Search for supersymmetric partner of top quark pair production in a di- τ final state with CMS detector (DHEP Annual Review Meeting 2022)

By Saikat Karmakar

Under the supervision of Prof. Sudeshna Banerjee (Guide) Prof. Monoranjan Guchait (Co-guide)

TIFR, Mumbai Date:05/05/2022

Why SUSY

- Standard Model (SM) of high-energy physics is a remarkably successful theory, supported by the experimental results.
- However SM fails to explain several observations:
 - Dark matter and dark energy
 - Matter-antimatter asymmetry \rightarrow
 - Naturalness and Higgs mass etc.
- Supersymmetry tries to answer the shortcomings of SM by introducing a bosonic supersymmetric partner (superpartner) for each fermion (and vice-versa), the superpartner having the same quantum numbers, other than spin, as its SM partner.
- The present analysis is based on minimal supersymmetric standard model (MSSM) that contains the SM particles, their SUSY partners and two Higgs doublet.

$$H_{u} = (H_{u}^{+}, H_{u}^{0})$$
 and $H_{d} = (H_{d}^{0}, H_{d}^{-})$

The parameter $tan\beta$ is defined by

tan
$$\beta$$
 = $v_{_{II}}/v_{_{cl}}$

 $tan\beta = v_u/v_d$ Where v_u and v_d are the VEV corresponding to H^0_u and H^0_d respectively

Why top squark search

- \Box The MSSM has 5 higgs boson: h, H, A, H[±].
- The tree level CP even *h* receives substantial mass correction involving top squark loop:

$$egin{align} m_h &= m_z |cos2eta| + rac{3m_t^4}{2\pi^2 v^2 sin^2eta} [lograc{m_s^2}{m_t^2} + rac{X_t^2}{2m_s^2}(1-rac{X_t^2}{6m_s^2})] \qquad X_t = A_t - \mu coteta \ m_s &= \sqrt{m_{ ilde{t}\,1} m_{ ilde{t}\,2}} \ \end{aligned}$$

- h is the **SM like higgs boson** with m_h =125.38 \pm 0.11 (stat) \pm 0.08 (syst) GeV [Ref: Physics Letters B 805 (2020) 135425]
- ☐ The discovery of higgs boson constrains the lighter stop mass stringently.
- ☐ For maximal mixing scenario, to get a higgs boson of mass ~125 GeV, the lighter stop mass is required to be ~500 GeV which is interesting in the LHC scenario.

Signal Channel

Our decay chain is:

$$\begin{array}{c} \tilde{\chi}_1^\pm \to \tilde{\tau}_1^\pm \nu_\tau \to \tau^\pm \nu_\tau \tilde{\chi}_1^0 \\ \\ \text{or} \quad \tilde{\chi}_1^\pm \to \tau^\pm \tilde{\nu}_\tau \to \tau^\pm \nu_\tau \tilde{\chi}_1^0 \end{array}$$

Mass Relations:

$$egin{aligned} m_{ ilde{\chi}_1^\pm} - m_{ ilde{\chi}_1^0} &= 0.5 (m_{ ilde{t}_1} - m_{ ilde{\chi}_1^0}) \ m_{ ilde{ au}_1} - m_{ ilde{\chi}_1^0} &= x [m_{ ilde{\chi}_1^\pm} - m_{ ilde{\chi}_1^0}] \end{aligned}$$

Assuming $m_{ ilde{ au}_1}=m_{ ilde{
u}_{ au}}$ with x=[0.25, 0.5, 0.75]

- ☐ The first two diagrams are competing. For a given stop and LSP mass:
 - x = 0.25: The slepton is closer to the LSP. So the first diagram produces softer taus, and second harder.
 - x = 0.75: The slepton is closer to the chargino. So the first diagram produces harder taus, and second softer.
 - $\mathbf{x} = 0.5$: Both the diagrams behave similarly.
 - ☐ Both hadronic and semileptonic decays of tau lepton is considered in this analysis

