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Why SUSY
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❏ Standard Model (SM) of high-energy physics is a remarkably successful theory, supported by the 
experimental results.

❏ However SM fails to explain several observations:
➔ Dark matter and dark energy
➔ Matter-antimatter asymmetry
➔ Naturalness and Higgs mass etc.

❏ Supersymmetry tries to answer the shortcomings of SM by introducing a bosonic supersymmetric 
partner (superpartner) for each fermion (and vice-versa), the superpartner having the same quantum 
numbers, other than spin, as its SM partner. 

❏ The present analysis is based on minimal supersymmetric standard model (MSSM) that contains the 
SM particles, their SUSY partners and two Higgs doublet.

❏ The parameter tan𝛽 is defined by
tan𝛽 = vu/vd

Where vu and vd are the VEV corresponding to H0
u and H0

d respectively

Hu = (H+
u,H

0
u) and Hd = (H0

d,H
-
d)



Why top squark search
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❏ The MSSM has 5 higgs boson: h, H, A, H±.
❏ The tree level CP even h receives substantial mass correction involving top squark loop:

                                                                  

❏ h is the SM like higgs boson with mh=125.38 ± 0.11 (stat) ± 0.08 (syst) GeV [Ref: Physics Letters B 805 
(2020) 135425]

❏ The discovery of higgs boson constrains the lighter stop mass stringently.
❏ For maximal mixing scenario, to get a higgs boson of mass ~125 GeV, the lighter stop mass is required 

to be ~500 GeV which is interesting in the LHC scenario.



Signal Channel
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Our decay chain is:

or

Mass Relations:

Assuming                            with x=[0.25, 0.5, 0.75]

❏ The first two diagrams are competing. For a given stop and LSP mass:
❏ x = 0.25: The slepton is closer to the LSP. So the first diagram produces softer taus, and second harder.
❏ x = 0.75: The slepton is closer to the chargino. So the first diagram produces harder taus, and second 

softer.
❏ x = 0.5: Both the diagrams behave similarly.

❏ Both hadronic and semileptonic decays of tau lepton is considered in this analysis



Why 𝞽-Lepton Final State 
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❏ Chargino/neutralino are admixture of gaugino and higgsino like components:

❏ In a higgsino like scenario:
          |C2i|

2>>|C1i|
2 and |N3i|

2+|N4i|
2>>|N1i|

2+|N2i|
2

❏ tan𝜷>>1 implies (1/cos𝜷)>>1.
❏ The higgsino component of chargino/neutralino couples to sleptons with a strength ∝(ml/cos𝜷).
❏ In high tan𝜷 region and higgsino like scenario, the chargino/neutralino most often decays to 𝞽 

lepton as m𝞽>>me and m𝝁 .
➔ In such SUSY cascade decay, we have lot of 𝞽-lepton in the final state



Previous Analysis result (di-𝞽h final state)
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The analysis result in di-𝜏h final state (2016+2017) is already 
published in JHEP (hep-ex 1910.12932)
DOI  10.1007/JHEP02(2020)015

Top squark mass up to ~1100 GeV are excluded for a nearly 
massless neutralino



Main backgrounds
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❏ The main background contributions are coming from:
➔  tt̄ (831.76 pb),
➔ Associated production of single top (ST) with a W-boson 

(35.6 pb)
➔ Fake background coming from jet misidentified as 𝜏h
➔ DY+jets (5343 pb),

❏ Other small contributions are coming from
➔ W+jets, WH, ZH,
➔ WW, WZ, ZZ,
➔ TTZ, TTW,
➔ t-channel single top production

❏ Generator level matching has been performed for prompt 𝝉h in case of MC 
to ensure that it is non fake

The analysis is performed for total 138fb-1 of data collected in full Run-2 by CMS detector

mStop(GeV) Xsection(pb)

200 75.5

500 0.609

800 0.033

1000 0.0068

Top squark pair production 
cross-section for different top 
squark mass



Search Variables
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Our main search variables are:
❏ MET: Sensitive to the kinematics of the neutralino and neutrino

❏ mT2(l, 𝜏h, MET) or mT2(𝜏h, 𝜏h, MET): Sensitive to the chargino mass

❏ ST  (scalar pT sum of all visible objects): Sensitive to to the total mass of the system (top squark mass)



Selection region event selection and SR selection 
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Event Selection (l𝜏h-category)
❏ Exactly one muon (electron)  passing medium (tight) id WP for 𝜇𝜏h (e𝜏h) category

