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Outline

CGM (~ Mpc): the middle world of cosmological galaxy formation
(observable Universe ~1019 pc, galaxy disk height ~100 pc)

Why study the CGM (6~102-3, n~10-5-1 cm-3)? New absorption/emission
observations; not as nonlinear as stars (6~1030, n~1024 cm-3), easier to
understand

CGM is multiphase (gas at different n,T coexist)! How to explain this?

Some idealised models: thermal instability & condensation, galactic
outflows, cloud crushing
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Evolution of the Universe
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focus on z~0,
nearby Universe




. CGM observations

15 kpc‘

Traditional focus In galaxy formation has been of stars, which are highly nonlinear

Source & sink of mass/energy to/from galaxy; Observations of diffuse CGM more constraining for galaxy formation
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Stripped tail of D100 in Coma cluster

[Cramer et al. 2019]
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Many more observational probes (emission & dbsorption) going to high z!
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CGM/ICM

circumgalactic/intracluster medium

hot multiphase
plasma~10¢ K




Clusters in emission

[McNamara & Nulsen 2007]
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(Galactic outflows

M82

[Rupke et al. 2019]
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CGM probed in absorption

credit: NASA/STScl/Ann Field background
quasar

UV absorption spectrum

IS soO dilute!
ee In emission

HST-COS
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lll. The origin of multiphase gas

How Is cold gas produced in the CGM/ICM?
() Tl & condensation from the hot phase;

(i)  seeding by galaxy wakes, IGM filaments
(i) uplift of dense gas by distributed outflows




Cluster Coolmg flow prObIem
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[Johnstone et al. 2002]
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this gas goes not Seem to cool and form stars in dense cores
lack of blue massive galaxies at cluster centers
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AGN Heating”

. [McNamara & Nulsen 2007]

| cooling ICM can power SMBH

- negative feedback loop prevents
i catastrophic cooling



Thermal instability

AGN heating can balance cooling globally

~Nn2 (2-body process; line+ff emission in CIE

t~(uncertain: dissipation of mechanical energy




log( Av) ergscm’s™

Radiative eeollng

-20.0
i CIE AN(T) VS Abundance Levels _
I /,10 2 ~ ]
// \\
- // \\ -
/! [Fe/H) =00\ Oe
-21.0} / \ (—> = —n. N -
\ ot
| / -0.5 T~ cool |
/ TN \
/'/ \ \\
_ ; /210 \\\ =mTTN -
,/"/ \ \\ . . . '
-/ | cooling losses due to metal e & ff emission
\
-22.0}
-23.0}
24 0l ~atomic physics governs CGM & galaxy formation! ]
= 1 1 ] ] L ] | 1 ] L ] ] ! ] | 1 T

4. 0 5.0 6.0 7.0 8.0
l0g10[ T(K)]



Toy model

heating~cooling at every radius
(to explain lack of cooling tlows)

hydrostatic equilibrium: dp/dr = -pg
gravity due to dark matter

how far can we go with
this simple model”



TI wWith gravity

-we know this Is true g\obaHy PR e

gravity




Spherical sims. clusters

multiphase only hot phase
|f tcool/tff Sma”! |f tcool/tff blg' [Sharma et al. 2012]

L0g10 density

cool filaments when tr/ts < 10



[Sharma et al ——entropy core | C |\/| VS C G |\/|

0.1 tn/t =10 ‘core’

3e14 Mgyn ", . : s ;
; cooling/heating breaks self-similarity

of hot gas!

teool/tii~ 10 threshold for hot CGM

cold gas at™=10.kpc In Cld'é;te,‘r""‘ |
& at ~100 kpc in MW_halos ™. >\ lower mass halos lower density

beware: cooling time for MW halos at
viral radius ~ Hubble time; non-
equilibrium etfects!




Observations & tcoo\/tff

10"

Multiphase gas
— — — 2-10keV, Ha

[Voit et al. 2015]
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l[deas apply to smaller scales!

Coronal rain: UV emission tracing 5e4 K
condensation from corona triggered
after a normal flare [NASA]
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[Choudhury et al. 2019] The condensation curve

Larger density perturbations

3D
2 - latest on idealised simulations
constant entropy
)5 - low entropy gradient; lowest Kgn = 150, a = 1.1

&€ high entropy gradient; lowest Kjg9 = 600, o = 1.4
condensation easier if 0= 1 (filaments, galaxy wakes)

| condensation harder for a steeper entropy profile

, | Prakriti Pal Choudhury

with larger density perturbations,

10Y

condensation for lower bkg density
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MP gas In galactic outflows

log(Density(my/cm®)) [Vijayan et al. 2018]
-1 0 e
SFR~10 Msun/yr at 5 Myr — S——
Aditi Vijayan

central injection doesn't
give MP clouds

similar conclusions from
Schneider et al. 2018

multiple SN spread throughout
Central energy inje disc throw up cold clouds

Clouds cannot grow indefinitely in an
expanding wind. How is growth stopped?




MP gas in galactic outflows W

log(Density(my/cm®)) M82
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lll. The cloud-crushing problem

Once cold gas is produced, it moves relative to the hot/diffuse
background either due to gravity or as it is lifted by hot outflow
What is its fate’” Small-scale problem
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The cloud crushing problem

| i c

except the dense cloud material
can mix with diffuse wind
& be moved by it

PRop

classic incompressible flow past a cylinder



CCP: timescales

IN pressure balance initially
Vwind density contrast X — Pcl / Phot = Thot/ Lei
Mach number M = vwind/cs,hgt

tcross — Rcl/vwind — Rcl/(MCs,hot)

T 1/2t Kelvin-Helmholtz timescale
cc Cross  time for mixing dense cloud into wind

P“?&D

time over which hot wind pushes C| 2ud
tdrag — Xtcross longer than CC time by X
=> cloud mixed before it can be pushed!



g, Vit Kanjilal

CC with cooling

Ncg=0.1 cm=3, Tg=104 K
X, JU, Ra varied
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Parameters

Ng=0.1 cm=3, Tg=104 K
=100, J=1, Ra=14 pcC

Box-size (30,15,15)Rq,
resolution Re/dcei=064

PLUTO hydrodynamics code
Eqgs. solved in a frame moving
with cloud material

CIE cooling function for Zsun
No cooling below 104 K




o Cooling time (Myr)
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Growth criterion
tcool,mix/tcc S 1 with Tmix ~ \/TclThot

3

2 2
T o 4/\/( By Tcl, 4/\/(
=2 pC

P3Anix.—21.4 100 1n¢1.0.1Amix,—21.4 100

Gronke-Oh criterion [2018]

X  R>Rco implies cloud growth
smaller clouds destroyed

RGO x 2 PC

Other groups question this, but our simulations are consistent with this!

tcool,hot/(ftcc) SJ 1 Lietal. [2020]: hot gas cooling time instead of mixed-gas cooling time!

PR
L aMT X \T3
Ry = 154 pc — 5 ( 1()()) Li radius is more than 10 times larger!
13
1c1,0.1 00,21 .4

We resolve this apparent discrepancy: arXiv:2009.00525



Concluding Thoughts

CGM can be studied in great detail with so many observational probes
Where does the cold gas come from in the first place” Condensation
due to thermal instability, perhaps seeded with large density fluctuations,
uplift by outflows

Cloud-crushing problem: a prototype of multiphase gas in CGM;
turbulent boundary layers have gas at a range of Ts/ns.

How do we stop dense mass growth? Size of cold clouds”?

Thank You!