Why **7**-Lepton Final State

☐ Chargino/neutralino are admixture of gaugino and higgsino like components:

$$egin{aligned} ilde{\chi}_{i}^{\pm} &= C_{1i} ilde{W}^{\pm} + C_{2i} ilde{H}^{\pm} \ ilde{\chi}_{i}^{0} &= N_{1i} ilde{\gamma} + N_{2i} ilde{Z} + N_{3i} ilde{H}_{1}^{0} + N_{4i} ilde{H}_{2}^{0} \end{aligned}$$

☐ In a higgsino like scenario:

$$|C_{2i}|^2 > |C_{1i}|^2$$
 and $|N_{3i}|^2 + |N_{4i}|^2 > |N_{1i}|^2 + |N_{2i}|^2$

- \Box tan β >>1 implies (1/cos β)>>1.
- □ The higgsino component of chargino/neutralino couples to sleptons with a strength \propto (m_i/cos β).
- In high $\tan\beta$ region and higgsino like scenario, the chargino/neutralino most often decays to τ lepton as $m_{\tau} >> m_{e}$ and m_{u} .
 - \rightarrow In such SUŠY cascade decay, we have lot of τ -lepton in the final state

Previous Analysis result (di- τ_h final state)

Top squark mass up to ~1100 GeV are excluded for a nearly massless neutralino

DOI 10.1007/JHEP02(2020)015

CMS-SUS-19-003

Main backgrounds

The analysis is performed for total 138fb⁻¹ of data collected in full Run-2 by CMS detector

- ☐ The main background contributions are coming from:
 - → tt (831.76 pb),
 - → Associated production of single top (ST) with a W-boson (35.6 pb)
 - \rightarrow Fake background coming from jet misidentified as $\tau_{\rm h}$
 - → DY+jets (5343 pb),

- Other small contributions are coming from
 - → W+jets, WH, ZH,
 - → WW, WZ, ZZ,
 - → TTZ, TTW,
 - → t-channel single top production

Top squark pair production cross-section for different top squark mass

m _{Stop} (GeV)	Xsection(pb)
200	75.5
500	0.609
800	0.033
1000	0.0068

Generator level matching has been performed for prompt τ_h in case of MC to ensure that it is non fake

Search Variables

Our main search variables are:

- MET: Sensitive to the kinematics of the neutralino and neutrino
- \square $m_{T2}(\ell, \tau_h, MET)$ or $m_{T2}(\tau_h, \tau_h, MET)$: Sensitive to the chargino mass

$$m_{T2}(vis1, vis2, MET) = \min_{\vec{p}_{T}^{inv1} + \vec{p}_{T}^{inv2} = \vec{p}_{T}} [\max\{m_{T}^{2}(\vec{p}_{T}^{vis1}, \vec{p}_{T}^{inv1}), m_{T}^{2}(\vec{p}_{T}^{vis2}, \vec{p}_{T}^{inv2})\}]$$

$$m_{T}^{2}(\vec{p}_{T}^{vis1}, \vec{p}_{T}^{inv1}) = m_{vis1}^{2} + m_{inv1}^{2} + 2(E_{T}^{vis1}E_{T}^{inv1} - \vec{p}_{T}^{vis1} \cdot \vec{p}_{T}^{inv1})$$

 \square S_T (scalar p_T sum of all visible objects): Sensitive to to the total mass of the system (top squark mass)

Selection region event selection and SR selection

Event Selection (ℓ_{τ_h} -category)

- \blacksquare Exactly one muon (electron) passing medium (tight) id WP for $\mu \tau_h$ (e τ_h) category
- \Box Exactly one τ_h passing tight iso WP and $\Delta R(\mu/e, \tau_h) > 0.5$
- \Box The muon (electron) and τ_h should be of opposite sign
- □ Veto events if there is any extra lepton passing $p_T > 15$ GeV and $|\eta| < 2.4$
- \square $N_{b-iet(Medium)} \ge 1$
- \triangle AR(μ /e, jet)>0.5 and \triangle R(τ _b , jet)>0.5
- MET > 50 GeV
- \square S_T > 100 GeV (scalar p_T sum of all visible objects)

tt estimate: Methodology

Ref: CMS-EXO-17-016, SUS-19-003

- The goal is to correct the prediction of tt MC yield in the signal region by deriving a correction factor in a tt enriched control region (CR)
- We determined the scale factor in $e-\mu$ control region which is highly pure in tt (~ 90%)
 - The purity, p, is defined as,

