
1
Copyright © 2013 Tata Consultancy Services Limited

Software Verification

Trends and Challenges

December 6, 2016

2

Talk Aims

Introduction

 Technologies, techniques

Current state

 Industry code

 Large applications

Reality check

3

Cost of Software Bugs

Company Year What & why Source

Maquet 2011 Anesthesia systems Fda.gov

BMW 2012 7-series vehicles – door

latching problem

www.nconsumer.

org

Volvo 2012 S80 vehicles – possible

engine stall

www.nconsumer.

org

Knight Capital 2012 Bought and sold shares

at a loss $440m loss

New scientist

Amazon 2014 Items sold at 1p computerworlduk

Lockheed

Martin

2015 F35 detects targets

incorrectly

Fox news

Nissan 2015 Airbags do not inflate Computer world

UK

One of the top three causes of medical devices recalls (Stericycle Expert Soln)

http://www.nconsumer.org/

4

The Future - Robots Everywhere

Autonomous vehicles

Complex surgery

Rescue operations

Complex decision making

5

Correct Software

Terminologies

 Proving

−Software meets requirements

 Testing

−Software runs correctly for given inputs

 Verification

−Software satisfies certain properties

6

Proving

Requirements

Formal

Specification
Implemenatation

Show equivalence

 Undecidable in the general case, intractable in most cases

 Large systems – no complete requirements

 Creating formal specification expensive

7

Testing

Software

 Guarantees (almost) nothing!!

 Most practical

 Validating runs expensive

 Hard to find certain bugs

− Concurrency, security …

Validate RunsTest Cases

8

Verification

Verification Tool Bug ListProperties

 Guarantees w.r.t properties (mostly)

 Needs a good list of properties - impractical

 Scalability and precision

9

Properties

Platform/generic properties

 No crashes due to

−Division by zero

−Overflow or underflow

 No hanging

−Deadlock, livelocks

Domain Properties

 Stop within t secs of braking

 A debit for every credit

 Don’t sell at a loss

Nonnegative i = *, j = *

If (j < i) j’ = i

else j’ = j + 1

i/j’; // divide by zero?

cr(ac, am)

b = getbal(ac)

b = b + am

setbal(ac,b)

db(ac, am)

b = getbal(ac)

b = b - am

setbal(ac,b)

xfer(ac1, ac2, am)

cr(ac2, am)

|| db(ac1, am)

10

Soundness, Precision, Scalability

Soundness

 OK reports are correct

Precision

 Error reports may or may not be errors

 False positives

Scalable

 Can analyze large systems

Soundness

Scalability

Precision

Technology Attributes

Static Analysis Sound, Scalable, Imprecise

Model Checkers Sound, Precise, Not-scalable

Heuristics based analysis Unsound, Precise, Scalable

Technologies

12

Overview

Static Analysis

 Old

 Very abstract

 Too many false alarms

SAT, SMT

 Precise

 Recent advances

13

Static Analysis & Abstract Interpretation

 Analyse without executing

– Track properties

 Standard properties

– Zero division, array index

 Abstract representation of
program

 Imprecise

– Need to know maths

 Abstract interpretation

– Range, difference,
polyhedral

nonnegative i = *, j = *

[j & i can be zero]

If (j < i) j = i

else j = j + 1

[j can be zero]

i/j; // divide by zero?

14

Value

Defect analysis

 >30% of defects

Case studies

 office automation system

− several defects in production code

− $1m per year saving

 vehicle infotainment system

− deep bugs detected

− 60% effort saving in review time

Misc, 18%

Requiremen
ts, 12%

Coding
Errors, 70%

Analysis of application defects

found during product testing

15

Challenges

Application Size Key Characteristics Warnings

Infotainment 2MLOC(1 task) Large, large arrays(512),

loops(unknown bounds)

77 (ZD)

Smart card

component

7K Loops with large bounds and

unknown bounds

55 (ZD)

Auto ECU 6K Complex control algorithms 128 (AIOB), 43 (ZD)

Int a[512];

j = random() * 2;

for (; j < 512; j += 2)

a[j+1];

int secs[12] = { … }

t = *

m = 0

while(t > secs[m])

t = t – secs[m]

m = m + 1

16

Satisfiability Checking

Program

SAT Instance

 SAT solving

− Checking satisfiability of

propositional formulas

− NP-complete (Cook)

 Programs – SAT

− Finite programs

− a/x ; x == 0 satisfiable?

