Jet substructure in heavy ion collisions

Free Meson Seminar TIFR

15th October 2020

Daniel Pablos

Daniel Pablos

QCD Matter

A New Phase: Quark-Gluon Plasma

- Filled the universe µs after Big Bang
- Colour is liberated ullet
- A gas of quarks and gluons

What are the properties of the plasma close to the transition?

Hadron Gas

- Color is confined
- Hadrons re-scatter •

Equation of State

HotQCD Collaboration -PRD '14

Daniel Pablos

- Rapid crossover transition
- Deconfined matter: large increase
 in # d.o.f. above Tc
- Asymptotically approaches non-int. limit

Equation of State

HotQCD Collaboration -PRD '14

Daniel Pablos

Weakly coupled?

- Rapid crossover transition
- Deconfined matter: large increase in # d.o.f. above T_c
- Asymptotically approaches non-int. limit

A Gas of Quarks and Gluons

$T > 10^4 \,\mathrm{GeV}$

Inter-particle spacing

Daniel Pablos

University of Bergen

5

A Gas of Quarks and Gluons

$T > 10^4 \,\mathrm{GeV}$

Inter-particle spacing

nteraction range

Daniel Pablos

Resummation techniques can bring the validity of perturbative methods to much lower temperatures

Mean free path

$T \sim 0.2 \,\mathrm{GeV}$

7

Daniel Pablos

Is it a gas of quarks and gluons?

$T \sim 0.2 \,\mathrm{GeV}$

Is it a gas of quarks and gluons?

 $\alpha_s = 0.3 \to g = 2$

Daniel Pablos

$T \sim 0.2 \,\mathrm{GeV}$

Daniel Pablos

- Is it a gas of quarks and gluons?
 - $\alpha_s = 0.3 \to q = 2$
 - $T \sim gT \sim g^2 T$

$T \sim 0.2 \,\mathrm{GeV}$

Is it a system with no long lived excitations?

- $\alpha_s =$

Daniel Pablos

$$0.3 \rightarrow g = 2$$

 $T \sim gT \sim g^2 T$

$T \sim 0.2 \,\mathrm{GeV}$

Daniel Pablos

- Is it a system with no quasiparticles?
 - $\alpha_s = 0.3 \to g = 2$
 - $T \sim gT \sim g^2 T$

Heavy Ion Collisions: the Little Bang

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST

Daniel Pablos

- Very strong collective effects
- 20.000 particles correlated • according to collision geometry
- Hydrodynamic explosion •

The QGP is a very good fluid!

The QGP: Strongly Coupled Liquid

$$\frac{\mathrm{d}N}{\mathrm{d}^2\mathbf{p}_t\,\mathrm{d}y} = \frac{1}{2\pi p_T} \frac{\mathrm{d}N}{\mathrm{d}p_T\,\mathrm{d}y} \left[1+2v\right]$$
$$\left(\frac{\eta}{s}\right)_{T_c}$$

Data strongly favors very low shear viscosity over entropy density ratio. quasiparticles)

$$rac{\eta_{\lambda=\infty}}{s_{\lambda=\infty}} = rac{1}{4\pi} \simeq 0.08$$

Daniel Pablos

 $v_1 \cos(\phi - \Phi_R) + 2v_2 \cos 2(\phi - \Phi_R) + \cdots$

 $= 0.08 \pm 0.05$

Characteristic of strongly coupled system (absence of weakly interacting)

$$rac{\eta_{\lambda o 0}}{s_{\lambda o 0}} = rac{A}{\lambda^2 \log\left(B/\sqrt{\lambda}
ight)}$$

Mass ordering of flow

Daniel Pablos

14

Hydrodynamics Simulations

ALICE - JHEP '18

Daniel Pablos

How can we probe the QGP?

Daniel Pablos

Jets

Jets

Jets

CMS Experiment at LHC, CERN Data recorded: Thu Aug 26 06:11:00 2010 EDT Run/Event: 143960 / 15130265 Lumi section: 14 Orbit/Crossing: 3614980 / 281

Daniel Pablos

Jets

Jets in HIC

Daniel Pablos

Dijet Asymmetry

Traditional interpretation:

Based on single parton energy loss processes:

- Medium induced radiation
- Elastic collisions

Controlled by transport parameter $\,\hat{q}\,\,[{
m GeV}^2/{
m fm}]$

GW '94 BDMPS-Z '97 AMY '02

$$A_J = rac{p_{\perp,1} - p_{\perp,2}}{p_{\perp,1} + p_{\perp,2}}$$

- JEWEL jet energy loss Monte Carlo model:
 - Partons can collide with the medium scatterers.
 - After-collision kinematics can alter the radiation pattern.
 - Actual radiation pattern based on shortest formation time.