$$p=rac{CR^{\,tar{t}\,\,MC}}{CR^{\,all\,\,MC}}$$

For a given bin i, the scale factor is defined as,

$$SF_i = rac{N_{i, ext{data}}^{e\mu~ ext{CR}}}{N_{i, ext{MC}}^{e\mu~ ext{CR}}}$$

- □ Repeated the same exercise in di-µ control region also
- The di-μ CR gives an opportunity to cross check our results. This measurement is also useful to check any dependence on lepton flavour
- \Box The difference SF^{e, μ}-SF^{$\mu\mu$} is taken as systematic on the SF
- ☐ The corrected tt yield in simulation in each region of the SR is then obtained as

$$N_{i, ext{corr } ext{t}ar{ ext{t}}}^{ ext{SR}} = N_{i, ext{t}ar{ ext{t}}}^{ ext{SR}} SF_i = rac{N_{i, ext{data}}^{e\mu} N_{i, ext{t}}^{ ext{SR}} N_{i, ext{t}}^{ ext{SR}}}{N_{i, ext{MC}}^{e\mu} CR}$$

SFs, Purity and Systematic Unc.

To reduce the effect of statistical fluctuations, bins [14, 15] in the CR have been merged to obtain the same SF for both the bins.

Jet to τ_h Fake Background Estimation(Semileptonic): Methodology

The main steps for jet to τ_h fake background estimation are:

- \Box First find a control region (CR) orthogonal to signal region where there is no real $\tau_{\rm h}$ but there is jet.
- \Box Find the jet to τ_h fake rate in this CR.
- □ Validate the fake rate in another validation region, orthogonal to both the CR and SR.
- If the fake estimation is found to work in the validation region, use it to determine fake background in the SR.

CR For Fake Rate Determination (Semileptonic channels)

Ref: SUS-17-002

- ☐ Fake rate is estimated in a data driven method in a W+jets enriched region
- The fake rate is determined using the following formula:

$$R = rac{N_{data}^{CR}(au, Tight) - N_{ ext{MC w/o W+jets}}^{CR}(au, Tight)}{N_{data}^{CR}(au, VLoose\&!Tight) - N_{ ext{MC w/o W+jets}}^{CR}(au, VLoose\&!Tight)}$$

☐ The fake contribution is then determined in the signal region using the following formula:

$$\left|N^{SR}(jets o au)=R[N^{SR}_{data}(au_{VL\&!T})-N^{SR}_{MC}(au_{VL\&!T\&GenMatched})]
ight|$$

Purity of W+Jets is ≈83 %

Fake rates were validated in a DY+Jets enriched region and good closure is observed

Event Selection:

- \Box Exactly one muon passing tight identification and at least one $\tau_{\rm h}$ candidate passing VLoose isolation WP.
- Veto events with extra lepton passing $p_T > 15$ GeV and $|\eta| < 2.4$.
- \Box 60<M_T (transverse mass of μ and MET)<120
- \Box 0 < $N_{\text{jet(non-tagged)}}$ < 3.
- N_{b-jet} = 0 (This selection makes this CR orthogonal to our signal region where we require at least one b-jet passing medium WP of DeepJet algorithm).

Fake rates(R) (Semileptonic channels)

2016	30≤p _T <40	40≤p _T <70	70≤p _T <150	p _T ≥ 150
0≤ η <1.44	0.20(±0.004)	0.18(±0.005)	0.18(±0.009)	0.30(±0.040)
1.44≤ η <2.3	0.15(±0.005)	0.15(±0.007)	0.15(±0.013)	0.18(±0.049)

2017	30≤p _T <40	40≤p _T <70	70≤p _T <150	p _T ≥ 150
0≤ η <1.44	0.21(±0.004)	0.21(±0.005)	0.21(±0.009)	0.30(±0.041)
1.44≤ η <2.3	0.17(±0.005)	0.18(±0.007)	0.15(±0.014)	0.26(±0.065)

