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Black holes

Black holes are compact astrophysical objects that have been
observed.

They are solutions to the gravitational field equations that are
characterized by having an event horizon.

Classically, signals from behind the horizon cannot reach an
asymptotic observer.

Quantum mechanically, they radiate like a black body.

One can assign thermodynamic quantities like temperature and
entropy to a black hole based purely on its gravitational properties.
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What is black hole entropy?

Thermodynamic entropy

Einstein gravity: Bekenstein-Hawking Area law SBH = A/4G .

A consistent quantum theory of gravity would involve an extension of
general relativity. This would generate corrections to the Area law.

These corrections probe a regime beyond the thermodynamic limit
and can be regarded as computing finite size effects.

If we can compute and understand a formula for the complete black
hole entropy in the full quantum theory of gravity (even without
understanding all details of the theory), we would have made progress.
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Black holes in string theory

Macroscopic

String theory (being a theory of quantum gravity) reduces to general
relativity coupled to other fields at low energies.

Find a black hole solution to the effective action which carries charges
{qi}. Measure its thermodynamic entropy SBH .

Microscopic

Find a microscopic description of a generic state in the theory with
the same charges {qi}, perhaps in a different regime of parameter
space (weak coupling).

Count the number of such states Ω(qi ) and compute the statistical
entropy Sstat = log(Ω).
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Black holes in string theory

PICTURE
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Comparison of macroscopic and microscopic entropy

Early success (1996)

Strominger-Vafa, three charge black hole (Q1,Q5,p) in type II string
theory.

On the macroscopic side, find the black hole solution carrying three
charges, and measure the area of the horizon.

A

4G
= 2π

√
Q1Q5p , (1)

On the microscopic side, the generic state carrying the same three
charges is a chiral excitation of a two dimensional superconformal
field theory. Estimate density of states.

Ω ≈ exp(2π
√

Q1Q5p) . (2)
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Non-trivial finite size effects

Four dimensional black holes with four charges
√

q1q2q3q4 ≡ q2,

Ω(qi ) ≈ exp
(
2πq2

)
, SBH = log(Ω) . (3)

Now, corrections to formula in inverse powers of charges;

Ω(qi ) = exp

(
q2 s0 + s1 +

1

q2
s2...

)
. (4)

Here, s1, s2.. non trivial functions of the charges.

Macro: Higher derivative corrections to supergravity action coming
from string theory + Wald formula. Cardoso, de Wit, Mohaupt 1999.

Micro: Exact BPS counting formula involving modular forms +
estimation methods. Dijkgraaf, Verlinde, Verlinde 1994.
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Questions and issues

1 How to compute microscopic corrections in more general situations?

2 Why does this approach work?
Macroscopic degeneracy v/s microscopic index.

3 Does the microscopic partition function really count the entropy of
black holes? What about the other “stuff”?

4 What is the perturbative series an approximation to?
Non-perturbative effects?
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Some answers in the context of black holes in superstring theory

1 Example: We developed a method to compute the density of states of
the D1-D5 SCFT very far from the Cardy regime.
A.Castro, S.M.; Corrections to the statistical entropy of five

dimensional black holes, arXiv:0807.0237.

2 A.Dabholkar, J.Gomes, S.M., A.Sen; Black hole degeneracy is an

index, in preparation.

3 To follow..
A.Dabholkar, S.M., D.Zagier; Quantum black holes and mock

modular forms, in preparation.

4 If you do not fall asleep..
B.Pioline, S.M.; A Farey tale for N=4 dyons, arXiv:0904.4253.
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Outline

1 Finite size corrections from supergravity

2 Finite charge corrections from microscopics

3 Non-perturbative effects

4 Black holes v/s other “stuff”
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The string theory setup

N = 4 string theory in four dimensions

Heterotic string theory on T 6. Low energy fields are the metric,
28 gauge fields, 132 + 2 scalar fields and their superpartners.

Huge symmetry group of the theory under which these fields are
organized:

G (Z) = O(22, 6; Z)× SL(2,Z). (5)

Dyonic states

States in the theory carry charges

Γi
α ≡

[
Q i

P i

]
(6)

Charge invariants are Q2, P2, and Q · P.
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The string theory setup

Low energy effective action

The two-derivative effective action is N = 4 supergravity in four
dimensions (16 supercharges). Bosonic part for metric and
axion-dilaton is

Seff =

∫
d4x

√
−det g S

[
R +

1

S2
gµν(∂µS ∂νS −

1

2
∂µa ∂νa)

]
(7)

Stringy effects generate higher dimension operators in the effective
action.

δSeff =

∫
d4x

√
−det g φ(a,S)

{
RµνρσR

µνρσ − 4RµνR
µν + R2

}
,

φ(a, S) = −
(
12 ln S + ln η24(a + iS) + ln η24(−a + iS)

)
. (8)
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Black holes in string theory

Black hole solutions to the effective action which are 1/4 BPS.
Extremal Reissner-Nordstrom black holes with non-trivial scalar fields.

They carry dyonic charges (Qi ,Pi ) and carry entropy

A

4G
= π
√

∆, ∆ = Q2P2 − (Q.P)2.

Near the horizon, the geometry is AdS2× S2 and the scalars get fixed.
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Wald entropy

On addition of higher derivative corrections, the Bekenstein-Hawking
law is no longer correct.

Replaced by Wald’s formula

SBH = − 8π

∫
H

dθdφ
δSeff

δRrtrt

√
−grrgtt . (9)

The Wald entropy of our black holes can be computed to be

SWald = π
√

∆ + φ

(
Q.P

Q2
,

∆

Q2

)
+ ... (10)
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A warmup example

Half-BPS states of the heterotic string theory on T 6.

