psi \pi^+ \pi^- \gamma$
$3871.95 \pm 0.48 \pm 0.12$	0.6k	AAIJ	2012H	LHCB	$p \; p o J/\psi \pi^+\pi^- X$
$3871.85 \pm 0.27 \pm 0.19$	~ 170	¹ CHOI	2011	BELL	$B ightarrow K \pi^+ \pi^- J/\psi$
$3873 \ _{-1.6}^{+1.8} \pm 1.3$	27±8	² DEL-AMO-SANCHEZ	Z 2010B	BABR	$B ightarrow \omega J/\psi K$
$3871.61 \pm 0.16 \pm 0.19$	6k	3, 2 AALTONEN	2009AU	CDF2	$p \; \overline{p} ightarrow J/\psi \pi^+\pi^- X$
$3871.4 \pm 0.6 \pm 0.1$	93.4	AUBERT	2008Y	BABR	$B^+ ightarrow K^+ J/\psi \pi^+ \pi^-$
$3868.7 \pm \! 1.5 \pm \! 0.4$	9.4	AUBERT	2008Y	BABR	$B^0 o K^0_S \; J/\psi \pi^+ \pi^-$
$3871.8 \pm 3.1 \pm 3.0$	522	4, 2 ABAZOV	2004F	D0	$p \; \overline{p} ightarrow J/\psi \pi^+\pi^- X$

 $H_{\text{Mass}(D^{0})=(1864.83\pm0.05)\text{MeV/c}^{2} + Mass(D^{*0})=(2006.85\pm0.05)\text{MeV/c}^{2}$ $Mass near \ D^{0} \ and \ \overline{D}^{*0} \ threshold \ \rightarrow 3871.68\pm 0.07 \ MeV/c^{2} \ PDG$ $How is it related to \ D^{0} \ \overline{D}^{*0} \ 2 \ D^{0} \ \overline{D}^{*0} \ molecule \ or \ something \ else \ ?$

X(3872) much narrower width (Γ < 1.2MeV @ 90% CL) than other charmonium states above D \overline{D} threshold. Belle PRD 84, 052004 (2011)

D⁰D^{*0} molecule?

Not a recent idea, old idea

Molecular Charmonium: A New Spectroscopy?*

PRL 38, 317 (1976)

A. De Rújula, Howard Georgi,† and S. L. Glashow

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 23 November 1976)

Recent data compel us to interpret several peaks in the cross section of e^-e^+ annihilation into hadrons as being due to the production of four-quark molecules, i.e., resonances between two charmed mesons. A rich spectroscopy of such states is predicted and may be studied in e^-e^+ annihilation.

$D^{*0} D^0$ molecule ?

X(3872) loosely bound molecule \rightarrow enhancement in D^{*0} \overline{D}^0 invariant mass near

PRD 77,011102 (2008)

X(3872)→D^{*0} D⁰

BaBar also observed X(3872) \rightarrow D⁰D^{*0,} along with shift in the mass

Mass $\rightarrow 3875.1_{-0.5}^{+0.7} \pm 0.5$ MeV/c²

 $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^ D^{*0} \rightarrow D^0\pi^0$, $D^0\gamma$

Belle & BaBar both observe X(3872) \rightarrow D^{*0} D⁰ but they got slight shift in mass

Same X(3872) or what ?

Mass of $D^0 \overline{D}{}^0 \pi^0$ is away from X(3872) by 4.5 σ

→ Difference due to threshold effect PRD 76,014007 (2007) PRD 76,034007(2007)

 \rightarrow Evidence for X(3872) partner state as predicted by diquark-antidiquark model.

Increased statistics and fit with improve Flatte function returned

Mass $\rightarrow 3872.9^{+0.6}_{-0.4}$ -0.5 MeV/c²

Discrepancy <2σ

3 times larger sample

More sophisticated fitting procedure including a mass-dependent resolution function and a 2DUML fit with two different shapes, the relativistic Breit-Wigner function and the Flatt'e distribution

Obtained BR consistent with Belle previous result Mass is 1.8σ lower. Consistent wi

Difficult to fit this spectrum, due to threshold

Consistent with Belle previous result !!!

Different X(3875) ??

