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Motivation

QCD phase diagram. [Fukushima and Hatsuda 2010]
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Motivation

Nonperturbative determination of QCD phase diagram.

Is it possible?

At low temperature (T ) and chemical potential (µ) QCD is
confining.

May be we could use lattice QCD...

At µ = 0 and T > 0 lattice QCD works well.
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Motivation

Lattice QCD is based on importance sampling.

Markov chain Monte Carlo (MCMC).

But when µ > 0 importance sampling breaks down.

Consider the field theory partition function

Z =

∫
DU DψDψe−S[U ,ψ,ψ]

=

∫
DU e−SB det M. (1)

The term e−SB det M can be interpreted as a probability
weight, if > 0.
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Motivation

Then we can evaluate the above integral using
importance sampling.

But for QCD at finite baryon/quark chemical potential,
the fermion determinant is complex!

(det M(µ))∗ = det M(−µ∗) ∈ C. (2)

Theory has a sign problem. (Complex phase problem to
be more accurate.)

Importance sampling is not possible!
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Sign Problem

Can express det M as

det M = |det M |eiφ. (3)

Apparent solution to this complex phase problem -
absorb phase in the observable

〈O〉full =

∫
DUe−SB det MO∫
DUe−SB det M

=

∫
DUe−SB |det M |eiφO∫
DUe−SB |det M |eiφ

=
〈eiφO〉pq

〈eiφ〉pq
. (4)
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Sign Problem

Let us look at 〈eiφ〉pq.

We have

〈eiφ〉pq =

∫
DU e−SB |det M |eiφ∫

DU e−SB |det M |
=

Zfull

Zpq
= e−Ω∆f . (5)

Zfull = e−F/T = e−Ωf

Zpq = e−Fpq/T = e−Ωfpq. (6)

Ω: Spacetime volume.

∆f = f − fpq: difference in free energy densities.

Zfull 6 Zpq.
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Sign Problem

Average phase factor goes to zero in the thermodynamic
limit.

Unless f = fpq.

Thus the ratio

〈O〉full =
〈eiφO〉pq

〈eiφ〉pq
(7)

is not well defined.

Numerator and denominator vanish exponentially as Ω is
increased.

Exponential dependence on Ω =⇒ Sign problem is
exponentially hard.
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Complex Langevin Method
(CLM)
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Complex Langevin Method

We can resort to a method that does not use importance
sampling.

Complexify all degrees of freedom

φ→ φR + iφI . (8)

Gives rise to enlarged complexified field space.

Could use
(1.) Complex Langevin dynamics or
(2.) Lefschetz thimbles.
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Complex Langevin Method

Analogy with Brownian motion [Parisi and Wu 1981]

A particle in a fluid experiences friction α and kick η.

Langevin equation

dx(t)
dt

= −αx(t) + η(t), (9)

where
〈η(t)η(t ′)〉 = 2δ(t − t ′). (10)
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Complex Langevin Method

Solutions appear as that of a stochastic process.

Could generalize the process: z = x + iy

Real Langevin −→ Complex Langevin.

There is an associated distribution P(x, y; t) in complex
plane.

Complex Langevin process finds this distribution.

Importance sampling not needed.
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Complex Langevin Method

Can discretize the stochastic equation:

xn+1 = xn + εKR
n +
√
εηn, (11)

yn+1 = yn + εK I
n. (12)

ε: step size.

Drift terms

KR
n = −Re

∂S
∂z

and K I
n = −Im

∂S
∂z

. (13)

Noise satisfies

〈ηnηn ′〉 = 2δnn ′. (14)
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Complex Langevin and Path Integral

Let’s adapt this to field theory. [Parisi and Wu 81, Klauder 83]

Z =

∫
Dφe−S[φ]. (15)

Langevin dynamics happens in the “fifth” time direction

∂

∂τ
φ(x, τ) = −

δS[φ]
δφ(x, τ)

+ η(x, τ). (16)

τ: Langevin time.
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Complex Langevin and Path Integral

Gaussian noise

〈η(x, τ)〉 = 0,

〈η(x, τ)η(x ′, τ ′)〉 = 2δ(x − x ′)δ(τ− τ ′). (17)

Consider an arbitrary operator O made out of field φ.

