Regular Expressions

.== a powerful tool in a skilled hand

15.10. 2010

Introduction
Special Characters
Sets

Character Classes
Simple examples
Multipliers
Number Quantifiers
Subexpressions
Regex in PHP
Regexp in real use
Try Out ...

Read more...

Q/A

Introduction

= A pattern that either matches or doesn’'t match a given string or
substring. Result of comparison will either be true or false.

art :: matches art in ‘art’, ‘article’', 'artifact’, ‘'martial’, ‘cart’, ‘'mart’
= Use and syntax of regex is the same across many Unix

programs (vi, sed, awk etc.) and programming / scripting
languages(Perl , Java, PHP etc.)

= Regexp is supported in all major development environments.

« Uses:

Search for the existence of a pattern
Validate User Input data in web forms
Bulk Search and replace at ease.
String manipulation

Special Characters

= A period (.) - matches any single character
www.ibm.com matches patterns like “www1ibmacom”, "wwwaibmscom”

= A pipe (]) - either what comes before or what comes after.
jpglpng :: matches 'jpg’ or '‘png*

= A caret () at the beginning of a regexp - will only match if
it starts at the beginning of the comparison string

Aart :: matches 'article’ & 'artifact’ but not ‘mart’

= A dollar sign (%) at the end of a regexp - will only match if it
ends at the end of the comparison string
art$:: matches 'cart' & 'mart‘ but not ‘arts’ *art$:: matches - 'art'

Special Characters (...)

= All regex are case sensitive unless told not to be so. —
with the use of 1’

"WWW.ibm.com" does not match "www"
"WWW.ibm.com" | egrep -i "www* matches WWW.ibm.com

= A backslash (\) means escape the next character if it is
a special one.

www\.ibm\.com matches exact pattern “www.ibm.com”
\? matches a question mark
\/ matches a forward slash
\\ matches a backslash

A character set is a group of characters from which

only one is desired.
[0123456789] — matches any single number

Sets can use ranges of characters
[4-9] — matches any digit in the range 4 to 9

A dash can be represented in a set by placing it first
[-aeiou] — matches a dash or a vowel

A caret (*) at the beginning of a set negates.
[*1-4] — matches any character which isn't 1,2,3 or 4

Character classes

= [To represent a bunch of characters as a single item

alpha :: any letter, same as [A-Za-Z].

upper :: any upper-case letter; same as [A-Z].

lower :: any lower-case letter; same as [a-Z].

digit :: any digit; same as [0-9].

alnum :: any alphanumeric character; = [A-Za-z0-9].
xdigit :: any hexadecimal digit; = [0-9A-Fa-f].

« |f the character after the backslash is not a special one,
then it may be an escape sequence.

\| - Lowercase next character \n - newline character
\r - Return character \s - white space
\S - non white space = "\s \t - Tab character

Simple examples

\d\d\.\d\d\.\d\d\d\d
matches patterns like “01.01.2000"

wW\w\w, \d\d \w\w\w \d\d\d\d
matches patterns like “Wed, 21 Jul 2000”

“.. \[[0-91\]:" matches patterns like SL [9]:, I1Q [5]:
“[a-zA-Z]99" matches patterns like s99, K99, S99
“(Jwx])([yz])” matches 'wy','wz','xy' or 'xz'
“([A-Z){3}|{[0-9]{4})” matches three UC letters OR 4 numbers
sIA*)(\r?\n\1)+3$\1!g — deletes similar duplicate lines

Any character or character class can be assigned a
multiplier - say whether a character must exist, is
optional, may exist for a certain minimum or maximum ...

« Plus (+) :: One or more
A+ - A followed by any no. of additional A’s
. Asterisk (*) :: anything
A* - A followed by anything
. Question Mark (?) :: Zero or more occurrences
A? - Either A or no As
. Curly Brackets({}) :: A specific range of occurrences
A{2,4} - 2 As or more but no more than 4.
[[:digit:]{1,6} - 1 number (0-9) or more, but no more than 6.

Number Quantifiers

= Specify number of occurrences, how many times
previous character should occur.