Molecular Avatar

As, X(3872) has narrow width < 1.2 MeV

If the X couples to $D^0 D^{*0}$ in an S-wave:

X(3872) is charm meson molecule

$$X(3872) = \frac{1}{\sqrt{2}} \left(D^{*0} \overline{D}^0 + D^0 \overline{D}^{*0} \right)$$

E. Braaten, J. Stapleton PRD81, 0140189

Mass(X(3872))= (3871.69±0.17)MeV/c² Mass(D⁰)= (1864.83±0.05)MeV/c² Mass(D^{*0})= (2006.85±0.05)MeV/c²

Binding Energy (E_b)= Mass(D⁰) + Mass(D^{*0}) – Mass(X3872) Minimum radius= $\sqrt{2\mu_x E_b}$ Reduced mass $\mu_x = \frac{M_{D0}M_{\overline{D}*}}{M_{D0}+M_{\overline{D}*}}$

Molecular Avatar

As, X(3872) has narrow width < 1.2 MeV

If the X couples to $D^0 D^{*0}$ in an S-wave:

X(3872) is charm meson molecule

$$X(3872) = \frac{1}{\sqrt{2}} (D^{*0}\overline{D}^0 + D^0\overline{D}^{*0})$$

Mass(X(3872))= (3871.69±0.17)MeV/c² Mass(D⁰)= (1864.83±0.05)MeV/c² Mass(D^{*0})= (2006.85±0.05)MeV/c²

E. Braaten, J. Stapleton PRD81, 0140189

Measurement	Unit	SI value of unit
Energy	eV	1.602 176 565(35) × 10 ⁻¹⁹ J
Mass	eV/c ²	1.782 662 × 10 ⁻³⁶ kg
Momentum	eV/c	5.344 286 × 10 ⁻²⁸ kg·m/s
Temperature	eV/k _B	1.160 4505(20) × 10 ⁴ K
Time	ħ/eV	6.582 119 × 10 ⁻¹⁶ s
Distance	ħc/eV	1.973 27 × 10 ⁻⁷ m

Binding Energy (E_b)= Mass(D⁰) + Mass(D^{*0}) – Mass(X3872) Minimum radius= $\sqrt{2\mu_{\chi}E_b}$ Reduced mass $\mu_{\chi} = \frac{M_{D0}M_{\overline{D}*}}{M_{D0}+M_{\overline{D}*}}$

The E_b of (-10 ± 180) keV one expect 170keV Which tell that it has a minimum radius of ~ 10 fm

Molecular Avatar

As, X(3872) has narrow width < 1.2 MeV

If the X couples to $D^0 D^{*0}$ in an S-wave:

X(3872) is charm meson molecule

 $X(3872) = \frac{1}{\sqrt{2}} (D^{*0}\overline{D}^0 + D^0\overline{D}^{*0})$

Mass(X(3872))= (3871.69±0.17)MeV/c² Mass(D⁰)= (1864.83±0.05)MeV/c² Mass(D^{*0})= (2006.85±0.05)MeV/c²

E. Braaten, J. Stapleton PRD81, 0140189

Measurement	Unit	SI value of unit
Energy	eV	1.602 176 565(35) × 10 ⁻¹⁹ J
Mass	eV/c ²	1.782 662 × 10 ^{−36} kg
Momentum	eV/c	5.344 286 × 10 ⁻²⁸ kg⋅m/s
Temperature	eV/k _B	1.160 4505(20) × 10 ⁴ K
Time	ħ/eV	6.582 119 × 10 ⁻¹⁶ s
Distance	ħc/eV	1.973 27 × 10 ⁻⁷ m

Which tell that it has a minimum radius of ~ 10 fm

Tetraquark as avatar in X(3872)

diquark-diantiquark?

Maiani *et al* PRD71, 014028 (2005)

diquark-diantiquark (tetra-quark) model

Predict : $\Delta M(M_x(B^+)-M_x(B^0)) = 8\pm 3 \text{ MeV}$

It also predicts charged partners:

Isospin relations:

$$B(B^{+} \to K^{0}X(3872)^{+}) = 2 \times B(B^{0} \to K^{0}X(3872)^{0})$$
$$B(B^{0} \to K^{-}X(3872)^{+}) = 2 \times B(B^{+} \to K^{+}X(3872)^{0})^{32}$$

X(3872)⁺ existence ?

Tetraquark model predicts the existence of isospin triplet : X(3872)⁺

Rule out isospin triplet model ?

