Quantum Dissipation of Quarkonium in Quark Gluon Plasma

Free meson seminar @online

Takahiro Miura (Osaka University)

with Yukinao Akamatsu, Masayuki Asakawa, Alexander Rothkopf

Based on PRD.101.034011(2019)

QCD Phase Diagram

vacuum

Baryon chemical potential

QCD Phase Diagram

vacuum

Baryon chemical potential

QCD Phase Diagram

vacuum

Baryon chemical potential

Heavy Ion Collisions

Dynamics in HICs (LHC,RHIC)

figure taken from http://alice-j.org/

Quarkonium in Heavy Ion Collisions

Quarkonium yield suppression

[CMS collaboration]

What determines these experimental data?

Quarkonium in Heavy Ion Collisions

Dynamics in HICs

How does quarkonium evolve in QGP?

<u>Quarkonium:Theory1</u>

Matsui & Satz Scenario

[Matsui, Satz(86)]

 $J/\psi~$ as a probe of color charge screening

Quarkonium dissociation based on potential change

Quarkonium:Theory2

 $V(r) \equiv \frac{i\partial_t W_{\rm loop}}{W_{\rm loop}}$ **Real-time potential**

From perturbation theory

[Laine+(08),Beraudo+(08),etc.]

$$V(r) = -\alpha C_F \left[m_D + \frac{e^{-m_D r}}{r} \right] - i\alpha C_F T \phi(r) \in \mathbb{C}$$

imaginary part
$$\int_{0^{-1}}^{0^{-1}} \phi$$
 approaches 1
no damping rate

From lattice QCD results [Rothkopf+(12-), Petreczky+(18), etc.]

Schrödinger equation with complex potential

 \rightarrow application to phenomenology [Krouppa+(17), Islam+(20) etc.] ₆

Quarkonium: Theory 3

Langevin dynamics [Blaizot+(16,18)]

Interference between HQ and anti HQ is included

$$\begin{cases} HQ & M\ddot{r} + \frac{\beta g^2}{2} (\mathcal{H}(0)\dot{r} - \mathcal{H}(s)\dot{r}) - g^2 \nabla V(s) = \xi(s,t) \\ \text{anti HQ} & M\ddot{r} + \frac{\beta g^2}{2} (\mathcal{H}(0)\dot{r} - \mathcal{H}(s)\dot{r}) + g^2 \nabla V(s) = \bar{\xi}(s,t) \\ & \langle \xi(s,t)\xi(s,t')\rangle = g^2 \mathcal{H}(0)\delta(t-t') \\ & \langle \xi(s,t)\bar{\xi}(s,t')\rangle = -g^2 \mathcal{H}(s)\delta(t-t') \\ & s = r - \bar{r} \end{cases}$$

relative distance

Quarkonium as two interacting random walking particles

Quarkonium as Open System

Problems in descriptions

Debye screening phenomenon

static picture of quarkonium

• Complex potential

not unitary evolution

Langevin equation
 in classical limit

$$i\partial_t \psi = \left[-\frac{\nabla^2}{M} + \operatorname{Re}V + i\,\operatorname{Im}V\right]\psi$$

To overcome, apply OPEN QUANTUM SYSTEMS framework

pen Quantum Systems

We describe quarkonium in QGP just by quarkonium variables

von Neumann equation

$$\frac{d}{dt}\rho_{\text{total}} = -i[H_{\text{total}}, \rho_{\text{total}}]$$

$$H_{\text{total}} = H_{\text{QGP}} + H_{\text{Q\bar{Q}}} + H_{\text{int}}$$

$$H_{\text{int}} = \sum_{i} S_{i} \otimes E_{i}$$
integrate out QGP "reduced" density matrix

$$\rho_{Q\bar{Q}} = \text{Tr}_{\text{QGP}} \ \rho_{\text{total}}$$

QGP
$$Q\bar{Q}$$

 $H_{\rm QGP}$ $H_{\rm int}$ $H_{Q\bar{Q}}$

master equation

$$\frac{d}{dt}\rho_{Q\bar{Q}} = ?$$

What form of the master equation is derived?