Can be represented as chiral excitations of a fundamental heterotic
string in ten dimensions with winding w and momentum p Dabholkar-Harvey.

String sees 8 transverse spacetime dimensions + 16 internal
oscillators = effectively 24 free fields.

Each free field has oscillator modes of energy n = 0, 1, 2, ...

How many ways of distributing energy pw in 24 types of oscillators?

Z(τ) = e−2πiτ
∞∏

n=1

(1− e2πinτ )−24 ≡ 1

η24(τ)
,

Ω(p,w) =

∮
dτ e−iπpwτ Z(τ) ≈ e4π

√
pw . (11)
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Microscopic counting of the 1
4-BPS states

The 4d dyon degeneracy formula

Ω(Q,P) = (−1)Q.P+1

∮
dρ dσdv e−iπ(Q2ρ+P2σ+Q.Pv) Z4d (ρ, σ, v) , (12)

where

Z4d (ρ, σ, v) =
1

Φ10(ρ, σ, v)
; (13)

Dijkgraaf, Verlinde, Verlinde

Φ10 is the Igusa cusp form, which is the unique weight 10 Siegel modular
form of Sp(2,Z).
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Evaluation of microscopic degeneracy

Expanding around the dominant saddle point agrees with the answer
from supergravity, including higher derivative corrections.

Ω ≈ exp

(
π
√

∆ + φ

(
Q.P

Q2
,

∆

Q2

)
+ ...

)
, (14)

∆ ≡ Q2P2 − (Q.P)2 . (15)

Using the known structure and symmetries of Φ10, we computed a
series of exponential corrections to the entropy formula

B. Pioline, S.M.

Ω(Q,P) =
∞∑

N=1

exp

(
π
√

∆

N
+ s

(N)
1 +

1√
∆

s
(N)
2 ...

)
. (16)
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Quantum entropy function

Wald’s formalism applies for any local theory of gravity, and computes
power law corrections to the classical entropy formula.

To understand the contributions exp(S0/N), N = 2, 3.., we need a
formalism which goes beyond a local theory of gravity.

For extremal black holes, there has been such a proposal called the
quantum entropy function. Sen, arXiv:0809.3304.

This proposal relies on the near horizon geometry of an extremal
black hole being AdS2.
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Quantum entropy function

The quantum entropy function Ω(Qi ) is a Euclidean path integral
over asymptotically AdS2 field configurations with fixed electric
charge Qi , fixed value of the scalar fields at infinity (this includes
magnetic fluxes Pi ), and a Wilson line insertion.

The functional integral runs over all fields in the dimensionally
reduced two-dimensional field theory.

The Euclidean path integral is dominated by the field configuration
corresponding to pure AdS2.

In general, there could be other saddle points approaching AdS2

asymptotically.
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Semiclassical interpretation

We find a family of smooth solutions to the semiclassical theory
labelled by N ≥ 1 acting as an orbifold on the original AdS2 geometry.

They have degeneracy exp(π
√

∆/N), they are all asymptotically
AdS2, but differ in the interior. S.M., B. Pioline; Banerjee, Jatkar, Sen.

This construction is very general, it applies whenever there is an
effective black string in the background.
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Single centered black holes?

Formulation of microscopic partition functions in flat space at weak
coupling involves a representation of a generic charged state as a
collection of strings, branes, momentum...

Assumption – at strong coupling, this configuration gravitates and
forms a black hole.

However, there may exist other solutions in gravity with same charges
(Multi-centered black hole bound states).

The microscopic partition function should count all these
configurations.
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Symmetries of the partition function

From far, notion that the black hole is really a wound black string
with a modular parameter τ , and an SL(2,Z) action on τ .

Indeed the full partition function is a modular form, and the Fourier
coefficients agree with the black hole degeneracy to good
approximation.

However, when one zooms in, not all of the excitations of the string
form the black hole. Some of the excitations form multi-centered
black hole bound states.

The spectrum of the multi-center black hole solutions differ in
different regimes of parameter space, while the single-center black
hole exists everywhere in parameter space.
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Symmetries of single centered black holes

What are the modular properties of the single centered black hole
partition function?

[I have found new] functions [which I shall call mock modular forms]
which have asymptotic expansions at every rational point of the same
type as those of modular forms, but that there is no single modular
form whose asymptotic expansion agrees at all rational points with
that of the function itself.
– Srinivasa Ramanujan, in his last letter to Hardy, 1920 [slightly
paraphrased].

The single centered black hole partition function is a mock modular
form. A. Dabholkar, S.M., Don Zagier.

A mock modular form is a holomorphic function which transforms
under modular transformations almost but not quite as a modular
form. It can be completed into a modular form by adding a specific
non-holomorphic function.
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Some lessons learnt

1 Going beyond the thermodynamic approximation for black holes
makes sense.

2 Mathematical structure of the generating function.

3 General structure of quantum gravity path integral – Universal series
of exponentially suppressed corrections to the degeneracy of extremal
black holes exp(S0/N), N = 2, 3...

They come from different geometries which from far all look like the
single centered black hole. These are quantum mechanical
contributions to the gravity path integral that are not visible in the
large charge limit.
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But much work to do before a complete understanding

Can one understand all the microscopic structure of an extremal black
hole from gravity?
Exact quantum entropy function.

Go beyond N = 4 supersymmetry, many many new issues.

Go beyond the extremal limit.
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