- Good description of dijet asymmetry data.
 - Look under the hood...

Milhano & Zapp - EPJ '16

24

Dijet Asymmetry

Daniel Pablos

Different fragmentation pattern

Daniel Pablos

Jets and Jets

more total quenching than narrower ones

Assuming:

- most of the energy goes out of the cone
- Internal structure resolved by QGP

Holography

J Friess, et al., PRD75 (2007)

Daniel Pablos

 $\mathcal{N} = 4$ SYM and QCD have very different vacuums but $\mathcal{N} = 4$ $T \neq 0$ and QCD $T > T_c$ share similarities ?

bulk metric perturbations encode boundary stress energy variations

Null falling strings

unambiguous determination of boundary jet properties

 the rate at which energy flows into hydrodynamic modes:

Fractional energy loss only depends on initial jet opening angle

$$x_{ ext{therm}} = rac{1}{T} \sqrt{rac{\kappa}{ heta_{ ext{jet}}^{ ext{init}}}}$$

Holographic quenching with pure strings

• consider an *ensemble* of such jets by choosing initial distributions of energy & angle from pQCD

• competing effects: each individual jet widens, while wider jets lose more energy

Jet shapes: transverse jet energy

Jet narrowing due to selection bias!

the *string* is treated as a model for the jet as a whole

Rajagopal et al. - PRL '16

- distribution vs radial distance

$$C_{1}^{(\alpha)} \equiv \sum_{i,j} z_{i} z_{j} \left(\frac{|\theta_{ij}|}{R}\right)^{\alpha}$$

measures jet angle in pQCD
$$C_{1}^{(1)} = a \sigma_{0} \quad T_{\text{SYM}} = b T_{\text{Q}}$$

The hybrid strong/weak coupling model

Interaction of partons with QGP of T~ Λ_{QCD} is strongly coupled;

Energy and momentum deposited in the QGP hydrodynamize quickly;

Daniel Pablos

The hybrid strong/weak coupling model

Evolution of high virtuality energetic jets dominated by DGLAP evolution;

- Parton shower generated with PYTHIA8.
- Formation time argument for space-time picture.

Interaction of partons with QGP of T~ Λ_{QCD} is strongly coupled;

Energy loss rate from holography:

$$\frac{1}{E_{\rm in}}\frac{dE}{dx} = -\frac{4}{\pi}\frac{x^2}{x_{\rm stop}^2}\frac{1}{\sqrt{x_{\rm stop}^2}}$$

Energy and momentum deposited in the QGP hydrodynamize quickly;

- Compute modified hadron spectrum from perturbed freeze-out hyper-surface.
- Produce soft, thermal particles correlated with jet direction.

Daniel Pablos

- Pablos et al. JHEP '14, '16, '17

- Chesler & Rajagopal -PRD '14, JHEP '16 $\frac{1}{2\kappa_{\rm sc}} \frac{E_{\rm in}^{1/3}}{T^{4/3}}$ $-x^{2}$ free parameter

Jet vs Hadron Suppression

How to understand high momentum behaviour?

Different asymptotic trend for jets than for hadrons?

Daniel Pablos

McGill / JETSCAPE

Jet Fragmentation Functions (FFs)

Jet FFs count the number of hadrons, per jet, with an energy fraction z Soft particle enhancement w.r.t. pp jets Medium back-reaction to deposited energy & momentum Pablos et al. - JHEP '17 He et al. - PRC '15

32

Antenna decoherence breaks angular ordering Mehtar-Tani et al. - PLB '12 Caucal et al. - 2005.05852

Daniel Pablos

McGill / JETSCAPE

Jet Fragmentation Functions (FFs)

33

Steeply falling jet spectrum

Daniel Pablos

Jet FFs count the number of hadrons, per jet, with an energy fraction z Hard particle enhancement w.r.t. pp jets

> High p_T hadron spectrum dominated by leading tracks (from hard fragmenting jets)

