
1
Copyright © 2013 Tata Consultancy Services Limited

Software Verification

Trends and Challenges

December 6, 2016

2

Talk Aims

Introduction

 Technologies, techniques

Current state

 Industry code

 Large applications

Reality check

3

Cost of Software Bugs

Company Year What & why Source

Maquet 2011 Anesthesia systems Fda.gov

BMW 2012 7-series vehicles – door

latching problem

www.nconsumer.

org

Volvo 2012 S80 vehicles – possible

engine stall

www.nconsumer.

org

Knight Capital 2012 Bought and sold shares

at a loss $440m loss

New scientist

Amazon 2014 Items sold at 1p computerworlduk

Lockheed

Martin

2015 F35 detects targets

incorrectly

Fox news

Nissan 2015 Airbags do not inflate Computer world

UK

One of the top three causes of medical devices recalls (Stericycle Expert Soln)

http://www.nconsumer.org/

4

The Future - Robots Everywhere

Autonomous vehicles

Complex surgery

Rescue operations

Complex decision making

5

Correct Software

Terminologies

 Proving

−Software meets requirements

 Testing

−Software runs correctly for given inputs

 Verification

−Software satisfies certain properties

6

Proving

Requirements

Formal

Specification
Implemenatation

Show equivalence

 Undecidable in the general case, intractable in most cases

 Large systems – no complete requirements

 Creating formal specification expensive

7

Testing

Software

 Guarantees (almost) nothing!!

 Most practical

 Validating runs expensive

 Hard to find certain bugs

− Concurrency, security …

Validate RunsTest Cases

8

Verification

Verification Tool Bug ListProperties

 Guarantees w.r.t properties (mostly)

 Needs a good list of properties - impractical

 Scalability and precision

9

Properties

Platform/generic properties

 No crashes due to

−Division by zero

−Overflow or underflow

 No hanging

−Deadlock, livelocks

Domain Properties

 Stop within t secs of braking

 A debit for every credit

 Don’t sell at a loss

Nonnegative i = *, j = *

If (j < i) j’ = i

else j’ = j + 1

i/j’; // divide by zero?

cr(ac, am)

b = getbal(ac)

b = b + am

setbal(ac,b)

db(ac, am)

b = getbal(ac)

b = b - am

setbal(ac,b)

xfer(ac1, ac2, am)

cr(ac2, am)

|| db(ac1, am)

10

Soundness, Precision, Scalability

Soundness

 OK reports are correct

Precision

 Error reports may or may not be errors

 False positives

Scalable

 Can analyze large systems

Soundness

Scalability

Precision

Technology Attributes

Static Analysis Sound, Scalable, Imprecise

Model Checkers Sound, Precise, Not-scalable

Heuristics based analysis Unsound, Precise, Scalable

Technologies

12

Overview

Static Analysis

 Old

 Very abstract

 Too many false alarms

SAT, SMT

 Precise

 Recent advances

13

Static Analysis & Abstract Interpretation

 Analyse without executing

– Track properties

 Standard properties

– Zero division, array index

 Abstract representation of
program

 Imprecise

– Need to know maths

 Abstract interpretation

– Range, difference,
polyhedral

nonnegative i = *, j = *

[j & i can be zero]

If (j < i) j = i

else j = j + 1

[j can be zero]

i/j; // divide by zero?

14

Value

Defect analysis

 >30% of defects

Case studies

 office automation system

− several defects in production code

− $1m per year saving

 vehicle infotainment system

− deep bugs detected

− 60% effort saving in review time

Misc, 18%

Requiremen
ts, 12%

Coding
Errors, 70%

Analysis of application defects

found during product testing

15

Challenges

Application Size Key Characteristics Warnings

Infotainment 2MLOC(1 task) Large, large arrays(512),

loops(unknown bounds)

77 (ZD)

Smart card

component

7K Loops with large bounds and

unknown bounds

55 (ZD)

Auto ECU 6K Complex control algorithms 128 (AIOB), 43 (ZD)

Int a[512];

j = random() * 2;

for (; j < 512; j += 2)

a[j+1];

int secs[12] = { … }

t = *

m = 0

while(t > secs[m])

t = t – secs[m]

m = m + 1

16

Satisfiability Checking

Program

SAT Instance

 SAT solving

− Checking satisfiability of

propositional formulas

− NP-complete (Cook)

 Programs – SAT

− Finite programs

− a/x ; x == 0 satisfiable?