Few tetraquark models predict X(3872)⁺ to be broad, non-observed yet because of low statistics (?). If X(3872) is tetraquark, than X(3872) has C-odd partner which can decay into $\checkmark X(3872)^{C-} \rightarrow \chi_{c1}\gamma$

CMS, JHEP 04, 154(2013)

X(3872) at LHC

•The X(3872) is more copiously produced through "prompt" processes and only 26% of the production rate is observed from decays of B hadrons.

•A measurement of the mass spectrum of the pion pairs produced in X(3872) decays indicates that the decay into the two charged pions proceeds via an intermediate ρ state.

Radiative decays to understand

Radiative decay and X(3872) structure

Belle found evidence for X(3872) \rightarrow J/ $\psi\gamma$ in B⁺ \rightarrow X(3872) K⁺

+ve C parity Belle, arXiv:0505037

Phys.Rept. 429,243(2006)

If pure molecular : $\mathcal{BR}(X(3872) \rightarrow \psi' \gamma) < \mathcal{BR}(X(3872) \rightarrow J/\psi \gamma)$

If X(3872) is $2^{-+} c\overline{c}$: $\mathcal{BR}(X(3872) \rightarrow \psi' \gamma) < \mathcal{BR}(X(3872) \rightarrow J/\psi \gamma)$

arXiV:1007.4541

If X(3872) is 1⁺⁺ cc: $\mathcal{BR}(X(3872) \rightarrow \psi' \gamma) > \mathcal{BR}(X(3872) \rightarrow J/\psi \gamma)$

PRD 73,014014(2006)

If X(3872) is admixture of D⁰ \overline{D}^{*0} bound state with a c \overline{c} meson : $\mathcal{BR}(X(3872) \rightarrow \psi'\gamma) / \mathcal{BR}(X(3872) \rightarrow J/\psi\gamma)$ will suggest the admixture ratio.

PRD 83, 094009 (2011) , arXiv:1107.0443v3 PLB 697,3, 233-237 (2011)

BaBar, PRL 102, 132001 (2009)

37

BaBar found signal in X(3872) $\rightarrow \Psi' \gamma$

 $\mathcal{BR}(X(3872) \rightarrow \psi' \gamma) / \mathcal{BR}(X(3872) \rightarrow J/\psi \gamma) = 3.5 \pm 1.4$

Resolving this admixture ratio is important to understand X(3872) nature

Study of $B \rightarrow (J/\psi \gamma) K$

Photon selection

772 M BB

First Evidence for $B^+ \rightarrow \chi_{c2} K^+$

B→(J/ψγ) K

Β→(J/ψγ) Κ

First Evidence for $B^+ \rightarrow \chi_{c2} K^+$

772 M BB

$$\frac{\mathcal{E}(B \to \chi_{c2} K)}{\mathcal{E}(B \to \chi_{c1} K)} = 2.2 \pm 0.7 \%$$

772 M BB

B→X(3872)K

B→(J/ψγ) K

Mode	Events	Significance
B⁺→X(3872) K⁺	$30.0^{+8.2}_{-7.4}$	4.9 σ
B ⁰ →X(3872) K _s ⁰	$5.7^{+3.5}_{-2.8}$	2.4 σ

Clear observation of X(3872) \rightarrow J/ $\psi\gamma$ in B⁺ \rightarrow X(3872)K⁺

> \mathcal{BR} (B⁺ \rightarrow X(3872) K⁺) × \mathcal{BR} (X(3872) \rightarrow J/ $\psi\gamma$) is (1.78±0.46±0.12) × 10⁻⁶

Consistent with Belle previous Evidence as well as BaBar PRL 102, 132001 (2009)

Using Belle X(3872) \rightarrow J/ $\psi\pi\pi$ result from Belle, PRD 84,052004 (2011) $\rightarrow BR (B^0 \rightarrow X(3872) K^0) \times BR (X(3872) \rightarrow J/\psi\gamma)$ is < 2.4 × 10⁻⁶ (@ 90% CL) Combining both, 5.5 σ significance is obtained $\checkmark X(3872) \rightarrow$ J/ $\psi\gamma$ is well established decay mode

X(3872)→Ψ'γ

Β→(ψ′γ) Κ

Belle PRL 107, 091803 (2011)