Jet Fragmentation Functions (FFs)

High z region of jet FFs closely related to hadronic spectrum

Daniel Pablos

Jet FFs count the number of hadrons, per jet, with an energy fraction z Hard particle enhancement w.r.t. pp jets

Jets, their FFs, and hadrons

35

Daniel Pablos

McGill / JETSCAPE

Jets, their FFs, and hadrons

36

Daniel Pablos

McGill / JETSCAPE
Jets, their FFs, and hadrons

37

Daniel Pablos

Jets, their FFs, and hadrons

38

Daniel Pablos

Jet narrowing: a selection bias

<u>Wider, more active jets lose more energy than narrower, hard fragmenting ones</u>

Steeply falling jet spectrum

High p_T hadrons belong to such subsample of narrow jets, which get less quenched, and so $R_{AA}^{had} > R_{AA}^{jet}$

bias inclusive jet sample to narrower ones, explains high z enhancement

Jet narrowing: a selection bias

<u>Wider, more active jets lose more energy than narrower, hard fragmenting ones</u>

Steeply falling jet spectrum

High p_T hadrons belong to such subsample of narrow jets, which get less quenched, and so $R_{AA}^{had} > R_{AA}^{jet}$

But, how well does the QGP resolve the internal structure of the jet?

Daniel Pablos

bias inclusive jet sample to narrower ones, explains high z enhancement

Coherence in Vacuum: Heuristic Interpretation

Compare the two:

If $r_{\perp} < \lambda_{\perp}$ the gluon cannot resolve the pair: coherent No emission (color singlet)

If $r_{\perp} > \lambda_{\perp}$ independent emission by quark and antiquark

Daniel Pablos

Time at which the gluon decorrelates from the quark:

$$\tau_f = \frac{w}{k_\perp^2} = \frac{1}{w\theta^2}$$

Transverse size of the gluon is

Size of the antenna when the gluon is being emitted

$$r_{\perp} = \theta_{q\bar{q}}\tau_f = \frac{v_{q\bar{q}}}{w\theta^2}$$

$$\frac{r_{\perp}}{\lambda_{\perp}} < 1 \rightarrow \theta_{q\bar{q}} < \theta_{q}$$
$$\frac{r_{\perp}}{\lambda_{\perp}} > 1 \rightarrow \theta_{q\bar{q}} > \theta_{q}$$

Coherence in Vacuum: Heuristic Interpretation

Need to think in terms For medium induced emissions: Dilute medium: Debye mass \sim Dense medium: Accumulated momentum $\hat{q}L$

 $> \lambda_{\perp}$ independent emission by quark and antiquark

Daniel Pablos

- Time at which the aluon decorrelates from the quark:
- Typical wavelength determined by interaction potential:

Color correlation can be lost through multiple scatterings.

The QGP Resolution Length

QGP resolution length:

minimal distance between two coloured charges such that they engage with the plasma independently.

Daniel Pablos

The medium perceives a parton shower as a collection of effective probes.

The QGP Resolution Length

QGP resolution length:

minimal distance between two coloured charges such that they engage with the plasma independently.

At weak coupling:

connection between resolution length and energy loss.

J. Casalderrey et al. - PLB '13

Daniel Pablos

The medium perceives a parton shower as a collection of effective probes.

At strong coupling: no such connection (yet).

In the hybrid model:

resolution length proportional to the Debye screening length of QGP.

 $L_{\rm res}\sim\lambda_{\rm D}$

Hulcher et al. - JHEP '18

Two extreme scenarios

Look for sensitivity of observables to $L_{ m res}$:

Take two extreme values for $L_{\rm res}$

(explore realistic values later on)

Daniel Pablos

- $L_{\rm res} = 0$ fully resolved case
- $L_{\rm res} = \infty$ fully unresolved case

University of Bergen

)

Two extreme scenarios

Look for sensitivity of observables to $L_{\rm res}$:

Take two extreme values for $L_{\rm res}$

(explore realistic values later on)

Daniel Pablos

- fully resolved case • $L_{\rm res} = 0$
- fully unresolved case • $L_{\rm res} = \infty$

Amount of *jet* quenching depends on L_{res}

Adjust value of κ_{sc} to compare results at the same value of jet RAA

 $L_{\rm res}=0$ (global fit) $L_{\rm res} = \infty$ (adjusted) $0.5 < \kappa_{\rm sc} < 0.52$ $0.404 < \kappa_{\rm sc} < 0.423$

Relative suppression of hadrons vs jets strongly depends on QGP resolution length.