Time Scale Hierarchies in OQSs

Three time scales $\, au_S$, $au_E \,$, $au_R \,$ are involved

Here $\tau_E \ll \tau_S$, $\tau_E \ll \tau_R$ are assumed for QBM system is slow

• System time scale

 $\tau_S \sim \frac{1}{\Delta E_S}$

• Environmental relaxation time scale

$$\langle A(t)A(0)\rangle \sim e^{-\frac{t}{\tau_E}}$$

- System relaxation time scale $\langle p(t) \rangle \propto {\rm e}^{-\frac{t}{\tau_R}}$

– Quarkonium(=S) in QGP(=E) –

$$\tau_S \sim \Delta {E_S}^{-1} \sim 2 \mathrm{fm}$$

from Coulombic binding energy

$$\tau_E \sim T^{-1} \sim 0.5 \mathrm{fm}$$

QGP temperature ~ 400MeV

$$\tau_R \sim M/T^2 \quad M \gg T$$

kinetic equilibration

Lindblad Master Equation

Following conditions are imposed

- Trace conservation $Tr \rho_S = 1$
- Hermicity $\rho_S^\dagger = \rho_S$
- Positive $\forall \left| \alpha \right\rangle, \left\langle \alpha \right| \rho_{S} \left| \alpha \right\rangle \geq 0$
- Markov

No memory effect
$$au_E \ll au_R$$

$$\frac{d}{dt}\rho_S = -i\left[H_S, \rho_S\right] + \sum_k \gamma_k \left[L^k \rho_S L^{k\dagger} - \frac{1}{2} \left\{L^{k\dagger} L^k, \rho_S\right\}\right] \qquad \gamma_k > 0$$

mathematically proven [Lindblad(76)]

Equivalent form

$$\frac{d}{dt}\rho_S = -i\left[H_S, \rho_S\right] + \sum_{i,j} a_{ij} \left[F^i \rho_S F^{j\dagger} - \frac{1}{2} \left\{F^{j\dagger} F^i, \rho_S\right\}\right] \qquad a_{ij} \text{ positive}$$

Forces in Lindblad Master Equation

Quantum descriptions of forces in Brownian Motion

 $\frac{d}{dt}\rho_{Q\bar{Q}} = \begin{bmatrix} 1. \text{ Debye screening potential between heavy quarks } V(x) \\ + 2. \text{Random force} \\ Previous study, i.e. stochastic potential \\ H = -\frac{\nabla^2}{M} + V(r)(t^a \otimes t^{a^*}) + \theta^a(\frac{r}{2})(t^a \otimes 1) - \theta^a(-\frac{r}{2})(1 \otimes t^{a^*}) \\ \text{[Kajimoto+(18)]} \\ \rightarrow \text{Essential for equilibration} \\ \text{[Akamatsu+(18), Miura+(19)]} \end{bmatrix}$

so far U(1) only / SU(3) in progress

How does quantum dissipation affect quarkonium dynamics in QGP?

Remark: What about Caldeira Leggett?

What is Caldeira Legette model? [Caldeira-Leggett(83)]

• Prototype of quantum Brownian motion

- Limited application
 - Particles are localized, i.e. wave packet limit
 - Not in Lindblad from

More general description is required

[Akamatsu(14,15), Blaizot(16,18), Brambilla+(17),etc]

Steps in Derivation

 $\frac{d}{dt}\rho_{\text{total}}(t) = -i\left[\sum_{i} S_{i}(t) \otimes E_{i}(t), \rho_{\text{total}}(t)\right] \text{ in interaction picture}$

after iteratively solving $ho_{\mathrm{total}}(t)$ with Born-Markov approximation

1. Trace QGP part

$$a_{ij} \text{ in Lindblad master equation}$$

$$\frac{d}{dt}\rho_{Q\bar{Q}}(t) = -\int_{0}^{\infty} ds \sum_{i,j} \operatorname{Tr}_{QGP}(\rho_{QGP}(t)E^{i}(t)E^{j}(t-s)) \qquad \underset{\text{in small s}}{\operatorname{correlation decays}}$$

$$\times \left[S^{j}(t-s)\rho_{Q\bar{Q}}(t)S^{i}(t) - S^{i}(t)S^{j}(t-s)\rho_{Q\bar{Q}}(t)\right] + h.c.$$

2. Gradient Expansion $\left| \frac{\tau_{QGP}}{\tau_{Q\bar{Q}}} \ll \tau_{Q\bar{Q}} \right|$

$$\underline{S^{j}(t+\tau_{QGP})} \sim S^{j}(t) + \partial_{t}S^{j}(t)\tau_{QGP} + \cdots$$

leading next to leading

Lindblad master equation with Lindblad operator $L^i \sim S^i + \frac{i}{AT} \dot{S^i}$