❏ Exactly one 𝜏h  passing tight iso WP and  ∆R( 𝜇/e, 𝜏h )>0.5 

❏ The muon (electron) and 𝜏h should be of opposite sign

❏ Veto events if there is any extra lepton passing pT > 15 GeV and |𝜂| <2.4

❏ Nb-jet(Medium) ≥ 1

❏ ∆R( 𝜇/e, jet)>0.5 and ∆R( 𝜏h , jet)>0.5

❏ MET > 50 GeV 

❏ ST > 100 GeV (scalar pT sum of all visible objects)



tt̄ estimate: Methodology
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❏ The goal is to correct the prediction of tt̄ MC yield in the signal region by deriving a correction factor in a  
tt̄ enriched control region (CR)

❏ We determined the scale factor in e-𝝁 control region which is highly pure in tt̄ (~ 90%)
❖ The purity, p, is defined as,           

❖ For a given bin i, the scale factor is defined as,

❏ Repeated the same exercise in di-μ control region also
❏ The di-μ CR gives an opportunity to cross check our results. This measurement is also useful to check 

any dependence on lepton flavour
❏ The difference SFe𝝁-SF𝝁𝝁 is taken as systematic on the SF
❏ The corrected tt̄ yield in simulation in each region of the SR is then obtained as

Ref: CMS-EXO-17-016,
SUS-19-003



SFs, Purity and Systematic Unc.
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2016 2017 2018

To reduce the effect of statistical fluctuations, bins [14, 15] in the CR have been merged to obtain the same SF for 
both the bins.



Jet to 𝝉h Fake Background Estimation(Semileptonic): Methodology
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The main steps for jet to 𝝉h fake background estimation are:

❏ First find a control region (CR) orthogonal to signal region where there is no real 𝝉h but there is 
jet.

❏ Find the jet to 𝝉h fake rate in this CR.

❏ Validate the fake rate in another validation region, orthogonal to both the CR and SR.

❏ If the fake estimation is found to work in the validation region, use it to determine fake 
background in the SR.



CR For Fake Rate Determination (Semileptonic channels)
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Event Selection:
❏ Exactly one muon passing tight identification and 

at least one 𝝉h  candidate passing VLoose isolation 
WP.

❏ Veto events with extra lepton passing  pT > 15 
GeV and |𝜂|<2.4.

❏ 60<MT (transverse mass of 𝜇 and MET)<120

❏ 0 < Njet(non-tagged) < 3.

❏ MET > 50 GeV.

❏ Nb-jet = 0 (This selection makes this CR orthogonal 
to our signal region where we require at least one 
b-jet passing medium WP of DeepJet algorithm).

Purity of W+Jets is ≃83 %

❏ The fake rate is determined using the following 
formula:

❏ The fake contribution is then determined in the 
signal region using the following formula:

❏ Fake rate is estimated in a data driven 
method in a W+jets enriched region

Ref: SUS-17-002

❏ Fake rates were validated in a DY+Jets enriched 
region and good closure is observed



Fake rates(R) (Semileptonic channels)

14

30≤pT＜40 40≤pT＜70 70≤pT＜150 pT ≥ 150

0≤|𝜂|＜1.44 0.20(±0.004) 0.18(±0.005) 0.18(±0.009) 0.30(±0.040)

1.44≤|𝜂|＜2.3 0.15(±0.005) 0.15(±0.007) 0.15(±0.013) 0.18(±0.049)

30≤pT＜40 40≤pT＜70 70≤pT＜150 pT ≥ 150

0≤|𝜂|＜1.44 0.20(±0.003) 0.20(±0.005) 0.21(±0.004) 0.29(±0.033)

1.44≤|𝜂|＜2.3  0.18(±0.004) 0.16(±0.006) 0.17(±0.012) 0.36(±0.063)

30≤pT＜40 40≤pT＜70 70≤pT＜150 pT ≥ 150

0≤|𝜂|＜1.44 0.21(±0.004) 0.21(±0.005) 0.21(±0.009) 0.30(±0.041)

1.44≤|𝜂|＜2.3  0.17(±0.005) 0.18(±0.007) 0.15(±0.014) 0.26(±0.065)

2016

2017

2018

The error indicates the statistical error only



SR search variables Data-MC comparison (Full Run2)
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SR search variables Data-MC comparison (Full Run2)
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Signal region Data-MC comparison (bin-wise) (Full Run2)
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𝜇𝜏h + e𝜏h combined exclusion (Full Run 2)
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x=0.75x=0.25 x=0.5

❏ Top squark mass upto 1050 GeV is excluded for nearly mass less neutralino
❏ Neutralino mass upto 360 GeV is excluded for 850 GeV top squark mass



𝜇𝜏h + e𝜏h + 𝜏h𝜏h combined exclusion (Full Run 2)

19

❏ Top squark mass upto 1140 GeV is excluded for 
nearly mass lep neutralino

❏ Neutralino mass upto 500 GeV is excluded for 950 
GeV top squark mass



Summary
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❏ Top squark search in di-tau semileptonic channel is presented.