772 M BB

X(3872)→Ψ'γ

Β→(ψ′γ) Κ

Belle PRL 107, 091803 (2011)

772 M BB

LHCb NPB 886, 665 (2014) LHCb saw signal in X(3872) $\rightarrow \Psi'\gamma$, consistent with Belle and BaBar

$$\frac{\mathcal{Z}(X \to \psi' \gamma)}{\mathcal{Z}(X \to J/\psi \gamma)} = 2.46 \pm 0.64 \pm 0.29$$

B(B⁺→X(3872)K⁺) x B(X(3872)→J/ψη) < 7.7 x 10⁻⁶ (90% CL)

BaBar observed $B^+ \rightarrow J/\Psi \eta K^+$ and provided $\mathcal{B}(B^+ \rightarrow J/\psi \eta K^+) = (10.8 \pm 2.3 \pm 2.4) \times 10^{-5}$

B(B⁺→X(3872)K⁺) x B(X(3872)→J/ψη) < 7.7 x 10⁻⁶ (90% CL)

BaBar observed $B^+ \rightarrow J/\Psi \eta K^+$ and provided

ℬ(B⁺→J/ψη K⁺) = (10.8±2.3±2.4) x 10⁻⁵

With more data (9x), we can either rule out or put much tighter constraint on the X(3872)^{c-} partner.

Above 3.9 GeV, some hint of new states? Additional motivation

"Search for new state in $M_{J/\Psi n}$ "

D

W

 $M_{J/\Psi\eta}$ distribution

 After including phase space (PHSP) component of B→J/ΨηK, data/MC agrees quite well.

Much tighter constraint to the C-odd partner of X(3872).

 $B^{\pm} \rightarrow J/\Psi \eta K^{\pm}$

711 *fb*⁻¹

$M_{\chi c 1 \gamma}$ distribution

 $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

New state @ 3823

 $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

 $\Gamma = 1.7 \pm 5.5$ MeV if fitted, poor sensitivity

Projection in signal region

(Belle) PRL 111,032001(2013)

Interpretation of X(3823) as Ψ_{2D}

Three states with similar mass (predicted): ${}^{3}D_{2}$, ${}^{1}D_{2}$, ${}^{3}D_{3}$

- ¹D₂ excluded due to C conservation in EM decays.
- ${}^{3}D_{3}$ doesn't have transition to $\chi_{c1}\gamma$
- ³D₂ seems to be appropriate
- $\succ \Psi_2$ below DD^* threshold: expected to be narrow > Mostly decaying into $\chi_{c1}\gamma$.

column holds an estimate of the spin to tensor and spin-orbit forces in a single-channel p nodel. The last column gives the spin splitting indu ommunication with open-charm states, for an initia plit multiplet

State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
${}^{11}S_0$ ${}^{13}S_1$	2979.9^a 3096.9^a	3067.6^{b}	-90.5 +30.2	$^{+2.8}_{-0.9}$
$1^{3}P_{0}$ $1^{3}P_{1}$ $1^{1}P_{1}$ $1^{3}P_{2}$	${\begin{array}{c} 3\ 415.3^a\ 3\ 510.5^a\ 3\ 525.3\ 3\ 556.2^a\end{array}}$	3525.3^{c}	$-114.9^{e} \ -11.6^{e} \ +1.5^{e} \ -31.9^{e}$	$^{+5.9}_{-2.0}$ $^{+0.5}_{-0.3}$
$2^{1}S_{0}$ $2^{3}S_{1}$	3637.7^{a} 3686.0^{a}	3673.9^b	$^{-50.4}_{+16.8}$	$^{+15.7}_{-5.2}$
$1^{3}D_{1}$	3769.9^{ab}		-40	-39.9
$1^{9}D_{2}$ $1^{1}D_{2}$ $1^{3}D_{3}$	3 830.6 3 838.0 3 868.3	$(3815)^d$	$0 \\ 0 \\ +20$	$^{-2.7}_{+4.2}_{+19.0}$
$2^{3}P_{0}$ $2^{3}P_{1}$ $2^{1}P_{1}$ $2^{3}P_{0}$	$3931.9 \\ 4007.5 \\ 3968.0 \\ 3966.5$	3968^d	$^{-90}_{-8}$ 0 +25	$^{+10}_{+28.4}$ $^{-11.9}_{-33.1}$

S. Godfrey & N. Isgur, PRD 32, 189 (1985) E. Eichten et al., PRL 89,162002 (2002), PRD 69, 094019 (2004)

The observed peak (@3823) has not been seen in DD (${}^{3}D_{2} \rightarrow DD$ is expected).