Lindblad Operator for Quarkonium

Interaction Hamiltonian

Following the steps, Lindblad master equation for quarkonium is derived

$$\begin{aligned} \frac{d}{dt}\rho_{Q\bar{Q}} &= -i\left[H'_{Q\bar{Q}},\rho_{Q\bar{Q}}\right] + \int dxdy \,a(x-y)\left[F^{a}(y)\rho_{Q\bar{Q}}F^{a\dagger}(x) - \frac{1}{2}\left\{F^{a\dagger}(x)F^{a}(y),\rho_{Q\bar{Q}}\right\}\right] \\ & \text{Fourier transform to momentum space} \\ & \frac{d}{dt}\rho_{Q\bar{Q}} = -i[H'_{Q\bar{Q}},\rho_{Q\bar{Q}}] + \int dk\{2\frac{L^{a}_{k}}{L^{a}_{k}}\rho_{Q\bar{Q}}L^{a\dagger}_{k} - L^{a\dagger}_{k}L^{a}_{k}\rho_{Q\bar{Q}} - \rho_{Q\bar{Q}}L^{a\dagger}_{k}L^{a}_{k}\} \\ & \int \text{potential} \quad V(x_{Q} - x_{\bar{Q}}) \in H'_{Q\bar{Q}} \\ & \text{Lindblad operator} \quad L^{a}_{\vec{k}} = L_{\vec{k}}(\vec{x}_{Q},\vec{p}_{Q},t^{a}_{Q};\vec{x}_{\bar{Q}},\vec{p}_{\bar{Q}},t^{a*}_{\bar{Q}}) \end{aligned}$$

Lindblad operator is represented by both HQ and anti HQ d.o.f.

Our study vs related studies

Two approaches to Lindblad equation

dissipation	NRQCD	pNRQCD				
No LO grad. exp.	Kajimoto+(18) ≫stochastic Schroedinger eq.	Brambilla+(18,19)				
Yes NLO grad. exp.	Miura+(in progress)	Akamatsu(20)				
	※De Boni(17) not in Lindblad form Blaizot+(18) in classical limit					
	r					
	spread	small r				
	Dipole app	Dipole approximation				
	Is quarkonium dipole in whole process					

Interpretation of Lindblad Operator

• LO gradient expansion(relative motion)

$$L^{1}_{\vec{k}} = \sqrt{\frac{D(\vec{k})}{2}} \#_{1} \left[e^{i\vec{k}\cdot\hat{\vec{r}}/2} - e^{-i\vec{k}\cdot\hat{\vec{r}}/2} \right] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \text{other transitions}$$

$$rate^{1/2} \quad \text{momentum transfer} \quad \text{color rotation(octet} \rightarrow \text{singlet})$$

note: D function is related to imaginary potential [Akamatsu+(12),Rothkopf(13)]

$$H_{\text{complex}} = -\frac{\nabla^2}{M} + V(r) + i[D(r) - D(0)]$$

$$\rightarrow \text{imaginary potential}$$

$$\int_{0^{\circ}} \frac{\phi}{\int_{0^{\circ}} \frac{1}{1 - 2 - 3 - 4 - 2 - 6 - 7 - 6 - 9}}{D(0) - D(\infty)}$$

Interpretation of Lindblad Operator

• LO gradient expansion(relative motion)

 $L^{1}_{\vec{k}} = \sqrt{\frac{D(\vec{k})}{2}} \#_{1} \left[e^{i\vec{k}\cdot\hat{\vec{r}}/2} - e^{-i\vec{k}\cdot\hat{\vec{r}}/2} \right] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \text{other transitions}$ $rate^{1/2} \quad \text{momentum transfer} \quad \text{color rotation(octet} \rightarrow \text{singlet})$

• NLO gradient expansion

+ dissipation

+ anti HQ part + other transitions

$$\begin{split} L^{1}_{\vec{k}} = & \sqrt{\frac{D(\vec{k})}{2}} \#_{1} \mathrm{e}^{i\vec{k}\cdot\hat{\vec{r}}/2} \Big[1 - \frac{\vec{k}\cdot\hat{\vec{p}}}{4MT} - \frac{\vec{k}^{2}}{8MT} + \frac{N_{c}V(\vec{r})}{8T} \Big] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \\ \text{Meaning}(1) & (2) \\ \text{Collision rate depends on HQ momentum} \\ \vec{p} \to \vec{p} + \vec{k}/2 & E_{p+k/2} & E_{p+k/2} \end{pmatrix} \end{split}$$

energy difference

Including NLO,

$$\frac{\Gamma_{\vec{p}\to\vec{p}+\vec{k}/2}}{\Gamma_{\vec{p}+\vec{k}/2\to\vec{p}}} \sim \exp\left[-\frac{\Delta E}{T}\right]$$

Detailed balance approximately holds

Interpretation of Lindblad Operator

• LO gradient expansion(relative motion)

 $L^{1}_{\vec{k}} = \sqrt{\frac{D(\vec{k})}{2}} \#_{1} \left[e^{i\vec{k}\cdot\hat{\vec{r}}/2} - e^{-i\vec{k}\cdot\hat{\vec{r}}/2} \right] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \text{other transitions}$ $rate^{1/2} \quad \text{momentum transfer} \quad \text{color rotation(octet} \rightarrow \text{singlet})$