Can define a noise averaged expectation value

〈O[φ(τ)]〉η ≡
∫

dφP[φ(τ)]O[φ] (18)
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Complex Langevin and Path Integral

P[φ(τ)]: a probability distribution.

It satisfies Fokker-Planck equation

∂P[φ(τ)]
∂τ

=
δ

δφ(τ)

(
δ

δφ(τ)
+
δS[φ]
δφ(τ)

)
P[φ(τ)]. (19)

For real S, can show that, in the limit τ→∞, stationary
solution of Fokker-Planck equation

P[φ] ∼ e−S[φ] (20)

will be reached.
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Complex Langevin and Path Integral

Thus guaranteeing convergence of Langevin dynamics...

... to the correct equilibrium distribution.

For complex actions there is no such proof!

But can identify if convergence works or not.
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Complex Langevin and Path Integral

[Anosh Joseph & Arpith Kumar PRD 100 (2019) 074507]
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Models with SUSY
Work done with Arpith Kumar

[PRD 100 (2019) 074507, arXiv:2010.nnnnn]
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Supersymmetric Quantum Mechanics

Consider a theory with complex action in 0+1 dimension.

Degrees of freedom are φ (boson), ψ and ψ (fermions).

Also introduce an auxiliary field B.

Action has the form

S[φ,ψ,ψ] =

∫β
0

dτ

[
B2

2
+ iB

(
φ̇+ W ′′)+ψ( ∂

∂τ
+ W ′′

)
ψ

]
.

W ≡W (φ): Superpotential.
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Supersymmetric Quantum Mechanics

Action has a symmetry - known as supersymmetry
(SUSY).

Two SUSY charges: Q and Q.

QS = 0, QS = 0. (21)

Partition function in path integral formalism

Z =

∫
DφDψDψ e−S[φ,ψ,ψ]. (22)
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Lattice Regularization

Want to study this theory non-perturbatively.

Need to study dynamical SUSY breaking.

Let’s put it on a lattice and simulate.

Action is complex in general.

Will use complex Langevin dynamics.

If action is real, could use Markov chain Monte Carlo
(MCMC)
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Lattice Regularization

Consider a 1-d lattice Λ.

x0 x1
x2

x3

xT−1
xT−2⋅⋅⋅⋅ ⋅⋅⋅⋅

a β = Ta

T number of equally spaced sites, with lattice spacing a.

Physical extent: β = Ta.

Continuous derivatives −→ difference operators
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Lattice Regularization

Lattice action for our theory

S =

T−1∑
i=0

1
2

T−1∑
j=0

∇S
ijφj +Ω

′
i

2

+ψi

T−1∑
j=0

(
∇S

ij +Ω
′′
ij
)
ψj

 (23)

∇S
ij : Symmetric difference operator.

Ω ′i , Ω
′′
ij : Terms containing superpotential (and Wilson

mass)

It respects only the Q supercharge.
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Boundary Conditions

When SUSY is broken Z vanishes.

Then expectation values of observables normalized by Z
could be ill-defined.

Need to overcome this difficulty.

Apply periodic boundary conditions (PBCs) for bosons
and twisted boundary conditions (TBCs) for fermions.

Introduce a twist parameter α.

Imposing TBCs is analogues to turning on an external
field in the system.
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Boundary Conditions

Twisted boundary conditions

φT = φ0, (24a)

ψT = eiαψ0, (24b)

ψT = e−iαψ0. (24c)

Z has the following form on lattice

Zα =

(
1√
2π

)T ∫ (T−1∏
t=0

dφtdψtdψt

)
e−Sα. (25)
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Observables

Expectation value of an observable O

〈O〉 = lim
α→0
〈O〉α

= lim
α→0

1
Zα

(
1√
2π

)T ∫ (T−1∏
t=0

dφt

)
O exp

[
−Seff
α

]
.
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Observables: Mass gaps from Correlators

Bosonic and fermionic correlation functions

GB
α(k) = 〈φ0φk〉α, (26)

GF
α(k) = 〈ψ0ψk〉α, (27)

Mass gaps can be extracted either by a

cosh
[
ma(t −

T
2
)
]

(28)

fit for the t−th lattice site.