 $\frac{\Gamma(X(3823) \rightarrow \chi_{c2}\gamma)}{\Gamma(X(3823) \rightarrow \chi_{c1}\gamma)} < 0.41 \ (@90\% \text{ CL}) \ , \quad \text{Expected} \ \frac{\Gamma(\Psi_2 \rightarrow \chi_{c2}\gamma)}{\Gamma(\Psi_2 \rightarrow \chi_{c1}\gamma)} \sim 0.2 \ (\text{model dependent})$ PRL 89, 162002 (2002); PRD 67, 014027 (2003)

If we assume, $B(\Psi_2 \rightarrow \chi_{c1} \gamma) = 0.64$ PRD 55, 4001 (1997), PLB 395, 107 (1997) $\frac{\mathcal{E}(B \to \Psi_2 K)}{\mathcal{E}_{(B \to \Psi' K)}} \sim 0.02$ Factorization penalty similar to

the one observed in $B \rightarrow \chi_{c2} K$

$$\frac{\mathcal{E}_{(B \to \chi_{c2} K)}}{\mathcal{E}_{(B \to \chi_{c1} K)}} = 0.022 \pm 0.007$$

Belle, PRL 107, 091803 (2011)

Suppression w.r.t. to $J^{PC}=1^{--}$, similar to the observed suppression of $J^{PC}=2^{++}$ w.r.t. $J^{PC}=1^{++}$.

X(3823) seems to be the missing $\Psi_{2D}(1^3D_2)$ from the charmonium spectrum.

50

4.67fb⁻¹ Confirmation of X(3823) by BES III ! BESIII, PRL 115,011803(2015) $e^+e^- \rightarrow \pi^+\pi^- X$

$$\sqrt{s}$$
 = 4.19 to 4.60 GeV

Reconstruct the two pions and look at the recoil mass

X(3823) is now a confirmed state !

BESIII also prefer
$$\Psi_{2D}(1^3D_2)$$

 $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

X(3872)^{C-}

711 *fb*⁻¹

X(3872) yield : -0.9±5.1 events

Belle PRL 111,032001(2013)

No signal is observed in the X(3872) region.

 $\mathcal{E}(B^{\pm} \rightarrow X(3872)K^{\pm}) \times \mathcal{E}(X(3872) \rightarrow \chi_{c1}\gamma) < 2.0 \times 10^{-6} (@90\% \text{ CL})$

$$\frac{\Gamma(X3872 \rightarrow \chi_{c1}\gamma)}{\Gamma(X3872 \rightarrow J/\Psi\pi\pi)} < 0.26$$

Belle, PRD 85,052004 (R) (2011)

* Recent Belle result used for BR(B \rightarrow X3872K)*BR(X3872 \rightarrow J/ $\Psi\pi^{+}\pi^{-}$.

Belle PRD91, 051101 (R) (2015) B→X(3872) Kπ decay mode

Production of X(3872) also provides an opportunity to understand its nature.

• Here K*(892)⁰ has less contribution as compared to the level seen in Ψ' .

Belle found enhancement in J/ $\psi\omega$ in B[±] \rightarrow J/ $\psi\omega$ K[±] Y(3940). Belle, PRL 94, 182002 (2005)

M_{bc} (GeV)

5.300

M_{bc} (GeV)

Evts/bin

Evts/bin

i) 700

M_{bc} (GeV)

- Re analysis by Belle, by cutting at $M_{J/\psi\pi+\pi-\pi0}$ around X(3872) mass $\pm 3\sigma$
- This suggest that $X(3872) \rightarrow J/\psi\omega$ Belle, arXiv:hep-ex/0505037

$$\frac{BR(X(3872) \to J/\Psi\pi^{+}\pi^{-}\pi^{0})}{BR(X(3872) \to J/\Psi\pi^{+}\pi^{-})} = 1.0 \pm 0.4 \pm 0.3$$

For $M(\pi^+\pi^-\pi^0) > 750 \text{ MeV/c}^2$

X(3872)→ J/ψω

BaBar Full Data

 Analysis by BaBar with 467 BB pairs, observes a clear peak of X(3872)→J/ψω.