Bug Trace

SAT Solver

17

SAT Solver Performance

Graph thanks to Daniel Kroening

18

Applications of SAT Solving

• Planning

• Optimizations

• Knapsack,

• Combinatorial problems

• Sudoku

• Test pattern generation

19

CBMC

C Bounded Model Checker

 sound, very precise, low scalability

BMC

 unroll loops finite number of times

 very successful in h/w

 appropriate for embedded systems

 small model hypothesis

Free download

 http://www.cprover.org

20

Another Problem Case

int sq1 (int y)

int z, x

z = y, y = x, x = z

return x*x

int sq2 (int y)

return y*y

y = *

sq1(y) == sq2(y) ?

21

SMT Solvers

 Theories work better

– Bit arithmetic

– Arrays

– Strings

– Uninterpreted functions

 Limited scope

 Combine Theories with SAT

– Satisfiability Modulo

Theories (SMT)

z = y ⋀ y1 = x ⋀ x1 = z

⋀

ret1 = sq(x1)

⋀

ret2 = sq(y)

⋀

ret1 ret2

z = y ⋀ y1 = x ⋀ x1 = z

⋀

ret1 = x1*x1

⋀

ret2 = y*y

⋀

ret1 ret2

22

SAT v/s SMT - Performance

SAT takes twice as much time as SMT

int sq1 (int y)

int z, x

z = y, y = x, x = z

return x*x

int sq2 (int y)

return y*y

y = *

sq1(y) == sq2(y) ?

23

Loops

SMT and SAT fail - Unknown bounds, Large bounds

Int a[512];

j = random() * 2;

for (; j < 512; j += 2)

a[j+1];//err?

int secs[12] = { … }

t = *

m = 0

while(t > secs[m])

t = t – secs[m] //err?

m = m + 1

while(n != 0)

lock();

n = *

if (n != 0) unlock()

unlock(); //err?

24

Loop Abstraction and Induction

lock();

n = *

if (n != 0) {

unlock()

}

if (n == 0) unlock(); //err

while(n != 0)

{

lock(); //err?

n = *

if (n != 0) {

unlock() //err?

}

}

unlock(); //err?

while(n != 0)

{

lock();

n = *

if (n != 0) {

unlock()

unlock xor n == 0

}

if (n == 0) unlock(); //err

25

Abstractions on Industry Code

Embedded

Application

KLOC TCS

ECA

alarm

s

TCS ECA

+ LABMC

alarms

% precision

improveme

nt

Avg.

elimination

time per

alarm

(mins.)

TECA +

LABMC

execution time

A1 – Protocol stack
8 94 29 69.15 0.15 13 min.

A2 – Office

automation
4.6 196 92 53.06 0.30 59 min.

A3 – Car S/W 34 346 251 27.46 0.29 1 hour 40 min.

A4 – Battery

controller
60 189 62 67.20 0.37 1 hour 9 min.

A5 – CAN driver 18.3 226 66 70.80 0.21 47 min.

A6 – Vehicle

navigation system
184 422 145 65.64 1.41 9 hours 55 min

A7 - Vehicle S/W 171.4 309 144 53.40 1.87 9 hours 37 min.

Applications

27

Driver Verification

Program API Rules

SDV

Violations

 Microsoft

− Slam project

 Static Driver Verifier

− Automates CEGAR

 Windows 7 drivers

− 270 bugs (tested code)

− CACM Jul ‘11

 Similarly for earlier versions

28

Towards Zero Defects

Enhance TECA

Analyze Code

 TCS

− TCS Embedded Code

Analyzer (TECA)

 Auto Infotainment System

− Static analysis

− 20+ defect categories

 10M lines of code

− Several defects

− 60% reduction in review

time

Analyze Defects

29

Reality Check

 Current state

 Verification of MLOC

 Sequential code

 Modern Cars

 Billion LOC

 More than 100 ECUs

 Sophisticated algorithms

 Image processing

IT Services

Business Solutions

Consulting

Thank You