Or a simple exponential fit over say, the first or last T/4
time slices of the correlation functions.
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Observables: The field B

Observable Bα can effectively predict SUSY breaking.

lim
α→0

Bα

{
6= 0 broken

= 0 preserved.
(29)
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Observables: Bosonic action

Bosonic action can also be used to see SUSY breaking

SB
α =

T−1∑
i=0

1
2

Ni
2 =

T−1∑
i=0

1
2

( T−1∑
j=0

∇−
ij φj + Ξ

′
i

)2

. (30)

Expect 〈S〉 = T , and 〈SB〉 = 1
2T .

lim
α→0

SB
α

{
6= 1

2T broken

= 1
2T preserved.

(31)
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Observables: Ward Identities

Add source terms (J , θ, θ)

Zα
(
J , θ, θ

)
=

(
1√
2π

)T ∫ (T−1∏
t=0

dφtdψtdψt

)

× exp

[
−Sα +

T−1∑
t=0

(
Jtφt + θtψt + θtψt

)]
.

Variation of Zα under Q-transformations vanishes upon
turning off the external sources.

QZα
(
J , θ, θ

) ∣∣∣
sources =0

= 0. (32)
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Observables: Ward Identities

We have

Q

[
∂2Z
∂Jj∂θi

]
= 0

=⇒ 〈ψiψj〉+ 〈Niφj〉 = 0.

Ni =

T−1∑
j=0

∇S
ijφj +Ω

′
i .

Can use this Ward Identity to investigate spontaneous
SUSY breaking.
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Simulations: Double-Well Potential

Consider the potential

W ′(φ) = g
(
φ2 + µ2

)
.

SUSY is broken in this model [Witten 1981].

We also consider a complexified double-well potential

W ′(φ) = ig
(
φ2 + µ2

)
.
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Simulations: Real Double-Well Potential

Figure: Bα (Left) and SB
α (Right). Real double-well potential.

SUSY is broken in this model.

Bα does not fluctuate around 0. Also, SB
α 6= 1

2T .
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Simulations: Complex Double-Well Potential

Figure: Bα (Left) and SB
α (Right). Complex double-well potential.

SUSY is unbroken in this model.

Bα fluctuates around 0. SB
α fluctuates around 1

2T = 4
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Simulations: Ward Identities
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Figure: Ward identities. (Left) real and (Right) complex
double-well superpotentials.
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Simulations: Models with PT Symmetry

Superpotential

W ′(φ) = −ig (iφ)(1+δ) (33)

δ: a continuous parameter.

SUSY Lagrangian for this model breaks P symmetry.

Would be interesting to ask if breaking of P induces a
breaking of SUSY.

Explored using perturbation theory in Bender 1997.
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Simulations: Models with PT Symmetry

Perturbative analysis (in δ) showed that SUSY is
unbroken.

Let’s explore SUSY breaking in this model (in 1-d) using
CLM.

Note that path integral Monte Carlo fails here.

Since action of this model can be complex, in general.
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Simulations: Models with PT Symmetry
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Simulations: Ward Identities
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Reliability of CLM

How to check if our simulations are reliable?

Correctness criteria:

(1.) Can use Fokker-Planck equation.

(2.) Decay of the drift term.
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Correctness Criterion: Fokker-Planck Equation

Holomorphic observables of the theory Ok [φ, τ] at k-th
lattice site evolve in the following way

∂Ok [φ, τ]
∂τ

= L̃kOk [φ, τ]. (34)

L̃k: Langevin operator for k-th site

L̃k =

(
∂

∂φk
−
∂S[φ]

∂φk

)
∂

∂φk
. (35)
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Correctness Criterion: Fokker-Planck Equation

Once the equilibrium distribution is reached we should
have

COk ≡ 〈L̃kOk [φ]〉 = 0. (36)

This can be used as a criterion for correctness of the
complex Langevin method.