= G*-0ormore G

= G+ -1 ormore occurrence of G
= G?-0o0r1occurrence of G

= V{5} - Exactly 5 times

= S{3,} -3 ormore ; at least 3

= V{2,3} - from 2 to 3 times

SubExpressions

« A way of grouping characters together.
. Used to reference the entire group at once.
« To group characters, place them within '()".

(Name) = name ;; (Name)+ = name, namename

A pipe within a subExpression means either the first group of text
or the second (or more).
(Nalme) = Na or me ;; (Name|Date) = Name or date

Back referencing ; reference one or more groups directly. (\)
followed by a no. that specifies which subexpression we want.
(name)\1 = namename
(name|date)\1 = namename or datedate

Regexp in PHP

preg replace — search and replace

<? php

$string = 'Jul 12, 2000";

$pattern = "/(\w+) (\d+), (\d+)/i";

$replacement = '$1y 21, $3';

echo preg_replace($pattern, $replacement, $string);
7>

Try I Swapping '"12' to '21' using regexp instead of literal
substitution of 12 by 21

Regexp in PHP

preg match() — match a pattern — returns 1 for match
else 0.

<?php

if (oreg_match("A\bweb\b/i", "PHP is a web scripting language.")) {
echo "A match was found.";

} else { echo "A match was not found."; }

If (preg_match("A\bweb\b/i", "PHP is the best website scripting
language.")) {echo "A match was found.";

} else { echo "A match was not found.";}

?>

Regexp in PHP

split — split a string based on regexp
<? // Delimiters may be slash, dot, or hyphen
$date = "01/05/1970";
list($day, $Month, Syear) = split('[/.-]', $date);
echo "Month: $month; Day: $day; Year: Syear
\n";

7>

... explore more regex in PHP

What is $1, $2? What is the end result? Dissect the regexp
and analyse first and predict the result. Then try the code.

<?php

$s = ' PHP web site ';

$s .= ' Gmail ',

$s .= ' IBM ';

$s =
preg_replace(/<a[*>]"?href=[\""](.*?)[\"][*>]*?>(.*?)<Va>/sl','$2',$s);

echo $s;
7>

Regexp in real use

= Practical use to check password strength
« <? $password = "Fyfjk34sdfjfsjq7";

« if (preg_match("/A.*(?=.{8,})(?=.5\d)(?=.*[a-Z])(?=.*[A-Z]).*$/",
$password)) { echo "Your passwords is strong."; }

= else {echo "Your password is weak."; } ?>

= (7=.%{8,}) - checks if there are at least 8 characters in the
string.

= (?=.7[0-9]) — checks for "zero or more alphanumeric
characters, then any digit". Checks for at least one number.

= (7?=."[a-z]) and (?=.*[A-Z]) looks for LC and UC letter
anywhere.

Regexp in real use

Only allow plain text and URLs - no other
HTML tags or scripts allowed 1n a textbox

area as 1nput

if (preg_match('#(<script)([*\s]*)#', $caption) ||
preg_match('#(</script>)([*\s]*)#', $caption) ||

preg_match('#(<\?)([*\s]*)#', $caption)
preg_match('#(\?>)([*\s]*)#', $caption)
preg_match('#(<\%)([\s]*)#', $caption)|
preg_match('#(\%>)[\s]*)#', $caption)(

{

DisplayErrorMessage("0", "Invalid Caption
 Caption can
have only plain text and reference URLs
 No other HTML

tags allowed " , "javascript:history.go(-1)");

}

Read more...

> Books

> Mastering Regular expressions by Jeffrey E. F. Friedl (O'Rielly)
> Sams Teach Yourself Regular Expressions in 10 Minutes by
Ben Forta

> Regular Expressions Cookbook by Jan Goyvaerts (O'Rielly)

> Web references

> http://www.regular-expressions.info/

> http://lwww.phpf1.com/tutorial/php-regular-expression.ntml
> http://weblogtoolscollection.com/regex/regex.php

> eeeens lot many web references

...The best use of regexp ensures that
“only” the desired input gets into the

system, thereby ensuring better security
of the system.

.. Excellent tool for Sysadmins for log
analysis, passwd file search, file
manipulation etc...

ksri@tifr.res.in

(Q/A) / Discussion