2018	30≤p _T <40	40≤p _T <70	70≤p _T <150	p _T ≥ 150
0≤ η <1.44	0.20(±0.003)	0.20(±0.005)	0.21(±0.004)	0.29(±0.033)
1.44≤ η <2.3	0.18(±0.004)	0.16(±0.006)	0.17(±0.012)	0.36(±0.063)

SR search variables Data-MC comparison (Full Run2)

SR search variables Data-MC comparison (Full Run2)

Signal region Data-MC comparison (bin-wise) (Full Run2)

$\mu \tau_{\rm h}$ + $e \tau_{\rm h}$ combined exclusion (Full Run 2)

- ☐ Top squark mass upto 1050 GeV is excluded for nearly mass less neutralino
- ☐ Neutralino mass upto 360 GeV is excluded for 850 GeV top squark mass

$\mu \tau_{\rm h}$ + $e \tau_{\rm h}$ + $\tau_{\rm h} \tau_{\rm h}$ combined exclusion (Full Run 2)

- Top squark mass upto 1140 GeV is excluded for nearly mass lep neutralino
- Neutralino mass upto 500 GeV is excluded for 950 GeV top squark mass

Summary

- ☐ Top squark search in di-tau semileptonic channel is presented.
- ☐ Top squark mass upto 1050 GeV is excluded for nearly mass lep neutralino.
- ☐ Combination of semileptonic and fully hadronic channels exclude top squark mass upto 1140 GeV for nearly mass lep neutralino.

Thank you

Back up

Object Selection

μ -Selection:

- Medium (tight) identification WP in SR (tau fake rate estimation)
- Impact parameters: $|d_{xy}| < 0.045$ cm and $|d_z| < 0.2$ cm
- Medium WP of Δβ corrected isolation
- $p_T > 28 \text{ GeV and } |\eta| < 2.4$

e-Selection:

- ☐ Tight identification
- Missing hit in inner tracker should not exceed 1
- Conversion veto is applied
- \Box Impact parameters: $|d_{yy}| < 0.045$ cm and $|d_{z}| < 0.2$ cm
- Tight WP of Δβ corrected isolation
- \Box p_T > 30(36) GeV for era 2016(2017,2018) and $|\eta|$ < 2.1

Missing Energy (MET):

Type-I PF MET

$\tau_{\rm b}$ -Candidate Selection:

- Decay Mode (1 and 3 prong decays)
- Deep tau against jet Tight (VLoose) WP in SR (tau fake rate estimation)
- μ-Fake Check: Deep tau against mu Tight WP
- e-Fake Check: Deep tau against e Loose WP
- $p_T > 30 \text{ GeV}$ and $|\eta| < 2.3 \text{ (for } \ell_{\tau_h} \text{ channels)}$
- $p_T > 40 \text{ GeV}$ and $|\eta| < 2.1 \text{ (for di-}\tau_h \text{ channels)}$

Jet Selection:

- \Box p_T > 25 GeV and $|\eta|$ < 2.4(for ℓ_{T_h} channels)
- $p_T > 20 \text{ GeV and } |\eta| < 2.4 \text{(for di-} \tau_h \text{ channels)}$

b-jet Selection:

Deep Jet medium WP

Background overview

- The largest prompt contribution is coming from tt (and tW for ℓ_{τ_h}) as it's topology is similar to our signal process. We derived scale factors from tt enriched CR
- The other major background contribution in the sensitive bins is from fake taus (mostly from semi-leptonic tt events). The fake bkg is estimated in a data driven way.
- \rightarrow The DY background is taken from MC with Z -p_{τ} reweighting applied.
- All other bkgs are estimated from simulations with all the corrections and scale-factors applied

Applied Corrections and SFs: ☐ Trigger SF ☐ Tau Id SF ☐ b-tagging SF ☐ Lepton iso-id SF ☐ Jet Energy Correction (JEC) ☐ Jet Energy Resolution (JER) ☐ PU re-weighting ☐ Tau energy scale ☐ FastSim MET, lepton and τ_h correction (for signal only)

tt +tW estimate: CR event selections

Ref: CMS-EXO-17-016, SUS-19-003

Event Selection:

e-*μ* CR:

- \Box Trigger: **e**- μ cross trigger
- Exactly one muon passing medium id WP and exactly one electron passing tight id WP and of opposite sign

$di-\mu$ CR:

- ☐ Trigger: **Single muon** trigger
- Exactly two muon passing medium id WP and of opposite sign

Common selection criteria for both CRs:

- Veto events with 60< $M_{e\mu}/M_{\mu\mu}$ <120 to reduce DY events
- □ N_{b-jet(Medium)} ≥1
- MET > 50 GeV
- \Box S_T>100 (Scalar p_T sum of all leptons and jets)

Validation of the tt SF method

For the validation we selected a tt enriched region with di-electron final state

Event Selection:

- ☐ Trigger: **Single electron** trigger
- ☐ Exactly two electron passing tight id and iso WP and of opposite sign
- ullet Veto events with 60<M_{ee}<120 to reduce DY events
- N_{b-jet(Medium)} ≥1
- ☐ MET > 50 GeV
- \Box S_T>100 (Scalar p_T sum of all visible objects)

Validation plots for the tt SF method

After the SFs applied, the Data-MC agreement is getting better

Closure test of fake estimation

- For validation of the fake rate a DY+jet enriched region (orthogonal to SR) is selected with:

 - as τ_h)
 - MET < 50 GeV.
- Closure plots for the p_T of τ_h is shown for 2016, 2017 and 2018 and reasonably good closure is obtained.

More closure plots are in back up

- The Fake rate is also evaluated in a QCD enriched region and the difference is found to be 15% which is added as an extra uncertainty
- W+jets-> consists more quark jets, QCD-> consists more gluon jets
- The difference accounts for the parton flavor dependence of the FRs (more details are in the backup)

Systematics(1)

- \rightarrow μ , e, τ_h FastSim SF: Derived from tt MC (in the backup). The statistical uncertainty is propagated.
- $\rightarrow \tau_{\rm h}$ ID-iso: From https://twiki.cern.ch/twiki/bin/view/CMS/TauIDRecommendation13TeV.
- $\rightarrow \tau_{\rm b}$ ES: From https://twiki.cern.ch/twiki/bin/view/CMS/TauIDRecommendation13TeV.
- → JEC: From https://twiki.cern.ch/twiki/bin/view/CMS/JECDataMC.
- → JER: From https://twiki.cern.ch/twiki/bin/viewauth/CMS/JetResolution.
- \rightarrow QCD scale: The combination of μ_R and μ_F that gives the maximum variation is used. Refer https://indico.cern.ch/event/515356/contributions/2180624/attachments/1278947/1898943/SMHTauTau.pdf.
- → b-tagging: The efficiency in MC is corrected using the event weight reweighting method from https://twiki.cern.ch/twiki/bin/view/CMS/BTagSFMethods.
- → tt SF: The difference between the SFs derived in the eμ and μμ regions (added in quadrature with the statistical uncertainty) is propagated.
- → Z-p_T reweighting: The size of the correction is propagated as the uncertainty. Corrections taken from HTT: https://github.com/danielwinterbottom/CorrectionsWorkspace/tree/ic_embed.

Systematics(2)

- $\rightarrow \tau_h$ fake-rate (parton flavor): A flat ±15% uncertainty on the fake-rate is used.
- → Luminosity: From https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSRecommendationsRun2Legacy.
- → Pileup: The minimum bias cross section is varied by ±2.5%. Refer https://cds.cern.ch/record/2647118/files/CR2018-328.pdf.
- → MET unclustered energy: The uncertainty due to the variation of the unclustered component in MET https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMetAnalysis.
- → Signal cross-section: From https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections13TeVstopsbottom.
- → FastSim MET correction: the signal yields are corrected as yield_{nominal} = (yield_{gen-MET} + yield_{reco-MET}) /2 . The error on the corrected yield is obtained as, ∆yield = ±| yield_{nominal} yield_{reco-MET} |.

N.B. The systematics on the tt background whose source is not τ_h identification/reconstruction, cancel out. This is because the variations in SR tt and $CR_i^{all\ MC}$ due to those sources cancel out (refer to tt SF slides).