Take the auxiliary field Bk at k-th site as the observable
Ok

L̃kOk = L̃kBk. (37)
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Correctness Criterion: Fokker-Planck Equation

L̃B fluctuates around 0.
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Correctness Criterion: Decay of Drift Terms

Another test to check correctness.

Look at probability distribution P(u) of the magnitude of
the drift term u

u =

√√√√1
T

T−1∑
k=0

∣∣∣∣∂Seff

∂φk

∣∣∣∣2.

Probability of drift term should be suppressed
exponentially at larger magnitudes in order to guarantee
the correctness of CLM.
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Correctness Criterion: Decay of Drift Terms
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Complex Unitary Matrix
Model

Work done with Pallab Basu and Kasi Jaswin
[Phys. Rev. D 98 (2018) 3, 034501]
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Complex Unitary Matrix Model

A unitary matrix model arises in a one-loop formulation
of QCD on compact spaces

Often S1 × S3

Analogous to SU (N) gauge theories.

Originally derived by Sundborg 1999, Aharony 2003,
Alvarez-Gaume 2005...

... for theories with more general matter content.
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Complex Unitary Matrix Model

One-loop effective action of QCD on S1 ×S3 with β = T−1,
chemical potential µ and quark mass m

S =

∞∑
n=1

1
n

zb

(
nβ
R

)
Tr Un Tr U †n

+

∞∑
n=1

(−1)n

n
Nf zf

(
nβ
R

, mR
)

×
[
enβµTr Un + e−nβµTr U †n

]
. (38)

R: radius of S3, Nf : number of flavors of fundamental
fermions.

Model has a tower of quark energy levels due to
compactification.
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Complex Unitary Matrix Model

Quadratic term in Polyakov loop - contribution from
adjoint fields

Linear term - contribution from the fundamental matter
fields.

Adjoint contribution taken as bosonic.

Contribution from fundamental fields taken as fermionic.
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Complex Unitary Matrix Model

In the low temperature limit, β→∞
zb(∞) = 0. (39)

So the gluonic contribution is negligible.

Thus the action is

S = SVdm + Sf . (40)

SVdm: Vandermonde piece of the action

Sf : fundamental fermionic contribution.
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Complex Unitary Matrix Model

Fermionic part could be summed in a logarithm

S[U ] = −

∞∑
l=1

σl

(
log
[
det

(
1 + eβ(µ−εl)U

)
× det

(
1 + eβ(−µ−εl)U−1

)])
. (41)

σl = 2l(l + 1)
Nf

N
, (42)

εl =

√
m2 +

(
l +

1
2

)2

R−2. (43)
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Observables

Polyakov loop and its inverse: P and P−1

Can use these to study confined/deconfined phases.

Fermion number fN

It gives the number of fermions minus the number of
anti-fermions in a given volume

fN =
1
β

(
∂ log Z
∂µ

)
. (44)
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Observables

Quark number susceptibility

χf =
1
β

∂fN
∂µ

. (45)

Serves as an indicator of confinement/deconfinement
transitions for nonzero µ.

Pressure: p = 1
β

(
∂ log Z
∂V3

)
V3: spatial volume.

Energy E: Can be constructed from pressure and
fermion number density

E = −pV3 + µfN . (46)
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Single Level Model

Truncate action in Eq. (59) in a double scaling limit:

β→∞, µ→ ε0

ε0: a fixed quark energy level

Only contribution from a single level survives

Define a transition parameter

ξ ≡ e(β(µ−εl)). (47)

Action takes the form

S[U ] = −σ log (1 + ξU ) . (48)
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Single Level Model

Effective action on the complexified angle variables
includes Vandermonde piece and a Lagrange multiplier.