 $\frac{BR(X(3872) \to J/\Psi\omega)}{BR(X(3872) \to J/\Psi\pi^{+}\pi^{-})} = 0.8 \pm 0.3$

Why this ratio is important ?

X(3872)→ J/ψω

BaBar Full Data

 Analysis by BaBar with 467 BB pairs, observes a clear peak of X(3872)→J/ψω.

 $\frac{BR(X(3872) \to J/\Psi\omega)}{BR(X(3872) \to J/\Psi\pi^{+}\pi^{-})} = 0.8 \pm 0.3$

Why this ratio is important ?

No charged partner of X(3872) is found, X(3872) iso-singlet state. This implies that X(3872) \rightarrow J/ $\psi \pi \pi$ is isospin non-conserving.

This is another puzzling nature of X(3872) !

Admixture, most plausible interpretation ?

No signature for

- ***** Charged partner in J/Ψ $\pi^+\pi^0$
- ***** C=-1 partner in J/Ψη, χ_{c1} γ, $\eta_c \omega$ and $\eta_c \pi^+ \pi^-$
- Disfavor tetraquark hypothesis.

No signal in X(3872) $\rightarrow \chi_{c1}\pi^+\pi^-$ and $\chi_{c1}' \rightarrow \chi_{c1}\pi^+\pi^-$. Remember $\chi_{c1}' \rightarrow J/\psi\rho$ violate isospin and is suppressed !

DD* molecule is mixing with the same J^{PC} cc̄, $\chi_{c1}(2P)$ (yet unseen). \odot Explain BR(X \rightarrow D⁰D^{*0})/BR(X \rightarrow J/ $\Psi\pi\pi$) is about 10.

• (pure molecule case, to be about 1000).

Pure molecule is too fragile to be produced in Tevatron/LHC.

Tetraquark searches

 $M = (4475 \pm 7^{+15}_{-25}) MeV$ $\Gamma = (109 \pm 13^{+37}_{-34}) \text{ MeV}$

16

18

 $m_{\psi'\pi^{-}}^{2}$ [GeV²]

20

711 fb⁻¹

Quantum number of Z(4430)⁺ Belle, PRD 88, 074026 (2013)

 $B^0 \rightarrow (\Psi' \pi^+) K^-$ decay mode Amplitude analysis in 4D space is performed $M(K\pi)$, $M(\Psi'\pi)$, Ψ' helicity and angle between Ψ' and K^*

80

∆(-2 In L)

Projection of the fit results with K* veto

Mass and wid with previous

IP

Mass,MeV/c²

Width,MeV

Significance

th consistent Belle result $ \begin{array}{c} 0 & 19 \\ 18 \\ 17 \\ 16 \\ 15 \\ 0.50.75 & 1 & 1.25 & 1.51.75 & 2 & 2.252 \\ M^2(K,\pi), & GeV^2/c^4 \end{array} $					
0-	1-	1+	2-	2+	
4479±16	4477±4	4485±20	4478±22	4384±19	
110±50	22±14	200±40	83±25	52±28	

6.4σ

2.2σ

1.8σ

63

21

 V^2/c^4

1⁺ hypothesis is favored

Exclusion levels calculated from toy MC

4.5σ

- 1^+ is favored over 0^- by 3.4 σ 0
- 1⁻, 2⁻ and 2⁺ are excluded at levels of 3.7σ , 4.7σ and 5.1σ Ο

3.6σ

 $BR(B^0 \rightarrow \Psi' K^+ \pi^-) = (5.80 \pm 0.39) \times 10^{-4}$ BR(B⁰→ Ψ 'K*(892))=(5.55^{+0.22+0.41}_{-0.23-0.84})x 10⁻⁴ BR(B⁰→Z(4430)⁻K⁺) x BR(Z(4430)⁻→ $\Psi'\pi^{-}$)= (6.0^{+1.7+2.5}_{-2.0-1.4})x 10⁻⁵

Amplitude analysis of $B \rightarrow J/\Psi K\pi$

Analysis similar to $Z_c(4430)^+$ quantum number. Resonances added : all K^{*}(10 resonances) and $Z_c(4430)^+$