❏ Top squark mass upto 1050 GeV is excluded for nearly mass lep neutralino.

❏ Combination of semileptonic and fully hadronic channels exclude top squark mass upto 1140 
GeV for nearly mass lep neutralino.

Thank you



Back up
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Object Selection
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𝜇-Selection:
❏ Medium (tight) identification WP in SR (tau fake 

rate estimation)
❏ Impact parameters: |dxy|<0.045 cm and |dz|<0.2 cm
❏ Medium WP of Δβ corrected isolation
❏ pT > 28 GeV and |𝛈|<2.4

𝝉h-Candidate Selection:
❏ Decay Mode (1 and 3 prong decays)
❏ Deep tau against jet Tight (VLoose) WP in SR 

(tau fake rate estimation)
❏ μ-Fake Check: Deep tau against mu Tight WP
❏ e-Fake Check: Deep tau against e Loose WP
❏ pT > 30 GeV and |𝛈|<2.3 (for l𝜏h channels)
❏ pT > 40 GeV and |𝛈|<2.1 (for di-𝜏h channels)

Jet Selection:
❏ pT > 25 GeV and |𝛈|<2.4(for l𝜏h channels)
❏ pT > 20 GeV and |𝛈|<2.4(for di-𝜏h channels)

e-Selection:
❏ Tight identification
❏ Missing hit in inner tracker should not exceed 1
❏ Conversion veto is applied
❏ Impact parameters: |dxy|<0.045 cm and |dz|<0.2 cm
❏ Tight WP of Δβ corrected isolation
❏ pT > 30(36) GeV for era 2016(2017,2018) and |𝛈|<2.1

b-jet Selection:
❏ Deep Jet medium WP

Missing Energy (MET):
Type-I PF MET



Background overview
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➢ The largest prompt contribution is coming from tt (and tW for l𝜏h) as it’s topology is similar to 
our signal process. We derived scale factors from tt enriched CR

➢ The other major background contribution in the sensitive bins is from fake taus (mostly from   
semi-leptonic tt̄ events). The fake bkg is estimated in a data driven way.

➢ The DY background is taken from MC with Z -pT reweighting applied.

➢ All other bkgs are estimated from simulations with all the corrections and scale-factors applied 

Applied Corrections and SFs:
❏ Trigger SF
❏ Tau Id SF
❏ b-tagging SF
❏ Lepton iso-id SF 
❏ Jet Energy Correction (JEC)
❏ Jet Energy Resolution (JER)
❏ PU re-weighting
❏ Tau energy scale
❏ FastSim MET, lepton and 𝜏h 

correction (for signal only)



tt̄ +tW estimate: CR event selections
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Ref: CMS-EXO-17-016,
SUS-19-003

Event Selection:
e-𝜇 CR:
❏ Trigger: e-𝝁 cross trigger

❏ Exactly one muon passing medium id WP and 
exactly one electron passing tight id WP and of 
opposite sign 

di-𝜇 CR:
❏ Trigger: Single muon trigger

❏ Exactly two muon passing medium id WP and of 
opposite sign 

Common selection criteria for both CRs:

❏ Veto events with 60< Me𝜇 /M𝜇𝜇 <120 to reduce DY 
events 

❏ Veto events that contain at least one tight 𝜏h or 
any extra lepton

❏ Nb-jet(Medium)  ≥1 

❏ MET > 50 GeV 

❏ ST>100 (Scalar pT sum of all leptons and jets)



Validation of the tt̄ SF method
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Event Selection:
❏ Trigger: Single electron trigger

❏ Exactly two electron passing tight id and iso WP and of opposite sign 

❏ Veto events with 60<Mee<120 to reduce DY events 

❏ Veto events that contain at least one tight 𝜏h or any extra lepton

❏ Nb-jet(Medium)  ≥1 

❏ MET > 50 GeV 

❏ ST>100 (Scalar pT sum of all visible objects)

For the validation we selected a tt̄ enriched region with di-electron final state



Validation plots for the tt̄ SF method
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Before SFs applied

After SFs applied

After the SFs applied, the Data-MC agreement is getting better

2016

2016

2017

2017

2018

2018



Closure test of fake estimation
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❏ For validation of the fake rate a DY+jet enriched region (orthogonal to 
SR) is selected with:
❏ Exactly two tight muons and 70<M𝜇𝜇<110.
❏ Exactly one 𝜏h candidate(supposed to be coming from jet faking 

as 𝜏h)
❏ MET<50 GeV.