Systematics for $\mu\tau_h$ channel (Full Run 2)

Uncertainty source	x = 0.5	x = 0.5	x=0.5	x=0.5	tŧ	Single Top	DY+Others	MisId. τ_h
	[300,100]	[500,350]	[800,300]	[1000,1]		\\ \		
Signal cross-section	\pm 6.9%	\pm 7.5%	\pm 9.5%	\pm 11%	/-/	_	\ \-	<u></u>
FASTSIM p_T^{miss} resolution	$\pm~1.6\%$	$\pm~1.6\%$	± 0.3	$\pm 0.1\%$	/-	-	/ /	-
$\tau_{\rm h}$ FastSim/Geant4	\pm 0.7%	$\pm~0.7\%$	$\pm~0.9\%$	\pm 1.3%	\ —	_	_	_
μ FASTSIM/GEANT4	\pm 1.7%	$\pm~1.4\%$	$\pm~2.9\%$	3.1%	$\langle \cdot \rangle$	/ }	-/	_
JER	+0.6%	+0.3%	< 0.1%	+0.1%	\ -\/	+0.3%	+4.2%	+0.1%
	-0.1%	-0.5%	< 0.1%	< 0.1%	\- (-0.1%	-1.5%	-0.4%
$2018 m_{T2}$ uncertainty		_	-//	_	< 0.1%	< 0.1%	< 0.1%	< 0.1%
JEC	+0.1%	+0.2%	< 0.1%	+0.1%	_\	0.6%	+4.7%	+0.4%
	-0.3%	-0.5%	< 0.1%	-0.1%	\ - \	-0.7%	-3.0%	-0.4%
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	0.5%	+0.8%	+0.2%	+0.2%	/ '	4.2%	+4.0%	+4.9%
	-0.5%	-0.8%	-0.3%	-0.3%	$\langle - \rangle$	-4.0%	-5.1%	-5.1%
τ_h Id-iso	+3.2%	+3.2%	+3.2%	+3.2%	+3.1%	+3.1%	3.1%	+1.6%
	-3.9%	-3.8%	-4.1%	-4.1%	-3.8%	-3.9%	-3.6%	-1.3%
Pileup	+0.6%	+0.1%	+0.3	+0.4%	_	+0.7%	+0.4%	+0.2%
	-0.6%	-0.1%	-0.3	-0.4%	_	-0.7%	-0.4%	-0.2%
p _T ^{miss} Unclustered energy	< 0.1%	< 0.1%	+0.1%	< 0.1%	_	0.7%	+5.0%	0.2%
. \\	< 0.1%	0.1%	< 0.1%	-0.1%	_	-1.2%	-3.2%	-0.3%
b-tagging \	< 0.1%	± 0.1	$\pm \ 0.14$	$\pm~0.4\%$	_	$\pm~2.0\%$	\pm 5.3%	$\pm~0.7\%$
2017 $p_{\rm T}^{\rm miss}$ uncertainty	1-	<u> </u>	_	_	< 0.1%	< 0.1%	< 0.1%	< 0.1%
$\tau_{\rm h}$ energy scale	-0.6%	-0.05%	-0.3%	< 0.1%	+0.1%	+0.1%	+2.5%	+0.1%
	-0.1%	-0.6%	-0.1%	< 0.1%	-0.1%	-0.1%	-3.8%	-0.1%
trigger	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%
tī ŠF	_	<u> </u>	_	_	$\pm3.8\%$	\pm 3.9%	· ·	<u>-</u> 1
$\tau_{\rm h}$ fake rate (parton flavour)	_	· —	_	_	_	_	_	$\pm15\%$

- These values are the weighted (by the yields in the respective bins) averages of the relative uncertainties in the different search regions
- → For the asymmetric uncertainties, the upper (lower) entry is the uncertainty due to the upward (downward) variation
- → The numbers in square brackets in the heading indicate the top squark and LSP masses in GeV, respectively

Systematics for e_{τ_h} channel (Full Run 2)