1000

46

(see

Soft Drop (SD) procedure in a nutshell:

- **1.** Reconstruct jet with anti- k_{T} .
- 2. Recluster jet with Cambridge-Aachen.
- **3.** Go back clustering history, store z and ΔR of each pair of branches.

Soft Drop

Soft Drop (SD) procedure in a nutshell:

- **1.** Reconstruct jet with anti- k_{T} .
- 2. Recluster jet with Cambridge-Aachen.
- **3.** Go back clustering history, store z and ΔR of each pair of branches.

If stop at first step that satisfies SD condition: 1st SD "splitting"

- study such 1st "splitting"
- study groomed jet properties

Soft Drop condition:

Soft Drop

48

Larkoski et al. - JHEP '14, PRD '15

Soft Drop (SD) procedure in a nutshell:

- **1.** Reconstruct jet with anti- k_{T} .
- **2.** Recluster jet with Cambridge-Aachen.
- **3.** Go back clustering history, store z and ΔR of each pair of branches.

If stop at first step that satisfies SD condition: 1st SD "splitting"

- study such 1st "splitting"
- study groomed jet properties

If count all "splittings" that satisfy SD condition: (following the hardest branch, i.e. Iterative SD)

SD "splittings", **n**_{SD}

Daniel Pablos

Soft Drop

University of Bergen

49

Remove soft & soft-collinear

 $L_{\rm res} = 0$ reduction of n_{SD}

Wake negligible.

 $L_{\rm res} = \infty$

barely any modification

Jets with higher multiplicity are more suppressed, ensemble biased towards less active ones if substructure is resolved

(also a subleading effect from "per jet" energy loss, see back-up)

Daniel Pablos

SD Splittings

University of Bergen

50

1 st SD splitting z_g vs ΔR

normalised to N_{jets}

Daniel Pablos

Strong ordering in ΔR (if parton shower resolved). Larger ΔR ; Larger phase-space for emissions; Larger quenching, smaller survival rate; (almost NO effect from "per jet"

Pablos et al. - JHEP '20

Jets and Jets (again)

- If high, increased probability for further emissions
- If low, decreased probability for further emissions

Daniel Pablos

$$t_1 \propto \Delta R$$

 $t_1' \propto \Delta R'$

Groomed angle is proxy for jet activity

1 st SD splitting z_g vs ΔR

normalised to N_{jets}

Wake almost no effect.

Negligible modification z_q shape.

Strong ordering in ΔR (if parton shower resolved). Larger ΔR ; Larger phase-space for emissions; Larger quenching, smaller survival rate; (almost NO effect from "per jet" energy loss, see back-up)

53

(small incoherent energy loss effect visible at partonic level, see back-up)

1 st SD splitting z_g vs ΔR

normalised to N_{jets}

Wake almost no effect.

Negligible modification z_q shape.

Strong ordering in ΔR (if parton shower resolved). Larger ΔR ; Larger phase-space for emissions; Larger quenching,

smaller survival rate;

(almost NO effect from "per jet" energy loss, see back-up)

54

(small incoherent energy loss effect visible at partonic level, see back-up)

1st SD splitting Lund Plane

If shower resolved *increased* weight of jets with smaller (groomed) mass.

White curves: lines of constant $\log(1/($

Daniel Pablos

$$(M_g/p_{T,g}))$$
 , where

$$\frac{M_g^2}{p_{T,g}^2} \simeq z_g (1 - z_g) \Delta R^2$$

Comparison with (not unfolded) data

Low z_g enhancement arises in our model from smearing effects.

Strong ordering in ΔR is robust under smearing effects.

Daniel Pablos

 z_g distribution, differential in ΔR , successfully described by the Hybrid Model.

 $L_{\rm res} = \infty$ is disfavoured by data.