❏ Closure plots for the pT of 𝜏h is shown for 2016, 2017 and 2018 and 
reasonably good closure is obtained.

More closure plots 
are in back up

❏ The Fake rate is also evaluated in a QCD enriched region and the difference is found to be 15% which is added as an extra 
uncertainty

❏ W+jets-> consists more quark jets, QCD-> consists more gluon jets
❏ The difference accounts for the parton flavor dependence of the FRs (more details are in the backup)

2016

2017

2018



Systematics(1)
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➔ 𝜇, e, 𝜏h FastSim SF: Derived from tt̄ MC (in the backup). The statistical uncertainty is propagated.

➔ 𝜏h ID-iso: From https://twiki.cern.ch/twiki/bin/view/CMS/TauIDRecommendation13TeV.

➔ 𝜏h ES: From https://twiki.cern.ch/twiki/bin/view/CMS/TauIDRecommendation13TeV.

➔ JEC: From https://twiki.cern.ch/twiki/bin/view/CMS/JECDataMC.

➔ JER: From https://twiki.cern.ch/twiki/bin/viewauth/CMS/JetResolution.

➔ QCD scale: The combination of μR and μF that gives the maximum variation is used.
Refer https://indico.cern.ch/event/515356/contributions/2180624/attachments/1278947/1898943/SMHTauTau.pdf.

➔ b-tagging: The efficiency in MC is corrected using the event weight reweighting method from 
https://twiki.cern.ch/twiki/bin/view/CMS/BTagSFMethods.

➔ tt̄ SF: The difference between the SFs derived in the eμ and μμ regions (added in quadrature with the statistical uncertainty) is 
propagated.

➔ Z-pT reweighting: The size of the correction is propagated as the uncertainty. Corrections taken from HTT: 
https://github.com/danielwinterbottom/CorrectionsWorkspace/tree/ic_embed.

https://twiki.cern.ch/twiki/bin/view/CMS/TauIDRecommendation13TeV
https://twiki.cern.ch/twiki/bin/view/CMS/TauIDRecommendation13TeV
https://twiki.cern.ch/twiki/bin/view/CMS/JECDataMC
https://twiki.cern.ch/twiki/bin/viewauth/CMS/JetResolution
https://indico.cern.ch/event/515356/contributions/2180624/attachments/1278947/1898943/SMHTauTau.pdf
https://twiki.cern.ch/twiki/bin/view/CMS/BTagSFMethods
https://github.com/danielwinterbottom/CorrectionsWorkspace/tree/ic_embed


Systematics(2)
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➔ 𝜏h fake-rate (parton flavor): A flat ±15% uncertainty on the fake-rate is used.

➔ Luminosity: From https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSRecommendationsRun2Legacy.

➔ Pileup: The minimum bias cross section is varied by ±2.5%. Refer https://cds.cern.ch/record/2647118/files/CR2018_328.pdf.

➔ MET unclustered energy: The uncertainty due to the variation of the unclustered component in MET 
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMetAnalysis.

➔ Signal cross-section: From https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections13TeVstopsbottom.

➔ FastSim MET correction: the signal yields are corrected as yieldnominal = ( yieldgen−MET + yieldreco−MET ) /2 . The error on the 
corrected yield is obtained as, ∆yield = ±| yieldnominal− yieldreco−MET |.

N.B. The systematics on the tt̄ background whose source is not τh identification/reconstruction, cancel out. This is because 
the variations in SR tt̄ and CRi

all MC due to those sources cancel out (refer to tt̄ SF slides).

https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSRecommendationsRun2Legacy
https://cds.cern.ch/record/2647118/files/CR2018_328.pdf
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMetAnalysis
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections13TeVstopsbottom


Systematics for 𝜇𝜏h channel (Full Run 2)
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➔ These values are the weighted (by the yields 
in the respective bins) averages of the 
relative uncertainties in the different search 
regions

➔ For the asymmetric uncertainties, the upper 
(lower) entry is the uncertainty due to the 
upward (downward) variation

➔ The numbers in square brackets in the 
heading indicate the top squark and LSP 
masses in GeV, respectively



Systematics for e𝜏h channel (Full Run 2)
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Exclusion (Full Run 2)
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𝜇𝜏h category

e𝜏h category

x=0.75

x=0.75x=0.25 x=0.5

x=0.25 x=0.5



𝜏h𝜏h Results
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MSSM Particle spectra
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SR Yields (Full Run 2)
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1𝜇+1𝜏h category1e+1𝜏h category