Search for another Z_c⁺ is performed

J^P	0-	1-	1+	2^{-}	2^{+}
Mass, MeV/c^2	4318 ± 48	4315 ± 40	4196^{+31}_{-29}	4209 ± 14	4203 ± 24
Width, MeV	720 ± 254	220 ± 80	370 ± 70	64 ± 18	121 ± 53
Significance	3.9σ	2.3σ	8.2σ	3.9σ	1.9σ

New Z_c^+ is found ($J^P = 1^+$), $Z_c(4200)^+$

 $M = (4196^{+31+17}_{-29-23}) MeV$ $\Gamma = (370^{+70+70}_{-70-132}) MeV$

While J^P having 0⁻, 1⁻,2⁻ and 2⁺ are excluded at the levels of 6.1σ, 7.4σ, 4.4σ and 7.0σ

BR(B⁰→J/ΨK⁺π⁻) = (1.15±0.01±0.05)x 10⁻³ BR(B⁰→J/ΨK^{*}(892))=(1.19±0.01±0.08)x 10⁻³ BR(B⁰→Z_c(4430)⁻K⁺) x BR(Z_c(4430)⁻→J/Ψπ⁻)= (5.4^{+4.0+1.1}_{-1.0-0.9})x 10⁻⁶ BR(B⁰→Z_c(4200)⁻K⁺) x BR(Z_c(4200)⁻→J/Ψπ⁻)= (2.2^{+0.7+1.1}_{-0.5-0.6})x 10⁻⁵ BR(B⁰→Z_c(3900)⁻K⁺) x BR(Z_c(3900)⁻→J/Ψπ⁻) < 9 x 10⁻⁷ (90% CL)

Belle, PRD 90, 112009 (2014)

Isobar model : $\chi_{c1}\pi$ - resonance+ known K⁻ π ⁺

Without two Z⁺ resonance With two Z⁺ resonance

Two resonance preferred at > 5σ

Z⁺(4050) & Z⁺(4250)

BaBar didn't find any strong evidence (in their search). However, they are limited by less statistics.

	Name	Process	M (MeV/c²)	Г (MeV)
BaBar(233 fb ⁻¹)	Y(4260)	J/Ψππ	$4259\pm8^{+2}_{-6}$	88±23 ⁺⁶ ₋₄
Belle (548 fb ⁻¹)	Y(4260)	J/Ψππ	4247 \pm 12 $^{+17}_{-32}$	$108 \pm 19 \pm 10$
Belle (548fb ⁻¹)	Y(4010) ?	J/Ψππ	$4008 \pm 40 \ ^{+114}_{-28}$	$226 \pm 44 \pm 87$

Also confirmed by CLEO-c and CLEOIII !

Revisit Y @ Belle

Revisit Y @ Belle

967 fb⁻¹

Intermediate state in Y(4260) \rightarrow J/ $\Psi \pi \pi$

967 fb⁻¹

Intermediate state in Y(4260) \rightarrow J/ $\Psi \pi \pi$

967 fb⁻¹

Intermediate state in Y(4260) \rightarrow J/ $\Psi \pi \pi$

Observation of Z(3895)⁺

Measured properties

- Mass = (3894.5±6.6± 4.5) MeV
- Width = (63±24±26) MeV

$$\frac{BR[Y(4260) \to Z(3895)^{\pm}\pi^{\mp}]}{BR[Y(4260) \to J/\psi\pi^{+}\pi^{-}]} = (29.0 \pm 8.9)\%$$

Test hypothesis that interference between S and D waves in $\pi^+\pi^-$ system might produce structure similar to the enhancement.

> Partial waves alone cannot produce $J/\Psi\pi^{\pm}$ invariant mass peak near 3.9 GeV/c².

Using CLEO data, T. Xiao et al. has also confirmed Z⁺ and claim for an evidence for neutral Z !
Notes from the Editors: Highlights of the Year

Published December 30, 2013 | Physics 6, 139 (2013) | DOI: 10.1103/Physics.6.139

Physics looks back at the standout stories of 2013.

As 2013 draws to a close, we look back on the research covered in *Physics* that really made waves in and beyond the physics community. In thinking about which stories to highlight, we considered a combination of factors: popularity on the website, a clear element of surprise or discovery, or signs that the work could lead to better technology. On behalf of the *Physics* staff, we wish everyone an excellent New Year.