Comparison with (not unfolded) data

Sensitivity to Lres

	$\Delta R > 0.0$	$\Delta R \ < 0.1$	$\Delta R > 0.2$
PYTHIA	0.9729(2)	0.5757(7)	0.1730(4)
$L_{\rm res} = 0$	0.9599(8)	0.710(4)	0.092(2)
$L_{\rm res} = 2/\pi T$	0.9633(8)	0.660(3)	0.115(2)
$L_{ m res} = \infty$	0.969(1)	0.603(3)	0.161(2)

Diagnosing jet energy loss with deep learning

Selection bias is a dominant effect for many jet observables:

- Common to all calculations, jet MCs, that include jet substructure fluctuations.
- Obscures the interpretation of data: how do quenched jets really look like?

Use deep learning techniques to determine amount of energy loss jet-by-jet:

Energy loss ratio:
$$\chi_{jh}$$

Daniel Pablos

Jet Images

10-1

10-2

10-3

10-4

10-5

10-6

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

Image rotated jet-by-jet to have subleading branch at $-\pi/2$

Quenching increases # of soft particles, specially at the periphery

Use images as input for CNN

Performance of neural network

Good performance across		1.0
a wide range in χ_{jh}		0.9
	5	0.8
Consistency check:	Ň	~ -
pp jets get $\chi_{jh}\simeq 1$	ed	0.
(after training on	lict	0.6
medium jets only)	ě	
	P	0.5
Interpretability:		0.4
jet shape (lower dimensional		0.7
projection of jet image)		0
contains greatest		
discriminating power		

Applications to jet observables

62

 FES (Final Energy Selection): select jets according to measured energy (usual)

Mostly unquenched jets due to selection bias

 IES (Initial Energy Selection): select jets according to initial energy (new)

Observe true effects of energy loss!

Daniel Pablos

Modification of groomed radius

Du et al. - 2010.XXXX , See also Brodsky et al. - 2009.03316

The Wake of the Jet

At strong coupling:

- String acts as a perturbation in the large N_c limit.
- Agreement between hydrodynamics & wake of a quark in gauge/gravity duality.

energy-momentum conservation in the *jet+plasma interplay*

Daniel Pablos

Chesler & Yaffe - PRL '07

The hadrons from the wake

Assuming small perturbations on top of Bjorken flow:

Expand Cooper-Frye spectrum to first order in perturbations:

EFully constrained by energy-momentum conservation.

$$\begin{split} \frac{d\Delta N}{d^3 p} &= \frac{1}{32\pi} \frac{m_T}{T^5} \cosh(y - y_j) \exp\left[-\frac{m_T}{T} \cosh(y - y_j)\right] \\ &\left\{ p_T \Delta P_T \cos(\phi - \phi_j) + \frac{1}{3} m_T \Delta M_T \cosh(y - y_j) \right\} \\ \Delta P_\perp^i &= w \tau \int d^2 x_\perp \, d\eta \, \delta u_\perp^i \qquad \Delta S = \frac{s \tau}{c_s^2} \int d\eta \, d^2 x_\perp \, \frac{\delta T}{T} \\ &\text{velocity pert.} \qquad \text{temperature pert.} \end{split}$$

') M

- Only valid for soft particles.

Daniel Pablos

Pablos et al. - JHEP '17

mporataro p

64

Effect from background flow not included.

The hadrons from the wake

Daniel Pablos

Jet suppression increases with increasing R.

Daniel Pablos

- Include non-eq. contribution only, i.e. jet particles that did not hydrodynamize:

 - Wider jets "lose" more energy, more energy loss sources.

Include both non-eq. and QGP "ridge" contributions:

- Energy is progressively recovered with increasing R.
- nPDF effect sets an upper limit on R_{AA} at very high p_T .

Daniel Pablos

Include non-eq., QGP "ridge" and QGP trough contribution:

- QGP trough amounts to jet suppression; over-subtraction effect.
- Effect increases with increasing R.

Daniel Pablos

Daniel Pablos

Competition of effects that yield, overall, a very mild evolution from small to large R.

The effect of the recoiling jet

Jet suppression due to QGP trough comes from the wake of the *recoiling* jet.

Rapidity dist. from the wake hadrons relatively **narrow**.

Rapidity gap dist. between dijet system relatively wide.

Daniel Pablos

Study dijet systems with different rapidity gaps.

The effect of the recoiling jet

Daniel Pablos

- ding $\langle p_T \rangle$ density of wake hadronsw.r.t leading jet axis.
 - Aligned in rapidity
 - Subleading jet's QGP trough hits leading jet.
 - Separated in rapidity
 - 0 Subleading jet's QGP trough misses leading jet.