In the large N limit, the integral over the angles is
dominated by a saddle point

∂S
∂θi

= iNN −
iNσξeiθ

(1 + ξeiθi )
−

N∑
j( 6=i)

cot
(
θi − θj

2

)
. (49)

Note that the action is not Hermitian.

Gives rise to the sign problem in the presence of a
chemical potential.
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Single Level Model

As a result, the saddle point configuration will lie out in
the complex plane.

Let us look at the various regimes of ξ.

And see how it affects the eigenvalue distribution.

Analytical study is given in Hands 2010.
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Single Level Model

Small ξ confined phase

Effective fermion number vanishes, N = 0.

We also have
P = 0, P−1 = σξ. (50)

Note that P 6= P−1 - a feature of the complex action.
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Single Level Model

As ξ is increased the contour of eigenvalue distribution
opens into an arc,...

... just as the matrix model solved by Gross and Witten
[Gross (1980)] and Wadia [Wadia (1980)].

Line of phase transitions in the (µ, T ) plane corresponds
to the straight line

µ = ε− T
[
(1 + σ) log(1 + σ) − σ logσ

]
. (51)

Above approximation valid only in the (β→∞) limit.
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Single Level Model

Large ξ confined phase

Effective fermion number is

N = σ. (52)

Indicates that the level is now occupied.

Polyakov line expectation values are

P =
σ

ξ
, P−1 = 0. (53)
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Single Level Model

Comparing with the previous case: behavior of P and P−1

swaps over along the replacement ξ→ ξ−1.

Large ξ confined phase persists until the value

ξ = ξ2 =
(1 + σ)1+σ

σσ
. (54)

For smaller values of ξ the contour of eigenvalue
distribution is not closed and the phase does not exist.
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Single Level Model

Points of transition ξ = ξ1 and ξ = ξ2 satisfy

ξ1ξ2 = 1. (55)

In the (µ, T ) plane, the boundary lies along the straight
line

µ = ε+ T
[
(1 + σ) log(1 + σ) − σ logσ

]
. (56)

Again valid in the low temperature limit.

Complex Langevin for Complex Actions Dr. Anosh Joseph, IISER Mohali



Single Level Model

Deconfined phase

In the region ξ1 6 ξ 6 ξ2, experience with GWW matrix
model suggests that the eigenvalue distribution exhibits
the shape of an open contour.

In this regime, we get a condition (Hands 2010)

ξ =
(σ−N)σ−N(1 +N)1+N

NN(1 + σ−N)1+σ−N
. (57)

This equation determines N as a function of ξ.
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Single Level Model

From the above equation, it follows that across the
transitions at ξ = ξ1 and ξ = ξ2, N and its first derivative
∂N/∂µ are continuous.

However higher derivatives are discontinuous.

Since N is the effective fermion number, the first
derivative of the grand potential, it follows that the
transitions are third order,...

... just as in the original GWW model.

For a single winding we have

P =
N

σ+ 1 −N

1
ξ

, P−1 =
σ−N

1 +N
ξ. (58)
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Single Level Model
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Single Level Model

Figure above: Eigenvalue distributions in the
confined/deconfined phases as a function of log ξ for the
single level matrix model with positive µ.

Form of the action is given in Eq. (48).

N = Nf = 500, and quark mass m = 0.

Data are obtained through CLM with adaptive Langevin
step sizes ∆τ 6 0.00005, Ntherm = 18000, Ngen = 2000
and with measurements performed with an interval of
100 steps.

The solid unit circles are guide to the eye.
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Single Level Model

Figure above: Effective fermion number 〈fN 〉 across the
pair of GWW transitions from the small ξ confined phase
through the deconfined phase to the large ξ confined
phase for the single level model with positive µ.

Form of the action given in Eq. (48).

Simulation data are for quark mass m = 0, N = Nf = 500
and N = Nf = 3.

Solid curve is the analytical result (N =∞).