NLO gradient expansion

+ dissipation

+ anti HQ part+ other transitions

$$L_{\vec{k}}^{1} = \sqrt{\frac{D(\vec{k})}{2}} \#_{1} e^{i\vec{k}\cdot\vec{r}/2} \left[1 - \frac{\vec{k}\cdot\hat{p}}{4MT} - \frac{\vec{k}^{2}}{8MT} + \frac{N_{c}V(\vec{r})}{8T} \right] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
Meaning(2)
(1)
(2)
Different color state transition
singlet \leftrightarrows octet
Including NLO,
$$\frac{\Gamma_{s \to o}}{\Gamma_{o \to s}} \sim \exp\left[-\frac{1}{T} \{V_{o} - V_{s}\} \right]$$
Detailed balance approximately holds
Vs
19

NUMERICAL ANALYSIS

SOLVE RELATIVE MOTION WITH LINDBLAD OPERATORS IN U(1)/SU(3)

Quantum State Diffusion(QSD) method

Stochastic unravelling

[Gisin, Persival (92)]

nonlinear stochastic Schrödinger eq. form

$$\begin{split} |d\psi\rangle &= -iH'_{Q\bar{Q}} \left|\psi(t)\right\rangle dt + \int d\vec{k} \left(2\langle L^{\dagger}_{\vec{k}}\rangle_{\psi} L_{\vec{k}} - L^{\dagger}_{\vec{k}} L_{\vec{k}} - \underline{\langle L^{\dagger}_{\vec{k}}\rangle_{\psi}}\right) \left|\psi(t)\right\rangle dt \\ &+ \int d\vec{k} \left(L_{\vec{k}} - \underline{\langle L_{\vec{k}}\rangle_{\psi}}\right) \left|\psi(t)\right\rangle d\xi_{\vec{k}} \\ &\xrightarrow{\rightarrow} \text{nonlinearity} \end{split}$$

complex noise property $d\xi_{\vec{k}} d\xi^*_{\vec{k}'} = \delta(\vec{k} - \vec{k}')$

Apply QSD method to Lindblad master equation

QSD Simulation Setups

For simplicity, in one spatial dimension

Parameter setups in heavy quark mass unit

Δx	Δt	N_x	T	γ	$l_{\rm corr}$	α	m_D	$r_{ m c}$
1/M	$0.1M(\Delta x)^2$	254		T/π	1/T	0.3	2T	1/M

correlation function Debye screening potential

$$D(r) = \gamma \exp(-r^2/l_{\text{corr}}^2)$$
 $V(r) = -\frac{\alpha}{\sqrt{r^2 + r_c^2}} e^{-m_D r}$

note: in SU(3) $C_F V(r)$

• Fixed temperature case

 $T=0.1M,\ 0.3M$

• Bjorken expanding QGP case

$$T(t) = T_0 \left(\frac{t_0}{t+t_0}\right)^{1/3} \qquad T_0 = 470 \,\mathrm{MeV} \\ t_0 = 0.84 \,\mathrm{fm}$$

QSD Simulation Outline

For simplicity, in one spatial dimension

Outline of numerical calculations

Fixed temperature case

Results - Equilibration(U1)

Time evolution of occupation number of eigenstates $H = \frac{p^2}{M} + V_{\text{Debye}}$

Initial state ground/1st excited state

Each occupation approaches the value independent of initial state

Results - Distribution at Equilibrium(U1)

Eigenstate steady distribution at Mt=4650 (T/M=0.1) $H = \frac{p^2}{M} + V_{\text{Debye}}$ at Mt=900 (T/M=0.3)

0.5 N₀(0)=1, T/M=0.1 ⊢−−− N₀(0)=1, T/M=0.3 → $T_{fit}/M=0.099$ temperature slope 0.1 T/M=0.1 N_ieq T_{fit}/M=0.288 T/M=0.3 0.01 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 E_i/M eigen energy

Eigenstate distribution approches the Boltzmann distribution

24

Without dissipation, occupations are underestimated Dissipation can be effective in QGP life time

Bjorken expanding QGP case

Results - Bjorken Expanding QGP(U1)

■ Time evolution of occupations of eigenstates

$$H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$$

 $T_{const}/M=0.1 \rightarrow bottom mass$ =0.3 $\rightarrow charm mass$

Initial state ground/1st excited state

<u>Summary</u>

- Quarkonium as an open system
 - It is described by Lindblad master equation with positivity
 - Lindblad operator with heavy quark color is derived
- Numerical Simulations via Quantum State Diffusion
 - We confirmed thermalization with dissipation
 - Dissipation affects even in short time scale, in Bjorken expanding QGP

Outlook

3D analysis

Comparison to semi-classical description