 $p_T^L > 250 \; {
m GeV}$ $p_T^S > 80 \; {
m GeV}$ $\Delta \phi_D > 2\pi/3$

differential in

$$|\eta_D| \equiv |\eta_L - \eta_S|$$

Leading jet suppression vs. Ind

Pablos - PRL '20

A new observable

R=0.4

leading jet area easy to miss; small effect from QGP trough.

R=1.0

strong dependence on $|\eta_D|$; knee visible when $\eta_D \sim R$.

$$p_T^L > 250 \text{ GeV}$$

 $p_T^S > 80~{
m GeV}$ $\Delta \phi_D > 2\pi/3$

differential in $|\eta_D| \equiv |\eta_L - \eta_S|$

Improving the wake description

Efficient, but over-simplified medium response needs to be improved:

- - Linearised hydro eqs. for perturbations on top of viscous Bjorken flow:

Extend kinematical validity: requires knowledge of spacetime evolution of hydro perturbations.

 $\nabla_{\mu}\delta T^{\mu\nu} = J^{\nu}$

 $\frac{\delta \varepsilon}{\varepsilon_0} (\eta_s = 0)$ energy perturbation

 $\delta u^x(\eta_s=0)$ velocity perturbation

Yao et al. - 2010.01140

Improving the wake description

Efficient, but over-simplified medium response needs to be improved:

- Include the effects of realistic background flow.

Daniel Pablos

Boost fluid cell of the perturbation according to local radial flow at freeze-out hyper surface:

University of Bergen

Linearised Wake: effects on observables

Strongest new effect comes from radial flow:

Important hardening of hadrons p_T spectrum.

Daniel Pablos

As expected from hydrodynamics:

Hadrons from the wake display mass ordering.

Linearised Wake: effects on observables

Increase in # fragments with higher z inside the jet (jet FFs)

Modified recovery of energy as a function of radial distance (jet shapes, R_{AA} vs R)

Linearised Wake: effects on observables

Increase in *#* fragments with higher z inside the jet (jet FFs)

Modified recovery of energy as a function of radial distance (jet shapes, R_{AA} vs R)

Jet Suppression: Analytics

Great deal of jet observables are understood through consideration of jet substructure fluctuations within the medium:

> Jet MC quenching models naturally include these effects, although with many uncontrolled modelling assumptions.

Want to extend these concepts to phenomenologically relevant perturbative, analytic calculations in QCD. We need to:

Daniel Pablos

Jet Suppression: Analytics

• Cross-section of jet with radius R in the medium: $\sigma_{AA}(p_T, I)$

 $f_{\text{jet}/k}^{(n-1)}$

 Resummation of bare quenching factor through DGLAP:

 $rac{\partial Q_i(p, heta)}{\partial \ln heta}$

with quenched phase space: $\Theta_{in}(p, R)$

with initial condition:

 $Q_i(p,0)$

Mehtar-Tani et al. - 2010.XXXX

Daniel Pablos

$$\begin{split} R) &= f_{jet/k}^{(n-1)}(R|p_T, R_0) \, \hat{\sigma}_k(p_T, R_0) \\ \hat{\sigma}_{k}^{(1)} &= \sum_{i=q,g} Q_i(p_T, R) f_{i/k}^{(n-1)} \qquad \text{moment of jet} \\ \text{frag. function} \\ \text{Dasgupta et al. - JHEP '15} \\ \hat{\sigma}_{k}^{(1)} &= \int_0^1 dz \, \frac{\alpha_s(k_\perp)}{2\pi} p_{ji}^{(k)}(z) \Theta_{\text{in}}(z, \theta) \qquad \text{Mehtar-Tani & Tywe} \\ \times \left[Q_j(zp, \theta) Q_k((1-z)p, \theta) - Q_i(p, \theta) \right] \\ \hat{\sigma}_{k}^{(1)} &= \Theta(t_{\text{f}} < t_{\text{d}} < L) \qquad \text{Quench resolved emission inside} \\ \text{the medium only} \end{split}$$

$$Q_{{
m rad},i}^{(0)}(
u)Q_{{
m el},i}^{(0)}(
u)$$

79

Include R_{rec} parameter for energy recovery vs R ne medium only

Radiative component at NLO in improved opacity expansion

Barata & Mehtar-Tani - 2004.02323

Jet Suppression: Analytics

80

Daniel Pablos

controls amount of quenching:

• Hydrodynamization of jet energy can be studied through jet substructure observables.