Bug Trace

SAT Solver

17

SAT Solver Performance

Graph thanks to Daniel Kroening

18

Applications of SAT Solving

• Planning

• Optimizations

• Knapsack,

• Combinatorial problems

• Sudoku

• Test pattern generation

19

CBMC

C Bounded Model Checker

 sound, very precise, low scalability

BMC

 unroll loops finite number of times

 very successful in h/w

 appropriate for embedded systems

 small model hypothesis

Free download

 http://www.cprover.org

20

Another Problem Case

int sq1 (int y)

int z, x

z = y, y = x, x = z

return x*x

int sq2 (int y)

return y*y

y = *

sq1(y) == sq2(y) ?

21

SMT Solvers

 Theories work better

– Bit arithmetic

– Arrays

– Strings

– Uninterpreted functions

 Limited scope

 Combine Theories with SAT

– Satisfiability Modulo

Theories (SMT)

z = y ⋀ y1 = x ⋀ x1 = z

⋀

ret1 = sq(x1)

⋀

ret2 = sq(y)

⋀

ret1  ret2

z = y ⋀ y1 = x ⋀ x1 = z

⋀

ret1 = x1*x1

⋀

ret2 = y*y

⋀

ret1  ret2

22

SAT v/s SMT - Performance

SAT takes twice as much time as SMT

int sq1 (int y)

int z, x

z = y, y = x, x = z

return x*x

int sq2 (int y)

return y*y

y = *

sq1(y) == sq2(y) ?

23

Loops

SMT and SAT fail - Unknown bounds, Large bounds

Int a[512];

j = random() * 2;

for (; j < 512; j += 2)

a[j+1];//err?

int secs[12] = { … }

t = *

m = 0

while(t > secs[m])

t = t – secs[m] //err?

m = m + 1

while(n != 0)

lock();

n = *

if (n != 0) unlock()

unlock(); //err?

24

Loop Abstraction and Induction

lock();

n = *

if (n != 0) {

unlock()

}

if (n == 0) unlock(); //err

while(n != 0)

{

lock(); //err?

n = *

if (n != 0) {

unlock() //err?

}

}

unlock(); //err?

while(n != 0)

{

lock();

n = *

if (n != 0) {

unlock()

unlock xor n == 0

}

if (n == 0) unlock(); //err

25

Abstractions on Industry Code

Embedded

Application

KLOC TCS

ECA

alarm

s

TCS ECA

+ LABMC

alarms

% precision

improveme

nt

Avg.

elimination

time per

alarm

(mins.)

TECA +

LABMC

execution time

A1 – Protocol stack
8 94 29 69.15 0.15 13 min.

A2 – Office

automation
4.6 196 92 53.06 0.30 59 min.

A3 – Car S/W 34 346 251 27.46 0.29 1 hour 40 min.

A4 – Battery

controller
60 189 62 67.20 0.37 1 hour 9 min.

A5 – CAN driver 18.3 226 66 70.80 0.21 47 min.

A6 – Vehicle

navigation system
184 422 145 65.64 1.41 9 hours 55 min

A7 - Vehicle S/W 171.4 309 144 53.40 1.87 9 hours 37 min.

Applications

27

Driver Verification

Program API Rules

SDV

Violations

 Microsoft

− Slam project

 Static Driver Verifier

− Automates CEGAR

 Windows 7 drivers

− 270 bugs (tested code)

− CACM Jul ‘11

 Similarly for earlier versions

28

Towards Zero Defects

Enhance TECA

Analyze Code

 TCS

− TCS Embedded Code

Analyzer (TECA)

 Auto Infotainment System

− Static analysis

− 20+ defect categories

 10M lines of code

− Several defects

− 60% reduction in review

time

Analyze Defects

29

Reality Check

 Current state

 Verification of MLOC

 Sequential code

 Modern Cars

 Billion LOC

 More than 100 ECUs

 Sophisticated algorithms

 Image processing

IT Services

Business Solutions

Consulting

Thank You