Uncertainty source	x = 0.5	x = 0.5	x=0.5	x=0.5	tŧ	Single Top	DY+Others	MisId. $\tau_{\rm h}$
y	[300,100]	[500,350]	[800,300]	[1000,1]				ı
Signal cross-section	\pm 6.9%	\pm 7.5%	\pm 9.5%	±11% —	19-20	/-/	\ _	
FastSim p_T^{miss} resolution	$\pm~0.6\%$	$\pm~0.5\%$	< 0.1%	< 0.1%	-/	\ <u> </u>	\ -	-
τ _h FastSim/FullSim	$\pm~0.9\%$	$\pm~0.8\%$	\pm 1.1%	\pm 1.6%	/-/	_ \	\ \ —	
e FastSim/FullSim	\pm 1.7%	$\pm1.4\%$	\pm 3.1%	\pm 3.1%		—	\ \-	-
JER	0.1%	0.2%	< 0.1%	+0.1%	(–	+0.5%	+2.5%	+0.1%
	-0.4%	-1.5%	-0.1%	+0.1%	\-	-0.2%	+0.3%	-0.4%
2018 $m_{\rm T2}$ uncertainty	-	5		-	< 0.1%	< 0.1%	< 0.1%	< 0.1%
JEC	0.2%	-0.2%	0.1%	+0.1%	\	0.6%	+3.2%	+0.4%
	-0.2%	-0.3%	-0.1	-0.1%	-/	-0.9%	-2.0%	-0.4%
QCD scale	0.5%	1.02%	0.5%	+0.3%	7)	4.1%	3.2%	5.5%
	-0.4%	-1.1%	-0.5%	-0.4%	_\	4.0%	-4.6%	-5.5%
$\tau_{\rm h}$ Id-iso	+3.2%	+3.2%	3.2%	+3.2%	+3.1%	+3.1%	3.1%	+1.7%
	-3.9%	-4.3%	-4.1%	-4.1%	-3.7%	-3.9%	-3.7%	-1.4%
Pileup	+0.2%	+0.7%	0.4%	+0.4%	_	+0.8%	+0.1%	+0.3%
	-0.1%	0.7%	-0.1%	-0.4%	_	-0.8%	-0.1%	-0.3%
p _T ^{miss} Unclustered energy	+0.6%	+0.8%	+0.2%	< 0.1%	-	+0.8%	+3.6%	+0.2%
	-0.4%	-0.7%	-0.2%	0.1%	·	-0.8%	-1.9%	-0.4%
b-tagging	\ ± 0.1%	< 0.1%	± 0.2	$\pm~0.5\%$	· —	$\pm2.0\%$	$\pm~4.9\%$	$\pm~0.8\%$
2017 $p_{\rm T}^{\rm miss}$ uncertainty	/ / ,	\ \		_	< 0.1%	< 0.1%	< 0.1%	< 0.1%
trigger	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%	< 0.1%
$\tau_{\rm h}$ energy scale	-0.6%	-0.1%	-0.1%	< 0.1%	< 0.1%	+0.1%	1.5%	< 0.1%
\\	-0.7%	0.4%	-0.1%	< 0.1%	< 0.1%	-0.1%	-3.4%	
t t SF	/ +	_	· —		$\pm~3.8\%$	$\pm4.0\%$	_	_
$\tau_{\rm h}$ fake rate (parton flavour)	/ /	_	F—-	-	17 	 0	-	\pm 15%

Exclusion (Full Run 2)

$\mu \tau_{\rm h}$ category

 $e\tau_h$ category

$\tau_{\rm h}\tau_{\rm h}$ Results

MSSM Particle spectra

Name	Superfield	Spin-0	Spin-1/2	$SU(3)_C$	$SU(2)_L$	$\mathrm{U}(1)_Y$
Quarks, Squarks	Q_L	$(\widetilde{\mathrm{u}} \widetilde{\mathrm{d}})_L$	$(\mathbf{u} \mathbf{d})_L$	3	2	1/6
$(\times 3 \text{ familes})$	U_R	$\widetilde{\mathbf{u}}_R$	\mathbf{u}_R	$\bar{3}$	1	-2/3
	D_R	$\widetilde{\operatorname{d}}_R$	d_R	$\bar{3}$	1	1/3
Leptons, Sleptons	L_L	$(\widetilde{\mathbf{v}} \widetilde{\mathrm{e}})_L$	$(v \mathrm{e})_L$	+1	+2	-1/2
$(\times 3 \text{ familes})$	E_R	$\widetilde{\operatorname{e}}_R$	\mathbf{e}_R	1	1	1
Higgs, Higgsinos	H_u	$(H_u^+ H_u^0)$	$(\widetilde{H}_u^+ \widetilde{H}_u^0)$	1	2	1/2
	H_d	$(H_d^0 H_d^-)$	$(\widetilde{H}_d^0 \widetilde{H}_d^-)$	1	2	-1/2