Soft particles from the wake enter the jet cone:

Sensitive to background flow, display mass ordering.
Crucial elements

Long range correlations between dijet system vs R.

Daniel Pablos

Summary

- Jet substructure fluctuations are key to our understanding of jet quenching phenomenology. Early fragmentation pattern of the jet (mostly dominated by vacuum physics)
 - provided that the medium resolves the internal structure of the jet.
 - ------> Can use machine learning to select jets with a certain amount of energy loss, study observables based on initial jet energy, getting rid of the selection bias.

of fluid QGP paradigm!

Daniel Pablos

Hydro in Small Systems

"One fluid to rule them all"

superSONIC for p+p, $\sqrt{s}=5.02$ TeV, 0-1%

Daniel Pablos

Weller & Romatschke -PLB '17

p+Pb

Pb+Pb

superSONIC for p+Pb, $\sqrt{s}=5.02$ TeV, 0-5%

superSONIC for Pb+Pb, $\sqrt{s}=5.02$ TeV, 0-5%

Hydro in Small Systems

Nature Physics 15, 214–220 (2019) PHENIX collaboration

Expectation from $v_2^{p+Au} < v_2^{d+Au} \approx v_2^{^{3}He+Au}$, hydro arguments: $v_3^{p+Au} \approx v_3^{d+Au} < v_3^{^{3}He+Au}$.

Daniel Pablos

Hydro in Small Systems

Expectation from $v_2^{p+Au} < v_2^{d+Au} \approx v_2^{^{3}He+Au}$, hydro arguments: $v_3^{p+Au} \approx v_3^{d+Au} < v_3^{^{3}He+Au}$.

Daniel Pablos

Nature Physics 15, 214–220 (2019) PHENIX collaboration

A frustrating observable: charged jet mass

86

Daniel Pablos

Without wake:

 $L_{\rm res} = 0$ shift towards smaller masses

 $L_{\rm res} = \infty$ barely any modification

> Larger mass jets are more active; more suppressed if substructure resolved.

A frustrating observable: charged jet mass

87

Daniel Pablos

With wake:

Soft particles from the wake increase the mass, compensating quenching.

 $L_{\rm res}=0$ and $L_{\rm res}=\infty$ barely distinguishable!

Surprisingly good description of data across three p_T ranges, after cancellation of effects...

The role of formation time

Daniel Pablos

Is wide configuration suppressed because formed early?

Radical test:

Assume all formation times are zero.

Small adjustment of kappa.

Almost no change in ΔR ordering.

Observable dominated by correlation between ΔR and multiplicity.

Difference PbPb-pp of 1st SD splitting Lund plane

Flat

Removes soft & soft-collinear

Core

Removes soft-wide

Soft-core

Extends soft-collinear region

CMS angularity limit: $\Delta R > 0.1$

Daniel Pablos

Cutting the Lund Plane

89

Difference PbPb-pp of 1st SD splitting Lund plane

Removes soft & soft-collinear

Removes soft-wide

Soft-core

Extends soft-collinear region

Enhances Lund plane structure above $\Delta R > 0.1$

CMS angularity limit: $\Delta R > 0.1$

Daniel Pablos

Cutting the Lund Plane

90

Groomed jet mass

91

Daniel Pablos

Not self-normalized:

merely reflect absence of wide angle configurations

Self-normalized:

differences due to $L_{\rm res}$ of the size of the wake effect

Soft-core

Strong discriminating power, not relying on the norm.

Correlation between n_{SD} and ΔR

92

Daniel Pablos

Correlation between nsp and zg

93

Daniel Pablos

A careful look into the selection bias

Restricted pp: sample of pp jets from which the "surviving" sample of PbPb jets come from

Bias: Increase # of one-pronged jets E. loss: Incoherent energy loss shift of z_g (see Mehtar-Tani & Tywoniuk - JHEP '17)

Jet suppression vs. R at RHIC

 QGP trough effect more pro effect increases with jet p_T.

> \rightarrow steeper spectrum R_{AA} more sensitive to ΔE .

> > 95

QGP trough effect more pronounced at RHIC than at LHC;