Matteo Rini and Jessica Thomas

Four-Quark Matter

Images from popular Physics stories in 2013.

Quarks come in twos and threes—or so nearly every experiment has told us. This summer, the BESIII Collaboration in China and the Belle Collaboration in Japan reported they had sorted through the debris of high-energy electron-positron collisions and seen a mysterious particle that appeared to contain four quarks. Though other explanations for the nature of the particle, dubbed $Z_c(3900)$, are possible, the "tetraquark" interpretation may be gaining traction: BESIII has since seen a series of other particles that appear to contain four quarks.

 $Z_{c}^{0}(3900)$ in $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0} I/\psi$

Evidence of neutral isospin partner of $Z_c^{\pm}(3900)$ is observed in $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$

> $M = (3886 \pm 6 \pm 4) \text{ MeV}$ $\Gamma = (33 \pm 6 \pm 7) \text{ MeV}$

PRL 115, 112003(2013)

 $M = (3894.8 \pm 2.3 \pm 3.2) \text{ MeV}$ $\Gamma = (29.6 \pm 8.2 \pm 8.2) \text{ MeV}$

Isospin triplet of Zc(3900)+ estalished

 $Z_c^{\pm}(4020)$ in $e^+e^- \to \pi^+\pi^-h_c$

- No sharp structure in $\pi^+\pi^-h_c$ section, correlation with Y(4260) or Y(4360) unclear
- Narrow $\pi^{\pm}h_c$ structure observed
- No significance for $Z_c(3900) \rightarrow \pi^{\pm} h_c$

\sqrt{s} (GeV)	\mathcal{L} (pb ⁻¹)	$n_{h_c}^{\rm obs}$	$\sigma(e^+e^- \rightarrow \pi^+\pi^- h_c) \text{ (pb)}$
3.900	52.8	<2.3	<8.3
4.009	482.0	<13	<5.0
4.090	51.0	<6.0	<13
4.190	43.0	8.8 ± 4.9	$17.7 \pm 9.8 \pm 1.6 \pm 2.8$
4.210	54.7	21.7 ± 5.9	$34.8 \pm 9.5 \pm 3.2 \pm 5.5$
4.220	54.6	26.6 ± 6.8	$41.9 \pm 10.7 \pm 3.8 \pm 6.6$
4.230	1090.0	646 ± 33	$50.2 \pm 2.7 \pm 4.6 \pm 7.9$
4.245	56.0	22.6 ± 7.1	$32.7 \pm 10.3 \pm 3.0 \pm 5.1$
4.260	826.8	416 ± 28	$41.0 \pm 2.8 \pm 3.7 \pm 6.4$
4.310	44.9	34.6 ± 7.2	$61.9 \pm 12.9 \pm 5.6 \pm 9.7$
4.360	544.5	357 ± 25	$52.3 \pm 3.7 \pm 4.8 \pm 8.2$
4.390	55.1	30.0 ± 7.8	$41.8 \pm 10.8 \pm 3.8 \pm 6.6$
4.420	44.7	29.1 ± 7.3	$49.4 \pm 12.4 \pm 4.5 \pm 7.6$

 $M = (4023 \pm 3) \text{ MeV}$ $\Gamma = (8 \pm 4) \text{ MeV}$

 $Z_{c}^{0}(4020)$ in $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}h_{c}$

BESIII, PRL 113, 212002(2013)

- Using data collected @4.23, 4.26 and 4.36 GeV to study $e^+e^- \rightarrow \pi^0\pi^0h_c$
- Evidence of neutral isospin partner of $Z_c^{\pm}(4020)$

Width is fixed to that of $Z_c(4020)^{\pm}$

 $M = (4023.6 \pm 2.2 \pm 3.9) \text{ MeV}$

Belle PRD91, 112007 (2015)

Belle PRD91, 112007 (2015)

Summary

Frank Wilczek (on long-distance QCD)

https://www.edge.org/conversation/frank_wilczek-power-over-nature

We have something called a standard model, but its foundations are kind of scandalous. We have not known how to define an important part of it mathematically rigorously,...

Thank you

धन्यवाद ਧੰਨਵਾਦ ধন্যবাদ આભાર ಧನ್ಯವಾದಗಳು നന്ദി நன்றி کریہ ଧନ୍ୟବାଦ୍