Name	Spin-1/2	Spin-1	$SU(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
Gluon, Gluino	$\widetilde{\mathrm{g}}$	g	8	1	0
W bosons, Winos	$\widetilde{W}^{\pm} \widetilde{W}^0$	W^{\pm} W^{0}	1	3	0
B bosons, Binos	$\widetilde{\mathrm{B}}^{0}$	B^0	1	1	0

SR Yields (Full Run 2)

SR Bin	Tot Bkg.	Data
1	$16222.2^{+68.8+657.9}_{-68.8-675.2}$	15744
2	$16374.3^{+65.1+598.3}_{-65.1-658.0}$	15605
3	$1601.4^{+19.8+64.1}_{-19.8-73.2}$	1524
4	$1047.6^{+16.5+46.0}_{-16.5-49.1}$	1039
5	$514.3^{+11.1+37.7}_{-11.1-40.8}$	520
6	$9824.8^{+49.4+350.5}_{-49.4-381.7}$	9372
7	$6559.3^{+38.9}_{-38.9}{}^{+262.8}_{-296.0}$	6222
8	$418.0^{+9.8+24.5}_{-9.8-26.5}$	435
9	$343.1^{+8.8+17.6}_{-8.8-18.4}$	303
10	$99.1^{+4.8}_{-4.8}{}^{+8.9}_{-9.4}$	95
11	$1149.8^{+16.8+43.3}_{-16.8-47.4}$	1131
12	$872.6^{+14.5+37.4}_{-14.5-46.0}$	921
13	$96.7^{+5.4}_{-5.4}{}^{+6.5}_{-0.0}$	114
14	$42.5^{+3.3}_{-3.3}{}^{+4.3}_{-4.5}$	49
15	$17.1^{+1.9}_{-1.9}{}^{+2.7}_{-2.5}$	17
Total	$55182.9^{+120.1+997.4}_{-120.1-1066.4}$	53122

$1e+1\tau_h$	category
--------------	----------

SR Bin	Tot Bkg.	Data
1	$30800.6^{+103.9}_{-103.9}^{+1232.3}_{-1266.6}$	29475
2	$25860.8^{+85.0+942.5}_{-85.0-1017.3}$	25055
3	$2323.1^{+24.8}_{-24.8}{}^{+97.1}_{-105.9}$	2273
4	$1700.2^{+22.8+74.7}_{-22.8-99.2}$	1678
5	$763.5^{+13.5+58.1}_{-13.5-61.6}$	800
6	$18752.4^{+69.0+662.9}_{-69.0-723.4}$	18412
7	$10685.4^{+50.9}_{-50.9}{}^{+438.3}_{-477.4}$	10441
8	$665.9^{+12.8+39.7}_{-12.8-40.6}$	638
9	$554.5^{+12.0+30.0}_{-12.0-32.8}$	565
10	$149.1^{+6.0+14.3}_{-6.0-14.3}$	132
11	$1931.3^{+22.2+71.5}_{-22.2-84.8}$	2027
12	$1383.2^{+19.1+62.0}_{-19.1-66.0}$	1333
13	$127.9^{+6.1+10.3}_{-6.1-10.3}$	111
14	$70.2^{+4.2}_{-4.2}{}^{+6.6}_{-6.6}$	69
15	$20.0^{+2.1}_{-2.1}{}^{+3.0}_{-2.8}$	18
Total	$95869.8^{+167.4+1718.6}_{-167.4-1831.8}$	93072

 1μ + $1\tau_{\rm h}$ category