We used adaptive Langevin step sizes ∆τ 6 0.00005,
Ntherm = 10000, Ngen = 10000 and measurements are
performed with an interval of 100 steps.

Complex Langevin for Complex Actions Dr. Anosh Joseph, IISER Mohali
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〈P〉 and 〈P−1〉 across a pair of GWW transitions from the
small ξ confined phase through the deconfined phase to
the large ξ confined phase.
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Single Level Model

Figure above:

Single level model with positive µ.

Transitions from confined/deconfined phases occur
when either 〈P〉 or 〈P−1〉 vanish.

Solid and dotted curves: analytical results (N =∞).

Data are for quark mass m = 0, N = Nf = 500 and
N = Nf = 3.
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Silver Blaze Problem

Consider a particle with mass m and a conserved charge
at low T .

Can consider µ as the change in free energy when a
particle carrying the conserved charge is added.

That is, the energy cost for adding one particle.

If µ < m: not enough energy available to create a particle
=⇒ no change in the ground state.

If µ > m: plenty of energy available =⇒ the ground state
has a nonzero density of particles.

Complex Langevin for Complex Actions Dr. Anosh Joseph, IISER Mohali



Silver Blaze Problem

Statistical mechanics tells us that at zero temperature
the density becomes nonzero (the ‘onset’) at µ = µc = m.

At strictly zero temperature, we note therefore that
thermodynamic quantities...

(free energy, pressure, fermion number, susceptibility, ...)

...are independent of µ when µ < µc...

As long as µ is below the mass of the lightest particle in
the channel with the appropriate quantum numbers.
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Silver Blaze Problem

How this independence emerges in numerical
simulations is nontrivial...

Has been dubbed the Silver Blaze problem.
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Single Level Model

Onset at µ = m = 25.

Marked by the solid vertical lines in the figures.

Here N = Nf = 500 and β = 25 (low T ).
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QCD on S1 × S3 at Finite µ
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Can simulate the model for N = 3.

Form of the action is the same as Eq. (59)

S[U ] = −

∞∑
l=1

σl

(
log
[
det

(
1 + eβ(µ−εl)U

)
× det

(
1 + eβ(−µ−εl)U−1

)])
. (59)
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QCD on S1 × S3 at Finite µ
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Fermion number 〈fN 〉 as a function of µ for m = 0 and
β = T−1 = 30 (low temperature).

(Left) N = Nf = 3 and (Right) N = Nf = 30.
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QCD on S1 × S3 at Finite µ

Presence of an occupation level structure is evident.

Transitions occur when εl − µ changes sign.

That is, when µ passes a quark energy level.

〈fN 〉 can be used as an order parameter of the
confinement/deconfinement transitions in the large N
theory.
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QCD on S1 × S3 at Finite µ

First and second derivatives of the grand potential, 〈fN 〉
and 〈∂fN/∂µ〉 are continuous as a function of µ.

But the third derivative 〈∂2fN/∂µ2〉 is discontinuous.

Indicates that the transitions are third order, of the GWW
type.
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QCD on S1 × S3 at Finite µ
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Expectation values of 〈P〉 and 〈P−1〉 as a function of µ for
QCD on S1 × S3.

Here m = 0, inverse temperature β = 30, N = Nf = 3 (Left)
and N = Nf = 30 (Right).

Solid lines are to guide the eye.
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QCD on S1 × S3 at Finite µ

When µ = 0, 〈P〉 and 〈P−1〉 coincide.

Each spike in 〈P〉 and 〈P−1〉 corresponds to a level
transition in 〈fN 〉.

The behavior of 〈P−1〉 always precedes that of 〈P〉 at the
start and finish of each level transition.

Lines peak at µ = 1.5, 2.5, · · · .

Widths of deconfined regions increase as µ is increased.
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Conclusions

I Complex Langevin sounds promising.

I Works well for lower dimensional theories.

I Can be used for models relevant for superstring
theory, AdS/CFT (Nishimura 2018, 2019).

I Real test - QCD with finite baryon/quark chemical
potential in 4d.
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